
H. UEDA
KODAI MATH. J.
5 (1982), 360—369

ON ENTIRE FUNCTIONS EXTREMAL FOR THE COS πp

THEOREM HAVING PRESCRIBED

ASYMPTOTIC GROWTH

BY HIDEHARU UEDA

Introduction. If f(z) is a nonconstant entire function, then HadamarcΓs
three-circles theorem asserts that log M{r, f) is a convex, increasing function of
log r, where

M(r,/)=max|/(z)|.
\z\=r

Hence, by well-known properties of logarithmically convex functions,

rr ψ(t)
log M{r, /)=log M(r0, /)+ -^-

where Ψ(t) is a nonnegative, nondecreasing function of t.
Valiron [6, p 130] showed the following result.

THEOREM A. Let Λ{r) be given by

rr ψ(t)
(1) Λ(r)=constant+ ——dt ( r ^ α > 0 ) ,

Ja t

where Ψ(t) ts nonnegahve, nondecreasing, and unbounded. Assume further that

(2) Λ{r)< K

for some K>0 and all sufficiently large r. Then there exists an entire function
f(z) such that

log M(r, f)~Λ(r) (r -> oo).

(In Theorem A, the hypothesis (2) can be ommitted. The proof is due to Clunie

[1].)
If f(z) is an entire function of order p (<1) and put

?n*(r, /)=min \f(z)\,
|2|=r

then the classical cos πp theorem of Valiron and Wiman asserts that
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/ON i log m*(r, f) .
(3) lim sup . ' J' > cos πp.

r->~ F log M(r, /) - ^

Now, suppose that f(z), of order /9<1, is extremal for (3) in the sense

(4) log m*(r, / ) g {cos πp + o(l)}\og M(r, f) (r — oo).

In [3], Drasin and Shea characterized the f(z) extremal for (3).

THEOREM B. // f(z) has order p<l and satisfies (4), then

(5) logM(r, f)=rPL(r),

where L(r) vanes slowly in a very long set G, i.e.

(β) lim L^σ

f

r} =1 (0<σ<oo)

holds {uniformly for σ in any interval Λ~1^σ^ΛJ A>\), with

(7) G = 0 [fln, 6»] (an - oo, bjan -> oo)
n=i

satisfying

(8) Mm T ί 4
r-oo log r Jσnci.r] ί

The exceptional set E = (0, oo) — G on which (6) mα^ fail can actually occur.
This is shown by examples of Hayman [4] for p = l/2, and Drasin [2] for
general p<l.

Combining Theorem B with Theorem A, the following problem is naturally
raised.

Problem. Let p (<1) and G be given, where G is a very long set. Further,
let L(r) be a slowly varying function in G such that rpL{r)Φθ{\ogr) is a con-
vex, increasing function of log r. Then is it always possible to find an entire
function f(z), of order p, such that

(9) log Miχy f)~rf>Hr) (r — oo),

(10) log m*(r, f)<^ {cos πρ+o(l)} log M(r, f) (r --> oo)?

In this note, we consider the above problem for the special case G = (0, oo).

THEOREM. Let p (<1) and L(r) fo given, where L{r) is a slowly varying
function (in (0, oo)) such that rp L(r)Φθ(log r) is a convex, increasing function of
log r. Then it is always possible to find an entire function f(z), of order p, such
that (9) and (10) hold.
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Observe that for ^ = 0 , the inequality (10) is not a restriction, so that our
theorem is proved by Valiron (Theorem A) for p—Q.

1. Preliminaries.

LEMMA 1. Let Λ(r) be given by (1). Then there exists a function φ(f),
satisfying the conditions

( i ) φ{t) is a continuous function which is continuously differentiable off a
discrete set D,

(ii) φ(t) is strictly increasing and unbounded,
(iii) 0(1)=O,

and such that

(1.1) Λ1(r)=\r-ψ-dt=Λ(r)+O(log r) (
Jl t

r - oo).

Proof. Taking the term O(log r) in (1.1) into consideration, we may assume
that Λ(r) is given beforehand by

rr ψ(t)

(1.2) Λ(r)= Iψ-dt (?Rl)Ξ=?r(l+0)=0),
Jl t

where Ψ(t) is nondecreasing, unbounded, and continuous on the right. Put

(1.3) X(t)=[Ψ(t)l.

By the properties of Ψ(t), X(t) takes the values 0, nu n2, ••• , nk, •••, say, where
{n*}~ is a strictly increasing sequence of positive integers. Define the sequence
#*}? by ί o = l and

(1.4) X(t)=nk

Further, take a sequence {mk}°S of positive numbers satisfying

(1.5) m^max{(^-l)(log^)" 1(n i + 1-n ) S)-l ) l}.

Now, consider the following function φ(t) (t^to—l):

(1.6)

As is easily seen, φ(t) satisfies the conditions ( i), (ii), (iii) with D={tk}°ϊ. By
(1.2) and (1.3)

(1.7)
Jl t

By (1.6) and (1.4), φ(t)^X(t) ( ί^ l) , so that
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(1.8)

From (1.4), (1.5) and (1.6) it follows that

f'*+i φ(t)-X(t) dt

Jί* t

= (n ί + 1-n j f e)j'*+ 1[l-{l-(~^ :*-)m*}1 / m*]r1Λ

/i r\\ ^ nk+1 n
(1.9) <

Assume that tk^r^tk+1 and put

(1.10) F(r) = log^--\ ^ί--^LLdta

Then for tk^r^

From this, we see that rF\r) is strictly decreasing for tk^r^tk+1, and tkF'(tk)
= 1, i*+if(iik+i)=l-(nA+i-n*)^O. Thus, there exists a fί<=(fΛ, ίΛ+1] such that
F'(r)>0 (tk^r<tr

k), F'(r)^0 (t'k^r^tk+1). Hence by (1.9) and (1.10)

(1.11) F(r)^mm{F(tk), F(fA+1)}=0

Combining (1.9), (1.10), and (1.11), we have for tk^r£t

-
t

Therefore, (1.1) follows from (1.2), (1.7), (1.8) and (1.12).
This completes the proof of Lemma 1.

LEMMA 2. Let p (<1) and L(r) &e given, where L(r) is a slowly varying
function {in (0, oo)) such that Λ(r) = rpL(r)Φθ(\og r) is a convex, increasing
function of log r. Corresponding to Λ(r), define φ(t) and Λx{r) as in Lemma 1.
Then
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(1.13)

Proof.

(1.14)

λ(r) =

Put

d logi
d logr

H. UEDA

•1) Φ(r)

ά1(r)=rpL1(r).

•> p ( r —> o o ) .

Then Li(r) is a slowly varying function in (0, oo) such that Λ^φOilog r) is a
convex, increasing function of log r. Define h(r) by

(1.15) ;t(r) = | 0 + ή ( r ) .

By the definition of λ(r) and the properties of φ(r), λ(r) is a positive, continuous
function for r > l , which is continuously differentiable off a discrete set D={tk}.
By (1.13), (1.14) and (1.15)

(1.16)

Since Λ^r) is a convex, increasing function of log r, we deduce from (1.15) and
(1.16) that

(1.17) U(r))2+r/ι'(r)^0 ( r $ D ) .

First, we prove {/ι(r)}+Ξmax{/ι(r), 0}-+0 (r—>oo). Suppose that there exists
a sequence {rn} t °° such that h{rn)—δ for some <5>0. Since L^r) is a slowly
varying function in (0, oo), (1.16) implies

(1.18) [σr-^-dt—>0 (r->oo; <τ(>l): fixed).
Jr t

Thus there is a sn<=(rny σrn) such that h(sn)=δ/2 for n^no(σ).
Now, to each r n (n^n 0 ) we correspond rή by

r; = inf{s>r n; h(s)=δ/2}.

By the continuity of Λ(r), we easily see that h{r'n)—δ/2 and h(r)>δ/2 {rnί^r<rf

n).
It follows from this and (1.18) that

(1.19) r ; / Γ n _ > i ( n - o o ) .

Using the mean value theorem to λ(r), we deduce from (1.17) and (1.15) that

(1.20) -δ/2=λ(r'n)-λ(rn)=h(r'n)-h(rn)^- L V ; ; J {r'n-rn) (rn<K<r'n).

By (1.19) and (1.20), λ(r'β-*oo (n->oo), which implies

(1.21) A(rg)>2d ( n ^ n ^ ) ) .

(1.21) and the fact that h(r'n)=δ/2 yield the existence of unG(r'£, rf

n) satisfying
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h(un)=δ. Here, define r'n" by

r?=sup{u<r'n; h(u)=δ) .

Then it is easily to see that h(r'n)=δ and

(1.22) δ/2<h(r)<δ

On the other hand, as we stated above, the mean value theorem gives the ex-
istence of r'n

fr^.(rfn, rr

n) such that h{r'ήΠ)>2δ for n~^nλ. This is impossible.
This and (1.18) show that

(1.23) {h(r)}+—>0 ( r - o o ) .

Next, we prove

(1.24) {/ι(r)}-ΞΞmax{-/i(r), 0}—>0 (r — oo).

Suppose that there exists a sequence {Rn} ] oo such that h(Rn) — —δ/ for some
δ'>Q. Using (1.18), we see that In= {s<Rn; Λ(s)=—572} is not empty for

n^n2(δ'). Then if we put fl;=sup/n, h{R'n)=-δ'/2 and RJR'n->l (n—oo). It
follows from these and (1.17) that for some R'£(Ξ(R'n, Rn)

(1.25) W ^ l ^ ^ ^ X ^ . / i e - l ) - 1 —> oo (n - oo).

Since λ(r)>0 (r>l), (̂/?S)=/o + /ι(^)-->oo (n-^oo), by (1.25). However, the defini-
tion of 7?; implies that h(r)<-δ'/2 for R'n<r£Rn. This is untenable. This
and (1.18) give (1.24). Combining (1.23) and (1.24), we have the desired result.

LEMMA 3. Let Λ^—rPLxir) be given as in Lemma 2> where pe(0,1). Put

(1.26) n(r)

and let f{z) be the entire function with negative zeros with counting function n{r).
Then for a suitable branch of log f(z),

(1.27) logf(z)={etf>θ+o(l)}Λ1(r) {z=reu', \θ\<π, r-> oo),

f/ze (9(1) ίβftds ta ẑ r6> uniformly as z-^oo in any sector

η (η>0).

Proof. Let m and M be given such that 0<m<ρ<M<l. By (1.13), there
exists a ro=ro(m, M) such that r^r0 implies

(1.28)

It is clear that we may prove Lemma 3 with n(r) replaced by
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(1.29) n i ( r ) =
(r>r0).

Since (1.29) implies that f(z) is of genus zero, we have for a suitable branch
of log /(*)

(1.30)

where
and (1.29)

(1.31)

l y dt (I arg z |

is the number satisfying ni(ί)=0 (i<r 2) and ni(ri) —1. By (1.28)

•)—Λi(r0) ^ Λi(ro)+7Γ yli(s)

<

i ( r o ) + 7τ / _ s \ *

π \r)

(1.32)

Noting that

S OO It

u
0 M

i θ
r du = —r-

sin

we have, for given ε>0

(1.33)
u-\-ex0

du<ε/2 (K=K(ε, m,

(α=m, /?, M; \θ\^π-η, rj(>0): fixed).

Hence, by (1.32) and (1.33), for \z\=r>Kru \θ\^π-η

't ^ — l ° ;^ (H1(r)+1)\

(1.34) du

In the same way, by (1.31) and (1.33),

(1.35)

Finally with this choice of K, we choose σ positive but so small that
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K

(1.36) u
p-1

du<ε

Since Lx(r) is a slowly varying function, we have

(1.37) a-

(1.38)

r / n^r) \ r
Then, if \z\ =r>Kr2, \θ\^π-τj, (1.36) and (1.37) yield that

\ -rrrr-rdt — n^e^x . -—<-»-du
J K ιr

u+eι6 du<εn1(r).

C o m b i n i n g (1.30), (1.33), (1.34), (1.35) a n d (1.38), w e h a v e for \z\=r>
, Kr2), \θ\^π-v

+ •L-
jP-1

u+eι"
du

This proves (1.27).

2. Proof of Theorem. Let p (0<p<l) and Λ{r)=rpL{r)Φθ{\og r) be given.
By Lemma 1, we may replace Λ(r) by Λι{r)—rpL1{r). Further, by Lemma 3,
there exists an entire function f(z), of order p, such that

log /(*)= {ez =reiθ, \θ\<π, r->oo),

where o(l) tends to zero uniformly as z->oo in any sector | a rgz | ^π—η.
By the construction of f(z), it is clear that

Hence

log M(r,

logm*(r,

(r - oo),

5(l)) log M(r, /) (r
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This completes the proof of our theorem.

Remark. From Lemma 3, we easily deduce

THEOREM C. Let p (0<p<l) and L(r) be given, where L(r) is a slowly
varying function such that Λ{r) — rpL(r) is a convex, increasing function of log r.
Put

and let f(z) be the entire function with negative zeros with counting function n(r).
Then

log I f(z)\ = {cos pθ + oQ)}Λ{r) (z=reίθ, \θ\<π, r - oo),

and the 0(1) tends to zero uniformly as z—>oo m any sector \θ\^π — rj (η>0).

In particular, we have the following

COROLLARY. Let

be an entire function. Assume there are a constant p (0<p<l) and a slowly

varying function L(r) snch that Λ{r)~rpL(r) is a convex, increasing function of

log r, and such that

n(r) = n(r9 0, f) =

Then

log M{χ, f)~Λ(r) (r —• oo),

log m\r, / ) < ( c o s πp + ε)Λ(r) (r>ro(ε)).

For the special case L(r)=constant, this was proved by Titchmarsh [5,

Theorems I, III p 185, p 191].
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