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ON ENTIRE FUNCTIONS EXTREMAL FOR THE COS mp
THEOREM HAVING PRESCRIBED
ASYMPTOTIC GROWTH

By HIDEHARU UEDA

Introduction. If f(z) is a nonconstant entire function, then Hadamard’s
three-circles theorem asserts that log M(r, f) is a convex, increasing function of
log », where

M, f)=max|f(2)].

Hence, by well-known properties of logarithmically convex functions,

log M(r, )=log Miro, )+{" P ar (rzr,>0),

)
where ¥'(t) is a nonnegative, nondecreasing function of ¢.
Valiron [6, p 130] showed the following result.
THEOREM A. Let A(r) be given by

(1 A(r)zconstant—l—ST »zt(ﬁ dt  (rza>0),

a

where U'({) 1s nonnegative, nondecreasing, and unbounded. Assume further that
2 A <rk,

for some K>0 and all sufficiently large r. Then there exists an entire function
f(z) such that

log M(r, f)~A(r) (r — o).
(In Theorem A, the hypothesis (2) can be ommitted. The proof is due to Clunie
[11)

If f(z) is an entire function of order p (<1) and put
m*(r, f)=min | f(2)],

then the classical cos zp theorem of Valiron and Wiman asserts that
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Now, suppose that f(z), of order p<1, is extremal for (3) in the sense

=CcoS o .

4) log m*(r, f)={cos p+o(L)}log M(r, /)  (r— o).

In [3], Drasin and Shea characterized the f(z) extremal for (3).

THEOREM B. If f(z) has order p<l and satisfies (4), then
(5) log M(r, f)=r*L(»),

where L(r) varies slowly in a very long set G, 1.e.

. L(or) _

holds (uniformly for o in any interval A7'Sc<A, A>1), with

) G=\Ulan b (an— 00, bn/an— )
satisfying

. dt
®) k—rul;l log SG(\[I,T]T_ )

The exceptional set E=(0, c0)—G on which (6) may fail can actually occur.
This is shown by examples of Hayman [4] for p=1/2, and Drasin [2] for
general p<l.

Combining Theorem B with Theorem A, the following problem is naturally
raised.

Problem. Let p (<1) and G be given, where G is a very long set. Further,
let L(r) be a slowly varying function in G such that »°L(r)#0O(log ») is a con-
vex, increasing function of log ». Then is it always possible to find an entire
function f(z), of order p, such that

9) log M(r, f)~r?L(r)  (r—o00),
(10) log m*(r, f)={cos mp+o(l)}log M(r, /)  (r— o0)?

In this note, we consider the above problem for the special case G=(0, o).

THEOREM. Let p (<1) and L(r) be given, where L(r) s a slowly varying
Sfunction (in (0, 00)) such that r° L(r)#O(log r) is a convex, increasing function of
log . Then it is always possible to find an entire function f(z), of order p, such
that (9) and (10) hold.
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Observe that for p=0, the inequality (10) is not a restriction, so that our
theorem is proved by Valiron (Theorem A) for p=0.

1. Preliminaries.

LEMMA 1. Let A(r) be gwen by (1). Then there exists a function @),
satisfying the conditions
(i) @) is a continuous function which is continuously differentiable off a

discrete set D,
(ii) () is strictly increasing and unbounded,

(i) (1)=0,
and such that

(1.1) Al(r)EST~¢;—t) dt=A(r)+0(log 7) (r — 00).

1

Proof. Taking the term O(log ») in (1.1) into consideration, we may assume
that A(r) is given beforehand by

(1.2) A(r):S:»wti)— dt  FTLH=¥(1+0)=0),

where ¥'(t) is nondecreasing, unbounded, and continuous on the right. Put
(1.3) X)=[¥@®)].

By the properties of ¥'(¢), X(¢t) takes the values 0, n;, n,, --+, ng, ===, say, where
{n:}$ is a strictly increasing sequence of positive integers. Define the sequence
{t:}3 by t,=1 and

(1.4 XW)=np  (te=t<tpe1; k=12, ).

Further, take a sequence {m,}% of positive numbers satisfying

)_l(nkﬂ—nk)—l, 1} .

Lrs tr+1

> _CktL
(1.5) mp=max {( . 1)<log .
Now, consider the following function ¢(t) (t=t,=1):
t—t,

Leer—le

m 1/m
(L.6) BO=nsn—(nan—n{1—( ) st
As is easily seen, ¢(¢) satisfies the conditions (i), (ii), (iii) with D={t,}7. By

(1.2) and (1.3)
- (T X(t) ~
1.7 A(r):Sl——t———dtg/l(r)_gA(r)—Hog r r=1).

By (1.6) and (1.4), ¢(t)=X(#) (t=1), so that
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(1.8) Al(r)ES:ist(t—) dt=Ar).
From (1.4), (1.5) and (1.6) it follows that
S¢k+1—¢(t)——X(t) dt

tp t
_ . bpal . t—tk_ mE\VUmE]
= (s ”’*)S:k [l {1 (tm—tk) } ]t a
(1.9) <—”’Z—+{~”LS:{1—(1—Yﬂk>l/mk}<tk+l—tk>dY
k

< TR ()| (L—(A—T )Y

t 1 t
_—_-(nk+1~nk)( ;;” —1) i1 =log t"k“ (F=0,1,2, ).

Assume that t,<r=t,,,; and put

(1.10) F(r)=log _{k_ _S:k ,Q(Q_Tt,)_(_(é)_ dt .

Then for l‘k§7’§tk+1
, 1 o i »47::1‘15— mp)mp
rF'(r)=1—(n—n k)[l {1 tk+1—tk) } ] .

From this, we see that »F’(r) is strictly decreasing for ¢,=<r=t;.;, and ¢,F’'(f;)
=1, tp1F'(tpr)=1—(npe;—n,)=0. Thus, there exists a ¢, (¢, tr+1] such that
F'@)>0 (t,=r<ty), F')=Z0 (t;=r=t,+;). Hence by (1.9) and (1.10)

(1.11) Fr)zmin {F(t,), Ftp+0} =0  ({:=Sr=te).
Combining (1.9), (1.10), and (1.11), we have for {,=<r=t,.,

(1.12) Ay(r)— /I<r)zgﬂ¢,<£>_ft§<_fl dt

1

< kel log i1
=0 t

+logL———log 7.
tr

Therefore, (1.1) follows from (1.2), (1.7), (1.8) and (1.12).
This completes the proof of Lemma 1.

LEMMA 2. Let p (<1) and L(r) be given, where L(r) 1s a slowly varying
Sfunction (in (0, o)) such that A@)=r°L(r)#0ogr) is a convex, increasing
Sfunction of logr. Corresponding to A(r), define ¢(t) and Ay(r) as in Lemma 1.
Then
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dlog (Ai(r)+1) _  &(r)

(1.13) Ar)= dlog 7 =L+l —p (r — o0).
Proof. Put
(1.14) A@P)=r°L,r).

Then Li(r) is a slowly varying function in (0, co) such that 4,(»)+#0(log r) is a
convex, increasing function of log ». Define h(r) by

(1.15) Ar)=p-+h(r).

By the definition of A(r) and the properties of ¢(r), A(») is a positive, continuous
function for »>1, which is continuously differentiable off a discrete set D= {t,}.
By (1.13), (1.14) and (1.15)

(1.16) AP +H1=r0 Ly(r)+1=exp (Sli(t—tl dt)zr” exp (Slﬂgﬁ a’t) .

Since 4,(r) is a convex, increasing function of log r, we deduce from (1.15) and
(1.16) that

(1.17) (Ar))P+rh’(r)z0  (r&D).

First, we prove {h(r)}*=max{h(r), 0} -0 (r—o0). Suppose that there exists
a sequence {r,} 1 co such that h(r,)=d for some 0>0. Since L,(») is a slowly
varying function in (0, co), (1.16) implies

r

(1.18) S”—ht@dt — >0 (r—oo; a(>1): fixed).
Thus there is a s,&(r,, or,) such that h(s,)=6/2 for n=ny(o).
Now, to each r, (n=n,) we correspond 7; by
rp=inf{s>r,; h(s)=04/2} .

By the continuity of h(r), we easily see that h(r,)=0/2 and h(r)>0/2 (r,<r<ry).
It follows from this and (1.18) that

(1.19) rh/rn —>1 (n — co).
Using the mean value theorem to A(»), we deduce from (1.17) and (1.15) that
CAm) I, ,

G (ra—rn)  (ra<rp<lra).
rn

(1.20)  —0/2=A(rn)—Ara)=h(rn)—h(r)=—

By (1.19) and (1.20), A(r%)—o0 (n—o0), which implies
(1.21) h(ry)>20 (n=n40)) .

(1.21) and the fact that h(r;)=d/2 yield the existence of u,=(ry, ;) satisfying
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h(u,)=0. Here, define 7/ by
i =sup{u<ry; h(u)=0} .
Then 1t is easily to see that A(+}')=d and
(1.22) 0/2<h(r)<o ' <r<rh; n=n.0)).

On the other hand, as we stated above, the mean value theorem gives the ex-
istence of r,”e(ry’, rn) such that A(ry”)>26 for n=n,. This is impossible.
This and (1.18) show that

(1.23) {h(r)}*—>0  (r—o0).
Next, we prove
(1.24) {h(r)} =max{—h(r), 0} —>0 (r —c0).

Suppose that there exists a sequence {R,} T co such that A(R,)=—0¢" for some
0’>0. Using (1.18), we see that [,={s<R,; h(s)=—0d’/2} is not empty for
n=n,(0"). Then if we put R,=supl,, h(R;)=—0"/2 and R,/R;—1 (n—o0). It
follows from these and (1.17) that for some R%<(R7, R,)

(1.25) LARDP> (0 /2)(Ra/ Ry —1)" —> 00 (n — 0).

Since A#)>0 (r>1), A(Ry)=p+h(R})—co (n—c0), by (1.25). However, the defini-
tion of R; implies that h(»)<—0’/2 for R,<r<R,. This is untenable. This
and (1.18) give (1.24). Combining (1.23) and (1.24), we have the desired result.

LEMMA 3. Let Ay(r)=r°Ly(r) be given as in Lemma 2, where p<(0,1). Put

sin wp
T

(1.26) (=] (A4n+1)],

and let f(z) be the entire function with negative zeros with counting function n(r).
Then for a switable branch of log f(z2),

(1.27) log f(z2)={e*?4o(1)} A.(r) (z=re*, 10| <z, r — o),
and the o(1) tends to zero uniformly as z—co in any sector
—rt+yp=sargzs=n—y  (9>0).

Proof. Let m and M be given such that 0<m<p<M<1. By (1.13), there
exists a r,=r,(m, M) such that r=r, implies

(1.28) mZAr=M.

It is clear that we may prove Lemma 3 with n(r) replaced by
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0 (r=ro)

(1.29) ny(r)= .
[Si‘ﬂf—‘i <A1<r>—A1<ro>>] (r>r0).

Since (1.29) implies that f(z) is of genus zero, we have for a suitable branch
of log f(z)

(1.30) log f(z)zzgz tgi%-dt (larg z| <7),

where 7,(>7,) is the number satisfying n,()=0 (¢<r,) and n,(r;)=1. By (1.28)
and (1.29)

nl(S)__< Ai(s)— Ay(ro) < ;/11(7’0)"}‘71' Ay(s)

(1.31)

mN+1 = A —Air)) = @A)
A(ro)+m fs\M
é_-—n'&‘"(?) (s>r>ry),
14(8) *Aro)+r s\
(1.32) T S (7) (r>s>ry).

Noting that

a-1
i0 cu — T 1a
2 S du= e O0<a<l, |6]<n),

we have, for given ¢>0

a-1

du<e/2, S:‘_z%eﬁ

(a=m, p, M; |0 Sx—n, p(>0): fixed).

ua—l

(1.33) S:“

Hence, by (1.32) and (1.33), for |z|=r>Kr,, |0|=n—7

K-1r py(t) A1(70)+7f K-1r 1 __f_ m-1
‘erl itz dt‘é z ("1(’)“)871 1z Kr) di
(1.34) gzéﬁr;rﬁinl(r)gf'l »u—“m— du
<Al%+—ﬂ-en1(r).

In the same way, by (1.31) and (1.33),

©  my(t) Ai(ro)+n
(1.35) 12510 tHt+2) dt|< P

Finally with this choice of K, we choose ¢ positive but so small that

enyr)  (lz]=r>Kry, |0|=S7—7).
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K
(1.36) o

u—i—e”’ ia’u<s (101 =x—7).

Since L(r) is a slowly varying function, we have

ny(t)
ny(r)

Then, if |z|=r>Kr,, |0|<w—y, (1.36) and (1.37) yield that

(1.37) <1—o)(%)"< <(1+a)(—i—)" (Kr>t>K-r>rya)) .

KT () i uet
(1.38) B s dt—mire [ e du
K
éanl(r)SK J P 1du<en1(r)

Combining (1.30), (1.33), (1.34), (1.35) and (1.38), we have for |z|=r>
max (Kry, Kr,), lﬁléﬁ—v

‘108 f@@) —S—m%;e””’n (r)}
é}zgz-lr tgfz) irl t(rzfii(—ti) dt—nl(r)e“?g . ulf:ej" dul
J_l SKT t(?ii(—ti) dt'+nl(r)51{ 1 ulf:eja ldu—l‘m(r)gK“#;g— du

<{ Al<r°)+ﬂ —I—Z} ny(r) .

This proves (1.27).

2. Proof of Theorem. Let p (0<p<1)and A(r)=r°L(r)+0O(log r) be given.
By Lemma 1, we may replace A(r) by A,(r)=r°L,(»). Further, by Lemma 3,
there exists an entire function f(z), of order p, such that

log f(2)={e*? o)} A\(r)  (z=re’?, |0 <z, r— o),

where o(1) tends to zero uniformly as z—oco in any sector |argz|=m—7.
By the construction of f(z), it is clear that

m¥(r, H=1f(—=nl, M@, H=1f@)].

Hence
log M(r, /)~ di(r)~A(r)  (r — c0),

log m*(r, f)<log|f(re*=-m)|
~[cos (r—7)pl4:(r)
=(cos wp+o(1))log M(r, f) (r — 00).
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This completes the proof of our theorem.
Remark. From Lemma 3, we easily deduce

THEOREM C. Let p (0<p<1) and L(r) be given, where L(r) 1s a slowly
varying function such that A(r)=r°L(r) 1s a convex, increasing function of log r.
Put

n =] (S0 o))

T

and let f(z) be the entire function with negative zeros with counting function n(r).
Then
log | f(z)|={cos pO@+o)} A(r)  (z=re'?, || <z, r — ),

and the o(1) tends to zero uniformly as z—oo wn any sector |0|=m—x (9>0).
In particular, we have the following

COROLLARY. Let
i z
f@=M(1+,-)  0<aSanw)

be an entire function. Assume there are a constant p (0<p<1) and a slowly
varying function L(r) snch that A(r)=r°L(r) 1s a convex, increasing function of

log r, and such that
n(r)=n(r, 0, f)z[(ﬂrfﬁ~+o<1))/1<r)] .

Then
log M(r, f)~A(r)  (r— ),

log m*(r, f)<(cos mp+e)A(r)  (r>roe)).

For the special case L(r)=constant, this was proved by Titchmarsh [5,
Theorems I, III; p 185, p 191].
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