Y. MUTO
KODAI MATH. J.
5 (1982). 385—394

INTEGRAL OF CURVATURE OF THE NORMAL
CONNECTION IN A SUBMANIFOLD
OF A RIEMANNIAN MANIFOLD

Dedicated to Professor Shigeru Ishihara on his 60th birthday

By Yosio MuTo

§~1. Introduction. Let M and M be orientable C* manifolds such that
dim M=m=m-+k and dim M=m and let f be a C* embedding of A into M.
Then there exists a well-known relation between the Pontrjagin classes of 1\71,
M and the normal bundle v(M). This relation is also accessible by the classical
method of Riemannian geometry. The purpose of the present paper is to get
a formula corresponding to the lowest part of the relation and then to use it
to find some properties of an embedded submanifold in some special cases.
Indeed our effort is concentrated on integrating the curvature in the normal
connection.

We consider that M is endowed with a C* Riemannian metric g and M
with the Riemannian metric g induced by the embedding. Any 4-cyble in M
induces a 4-cycle in M and there exists a relation between the periods on these
cycles. In order to get an explicit expression of such a relation we consider a
four-dimensional compact orientable C* submanifold N of M instead of a 4-cycle.
In the beginning part the codimesion % is assumed to be arbitrary but in the
last paragraph it is assumed to be 3.

In §2 we recall fundamental equations of embedding in Riemannian geometry.
The well-known relation of Pontrjagin classes of an embedded manifold is [2],

[31, [4]
FHA+PAM)+ P M) +-)
= (14 PAM)+PoM)+ )1+ PO+ Po(M)) +-++)
mod torsion,

where v(M) is the normal bundle. The relation between the periods on a 4-
cycle 7 is therefore

FHPAID) = Py(M) |+ Py(u(M)) ], .
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The curvature tensor K,;pq of the normal connection plays the central role in
P,(v(M)), but for further treatment a local 3-form U,;. which appears in §3
seems to be more useful. In §4 two domains are considered in M and the local
3-forms on them are compared in the intersection. There we find a mapping ¢
of the intersection into SO(k). In §5 we treat the case £=3. In some special
case where such mappings ¢ become surjections, we can express the period
P,(u(M))|y by a sum of degrees of mappings ¢. The main results are Theorem
3.1 and Theorem 5.1.

The author thanks Professor Y. Tomonaga for his kind assistance throughout
the work. The author also thanks Professor K. Ogiue whose kind information
made the start of the work possible.

§2. Fundamental equations of embedding [1], [5].

Let (M, g) be a Riemannian manifold isometrically embedded in a Rieman-
nian manifold (M, &) and let the embedding be expressed locally by

xh=xMy', -, y™),  h=1, -, m+tk.

We suppose that dim M=m, dim A7I=~ﬁz=m—|—k and the letters x* and y* are
used as the local coordinates of M and M respectively where the indices run
as follows,

h’: Z.y j) :1) "'7m+k; K, '2: Y, :1y T, M.
For these indices we adopt usual summation convention. For the indices
P} Q} Ry :m+1y Tty m+k

we use the following summation convention,

m+k
> H,,pHip is written H,,pH,p.

P=m+1
We also use the following notations,
Bt=0x"/0y*=0,x", Biy=B} B},
g,;z :Bzﬁlgth »
K h ‘
H,;"=V,B}=0,B}— B+ B,
HA 7t
where Z;, and g,, are respectively the local components of the Riemannian
metrics g and g, { k } and {h} are respectively the Christoffel symbols of
77 7t

(M, g) and (M, g)and H,,;" are the local components of the second fundamental
form. We use the symbol V of Riemannian connection in the sense of Van der
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Waerden-Bortolotti with respect to M and M but not with respect to the normal

bundle v(M). N
The curvature tensors, namely the Riemann-Christoffel tensors of M and

M are
h

Aol G
K"“‘:a”{:z}_a“{;F{L} {;%{;H;} '

Now we assume that O is a domain of M such that there exists an ortho-
normal normal k-frame field covering O where the k2 normal vectors are denoted
by Np, P=m+1, -+, m+k. Denoting their local components by N2 we have

kkjih:ak{

(2.1) NyNEgin=0gp,
(2.2) g1=Biig"*+N}Np,

where §’¢ and g#? are defined by #;,§"'=0?, gi.g" =05
From the definition of the symbol V we have

(2.3) V;N"=81N}£+B’;{}f}N}J.
]

We define as usual H,;p and L;pq by !

(2.4) Huyip=H,*N3gir ,

(2.5) Lipq=81(VaNp)Ng=—Liqpr

with the use of which the equations of Gauss, Codazzi and Ricci are written
as follows,

(2-6) ]?kjithfza’;: uylx_HvxPHp1P+HﬂxP VAP
2.7) Ry jin BEEN3=H 20—V H, 10— LoprH 2+ LuprH, iz,
2.8) Ry jin BENNE=V,L upq—, Lopq— LuprL urg+ L yprLore
+HvTPH,qu—HpTP vrQ

where

) T T
(2.9) VyH/_zlP:ayH/JXP— HTXP'_ H;sz:

7 vA

T
(2.10) V#Lgsza#prQ—{ Z}L,pQ.
§2
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When a connection is induced in the normal bundle in the standard way
from the Riemannian connections of M and M, the resulting curvature tensor
is given by

(2.11) [{pRPQ:v/JLXPQ_VZLpPQ
_L/JPRLZRQ_{—LXPRL/:RQ .

If we take another k-frame field where the normal vectors are ’'Np, P=m+1,
-+, m-+k, then the new k-frame field is related to the old one by

(2.12) 'Np=apeNg,

where the matrix [apg] can be considered as an SO(k) valued function. Cor-
responding to (2.12) the components of the curvature tensor of the normal con-
nection undergo the transformation

(2.13) ,](/zZPQ:aPSaQTK,uZST ,

hence
IKvaQ,K} kPQ™— vaQKX kPQ -

This proves that there exists a global 4-form expressed locally by K,,.peKi:rq

dy*dy*dy*dy~.
We get from (2.8) and (2.11)
(2'14) kkﬁthﬁme 6:KvyPQ+HyTP urQ yTPHvrQ-

§3. The local 3-form U ;..

In order to find the relation between the Pontrjagin classes P4(]\71 ) and P,(M)
we define the following tensor,

(31) Wy,ul/c:kkjtskihmlgtmguBsi&I}: .
For the second member we get in virtue of (2.2)

Auylx‘!"va)n—'_nylx )
where
A,,#z,c:KkjtsBfﬁci—fzKinsz}?ﬁlgrﬂgw ,

Byu3e=2K, ;1 BN Kinmi BRF Nbg# |
Coure=Kuses BYNEN§ K inmi BENEND, .
Now in view of equations (2.6), (2.7) and (2.14) we get
Aypre=Kypeo—HygpHyep+HyopH,ep)
X(Krga—HiaqHepo+HeagHi59)g™ 2%,
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By 2e=2(NH e p—N  Hyep— Ly poH g+ L ppoH cg)
X(VaHegp—VeH; 30— L iprHepr+LoprHipr)g™*

C»,ullc:(l(p/lPQ"l_HvﬁP /_',SQ_Hy'BPHvﬁQ)
X(Kaxpe+Hi"pHeag—H"pH 1 00)

and, as we need only the skew symmetric part S,.2.=Wr 1 of Wiz We can
write

Apae~Kope o K" —4K, pea H 3 pH, p+4H, 0 pH . pH 3 0H '
B, paw~8VH e pN o H p— 16V, H yep L pH g +8LopoH g L2 prHi g,
Copnte~EK ppoK 2epq+4K, npoH;“pHyaq+4H,? pH 50 H“pHiag
~K,upoK 2epg 8V, L upoH i “pHyag
—8LyprL uroH:*pHeaq+4H,P pH 50 H P H g

where ~ means equality of the skew symmetric parts.
As we have

8V, H epV 1 H,p
~BYSH e pV 1 H p)—4H e (VN H p— V3V H )
~AVYH K yin BgNB+2H, p L 3 poH,eq)

—4H ,.pK,1,°H:p,

—16V,H yepL 1pqH " q+8Y, L ypoH " pH g
~8V(L upeH " pHraq)
~—8V,(H, pL 1pgH:zq) ,

we get after some calculation

Sy/x ZlcNKv,uroI(X xrg+4vv(Hyrhkk1ih Biﬁ')+ Kv;tPQI(X £PQ
or

3.2) K Kind BY~K, 0 K oo™ —AY,(H K 4 jin BYD— Ky upoK iera

which is an equation globally valid.
From (3.2) we see that for any 4-cycle y of M we have

(33) PAAM) =t | Kuuroserod y*dytdyidy"

for the period on 7 of the Pontrjagin class P, of the normal bundle.
From (2.11) we get
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K, poKacrg™~4V L ypqVa Lipq—8V L oL 2prLire
+4L,prL yreL 1psLesq
~AVU(L 4V Lepq—(2/3)L upoL 2prL cre)
as we have L,prL reLipsLise~0 in view of
L.prL yrqLipsLisq=LorpLuroL arsLesq
=L,rpLrsLuproLrsq=LurpL 1reL ppsLeqs
=L,prLiroL upsLese~—LiprL yroLapsLesq.
Thus we get
(3.9) K. upoK e~V pis
where U,,, is a skew symmetric tensor defined by
3.5) Upae~AL upoVaLipq—8/3)L upeL 2prLirq -
As this tensor is defined only in the domain O, the closed form

Ky/,pQKg,;deyydy#dy2dy’:
is not a derived form.
Thus we have proved the following theorem.

THEOREM 3.1. The Pontrjagin class P,(v(M)) of the normal bundle v(M) is
represented by the closed form

a'lKv,uPQKZi:PQdyydy#dy zdyx ’

where K, pq is the curvature tensor of the normal connection. This Pontrjagin
class is locally represented by the derived 4-form

4a,V (L upoVaLipe—(2/3)L upoL 1prLirg)dy*dy*dy*dy*,

where locally means in each open set where an orthonormal normal k-frame field
exists.

§4. The relation between local 3-forms in the overlapping domain.

In the foregoing paragraph we considered only one domain O in M. Now
we assume that O and ‘O are domains over each of which there exists an
orthonormal normal k-frame field and ON'O+0. We denote by {Np} the k-
frame field on O and by {’Np} the k-frame field on ‘O. Then in ON'O we have

(4.1) 'Np=apsNs,

where the kX k matrix [aps] is an orthogonal matrix with det[aps]=1. We
want to find the relation between the 3-forms U,,, and 'U,;. obtained respec-
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tively on O and ’O.
In view of (2.5) and (4.1) we get

4.2) "Lypq=aqrapsLysr+aqsdyaps
and
4.3) V' Lipg~aqrapsViLysr4-(01aqraps+ agroiaps) L st

+01aqs0.aps,

where the sign ~ is used instead of the equality sign when only the skew
symmetric parts with respect to Greek indices are considered. From (4.2) and
(4.3) we get after straightforward calculation

(3L upeVa'Lepq—2' Ly’ L apr’ Lirg)
_<3L;1PQVX LxPQ_ZLpPQL ZPRLKRQ)

NSVZ(GPTayaPSLxTS)_ aQTayaQSal aprocaps ’
hence

(4.4) "Upax—U p2:~4Vu(@pr0;:aps Lisr)—(4/3)agr0,a 0501 aprd.aps .
We have
0,0170,075020k70: 0K
:(aQVaanT)(aLVapaLS)(aPUaX aPT)(aKUalcaKS) .
If we define A,rs by Aprs=apr0.aps, then we have A,rs=—A,sr and
A»VTAFVSAlUTA/cUS:AyTVAlzTSAIUVAxUS
=Aury Awov AprsAws=Avrv Aasv A pru Aesu
:AvVTAZVSA/zUTA/cUSN_ AvVTA/zVSAZUTAIzUS .
This proves that
(4.5) 4gr0,0qs0:apr0capsdy*dy*dy*
isTa closed 3-form. We also have
aQTapaQSalaPTaxaPS
:(aRTayaRS)(aQUa/IaQT)(aPUaxaPS)

and (4.5) is the pull back ¢*» of a closed 3-form ‘w on SO(k) where ¢ is a
mapping ¢: ON'0 — SO(k).

Let us consider that a compact orientable four-dimensional manifold N is
embedded in M and assume that N can be covered by domains O,, -+, O4 of
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M such that for each a=1, ---, A there exists an orthonormal normal k-frame
field on O, and such that O,NO,NONN=0 for 1<a<b<cZA. If Dy, ---, Dy
are domains of N such that D,N\D,=0 for 1<a<b=A, D,Cc0O, for 1<a<A
where D, is the closure of D,, N is covered by D, ---, D, and furthermore,
D,NDy=D, , are closed C* submanifolds of N or ¢, then we have in view of (3.4)

SNKu‘r:PQKlKPQdyvdy‘udyldyx

a=1

=3 { Wudydyrdyidys

:1§az<"b§ASD b(U;}ﬁ)‘——U}‘b])E)dy#dyldyx ,

where D,,, is endowed with a suitable orientation. Then we have a mapping
Dy, — SO(k) as the restriction of ¢g4,5: 0,0, — SO(k) which we also write
0a,0t Doo— SO(E). In view of (4.4) we get

(4.6) [, KonreKiadydyrdyidy== % I.s,
4
.7 Ia,b_ggpa’b%b*w‘

If we take local coordinates u?*, a=1, ---, k(k—1)/2, in SO(k) and put R=[aps],
the closed 3-form w is given by

(4.8) w=trace ((R"‘BTR)(R“G,@R)(R‘laaR))dufduﬁdu“ )
where 0,=0/0uc.

§5. Some special cases with 2=3.

If £=3, o takes a simple form. In this case we can take as R a matrix
with entries

Ry1=cos ¢ cos @ cos ¢—sing sing,

R.;=sin¢g cos 6§ cos ¢-+cos ¢ sing,

Ry;=—sind cos ¢,

Rye=0R /), a=1,2,3,

Ry =cos psinf, Ry;=singpsind, Ry;=cos 6.

Then we have
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0 0 —cose
R0.R=| o 0 —sing |,
cos ¢ sing 0
010
R79,R=|—-1 0 0],
0 00
0 cos ¢ —sin @ sing
R '9;R=| —cos § 0 sind cos ¢ |,
sinf sing —siné cos ¢ 0

where we have put u'=6, u*=¢, u*=¢. From this we get

{(R0,R)(R™10:R)— (R0, R)Y(R™'0: R)} (R™'0;R)

sin @ sin?p —sinf cos p sing 0
=| —sinf cos psing  sin@ cos®p 0 |,
~—cos @ cos ¢ —cos 0 sing sinf
hence
(5.1 w=6sin8 df dp d¢ .

As the degree n,, of the mapping ¢,.»: Do — SO(3) is given by

*,)
b W=N ,I)S w
SDa,bﬁoa e S0(3)

we get in view of (5.1)
SDa'bgoa,b*a)=487t2na,b .

Hence we have from (4.7)
[a, 026471'27’1,1, b

This proves in virtue of (3.3), (4.6) and (4.7) the following theorem.

THEOREM 5.1. Let (M, g) be an orientable Riemannian mani fo~ld of dimension
m isometrically embedded in an orientable Riemannian manifold (M, &) of dimen-
sion m+3. The normal bundle is denoted by v(M). Let N be a four-dimensional
compact orientable submanifold embedded in M. We assume that there exist
domains Oy, -+, O4 of M satisfying O,\J---\UO 4D N, admitting for each a=1,
-+, A an orthonormal normal 3-frame field of (M) on O, and such that O,MN
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O:NONN=0 for 1=a<b<c=A. Let D, ---, Dy be domains of N satisfying
D,N\Dy=0 for 1=a<b=A, D,cCO, for 1=a<A, N=D,U --- UD, and such that
D.nDy=D,,, are closed C> submanifolds of N or 0. Then we have for the
period of P,(y(M)) on N

P,(v(M))| y=—64a,n’n ,
where n is the sum of the mapping degree nq,, of the mapping ¢a.v: Da,s— SO(3).

We can consider the case where M coincides with N.

We have as yet no positive example. The following example is a negative
one.

P%(C) can not be embedded in R in such a way as stated in Theorem 5.1.

Proof. 1f M=N=P?*C) in R" satisfies the condition stated above, we get
P,[P¥C)]=—P,(»(M))| y=64a;=*n. But it is known that [3]

P,[P¥C)]=9%a;x*.
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