ON ENTIRE FUNCTIONS EXTREMAL FOR THE COS $\pi \rho$ THEOREM HAVING PRESCRIBED ASYMPTOTIC GROWTH

By Hideharu Ueda

Introduction. If $f(z)$ is a nonconstant entire function, then Hadamard's three-circles theorem asserts that $\log M(r, f)$ is a convex, increasing function of $\log r$, where

$$
M(r, f)=\max _{|2|=r}|f(z)| .
$$

Hence, by well-known properties of logarithmically convex functions,

$$
\log M(r, f)=\log M\left(r_{0}, f\right)+\int_{r_{0}}^{r} \frac{\Psi(t)}{t} d t \quad\left(r \geqq r_{0}>0\right),
$$

where $\Psi(t)$ is a nonnegative, nondecreasing function of t.
Valiron [6, p 130] showed the following result.
Theorem A. Let $\Lambda(r)$ be given by

$$
\begin{equation*}
\Lambda(r)=\text { constant }+\int_{\alpha}^{r} \frac{\Psi(t)}{t} d t \quad(r \geqq \alpha>0), \tag{1}
\end{equation*}
$$

where $\Psi(t)$ is nonnegative, nondecreasing, and unbounded. Assume further that

$$
\begin{equation*}
\Lambda(r)<r^{K}, \tag{2}
\end{equation*}
$$

for some $K>0$ and all sufficiently large r. Then there exists an entire function $f(z)$ such that

$$
\log M(r, f) \sim \Lambda(r) \quad(r \rightarrow \infty) .
$$

(In Theorem A, the hypothesis (2) can be ommitted. The proof is due to Clunie [1].)

If $f(z)$ is an entire function of order $\rho(<1)$ and put

$$
m^{*}(r, f)=\min _{|z|=r}|f(z)|,
$$

then the classical $\cos \pi \rho$ theorem of Valiron and Wiman asserts that
Received April 15, 1981

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{\log M(r, f)} \geqq \cos \pi \rho \tag{3}
\end{equation*}
$$

Now, suppose that $f(z)$, of order $\rho<1$, is extremal for (3) in the sense

$$
\begin{equation*}
\log m^{*}(r, f) \leqq\{\cos \pi \rho+o(1)\} \log M(r, f) \quad(r \rightarrow \infty) \tag{4}
\end{equation*}
$$

In [3], Drasin and Shea characterized the $f(z)$ extremal for (3).
Theorem B. If $f(z)$ has order $\rho<1$ and satisfies (4), then

$$
\begin{equation*}
\log M(r, f)=r^{\rho} L(r) \tag{5}
\end{equation*}
$$

where $L(r)$ varues slowly in a very long set G, i.e.

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ r \in G}} \frac{L(\sigma r)}{L(r)}=1 \quad(0<\sigma<\infty) \tag{6}
\end{equation*}
$$

holds (uniformly for σ in any interval $A^{-1} \leqq \sigma \leqq A, A>1$), with

$$
\begin{equation*}
G=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \quad\left(a_{n} \rightarrow \infty, b_{n} / a_{n} \rightarrow \infty\right) \tag{7}
\end{equation*}
$$

satısfying

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{1}{\log r} \int_{G \cap[1, r]} \frac{d t}{t}=1 \tag{8}
\end{equation*}
$$

The exceptional set $E \equiv(0, \infty)-G$ on which (6) may fail can actually occur. This is shown by examples of Hayman [4] for $\rho=1 / 2$, and Drasin [2] for general $\rho<1$.

Combining Theorem B with Theorem A, the following problem is naturally raised.

Problem. Let $\rho(<1)$ and G be given, where G is a very long set. Further, let $L(r)$ be a slowly varying function in G such that $r^{\rho} L(r) \neq O(\log r)$ is a convex, increasing function of $\log r$. Then is it always possible to find an entire function $f(z)$, of order ρ, such that

$$
\begin{equation*}
\log M(r, f) \sim r^{\rho} L(r) \quad(r \rightarrow \infty), \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\log m^{*}(r, f) \leqq\{\cos \pi \rho+o(1)\} \log M(r, f) \quad(r \rightarrow \infty) ? \tag{10}
\end{equation*}
$$

In this note, we consider the above problem for the special case $G=(0, \infty)$.
Theorem. Let $\rho(<1)$ and $L(r)$ be given, where $L(r)$ is a slowly varying function (in $(0, \infty))$ such that $r^{\rho} L(r) \neq O(\log r)$ is a convex, increasing function of $\log r$. Then it is always possible to find an entire function $f(z)$, of order ρ, such that (9) and (10) hold.

Observe that for $\rho=0$, the inequality (10) is not a restriction, so that our theorem is proved by Valiron (Theorem A) for $\rho=0$.

1. Preliminaries.

Lemma 1. Let $\Lambda(r)$ be given by (1). Then there exists a function $\phi(t)$, satisfying the conditions
(i) $\phi(t)$ is a continuous function which is continuously differentiable off a discrete set D,
(ii) $\phi(t)$ is strictly increasing and unbounded,
(iii) $\phi(1)=0$,
and such that

$$
\begin{equation*}
\Lambda_{1}(r) \equiv \int_{1}^{r} \frac{\phi(t)}{t} d t=\Lambda(r)+O(\log r) \quad(r \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

Proof. Taking the term $O(\log r)$ in (1.1) into consideration, we may assume that $\Lambda(r)$ is given beforehand by

$$
\begin{equation*}
\Lambda(r)=\int_{1}^{r} \frac{\Psi(t)}{t} d t \quad(\Psi(1) \equiv \Psi(1+0)=0) \tag{1.2}
\end{equation*}
$$

where $\Psi(t)$ is nondecreasing, unbounded, and continuous on the right. Put

$$
\begin{equation*}
X(t)=[\Psi(t)] . \tag{1.3}
\end{equation*}
$$

By the properties of $\Psi(t), X(t)$ takes the values $0, n_{1}, n_{2}, \cdots, n_{k}, \cdots$, say, where $\left\{n_{k}\right\}_{1}^{\infty}$ is a strictly increasing sequence of positive integers. Define the sequence $\left\{t_{k}\right\}_{0}^{\infty}$ by $t_{0}=1$ and

$$
\begin{equation*}
X(t)=n_{k} \quad\left(t_{k} \leqq t<t_{k+1} ; k=1,2, \cdots\right) . \tag{1.4}
\end{equation*}
$$

Further, take a sequence $\left\{m_{k}\right\}_{0}^{\infty}$ of positive numbers satisfying

$$
\begin{equation*}
m_{k} \geqq \max \left\{\left(\frac{t_{k+1}}{t_{k}}-1\right)\left(\log \frac{t_{k+1}}{t_{k}}\right)^{-1}\left(n_{k+1}-n_{k}\right)-1,1\right\} . \tag{1.5}
\end{equation*}
$$

Now, consider the following function $\phi(t)\left(t \geqq t_{0}=1\right)$:

$$
\begin{equation*}
\phi(t)=n_{k+1}-\left(n_{k+1}-n_{k}\right)\left\{1-\left(\frac{t-t_{k}}{t_{k+1}-t_{k}}\right)^{m_{k}}\right\}^{1 / m_{k}}\left(t_{k} \leqq t \leqq t_{k+1}\right) . \tag{1.6}
\end{equation*}
$$

As is easily seen, $\phi(t)$ satisfies the conditions (i), (ii), (iii) with $D=\left\{t_{k}\right\}_{1}^{\infty}$. By (1.2) and (1.3)

$$
\begin{equation*}
\tilde{\Lambda}(r) \equiv \int_{1}^{r} \frac{X(t)}{t} d t \leqq \Lambda(r) \leqq \tilde{\Lambda}(r)+\log r \quad(r \geqq 1) . \tag{1.7}
\end{equation*}
$$

By (1.6) and (1.4), $\phi(t) \geqq X(t)(t \geqq 1)$, so that

$$
\begin{equation*}
\Lambda_{1}(r) \equiv \int_{1}^{r} \frac{\phi(t)}{t} d t \geqq \tilde{A}(r) . \tag{1.8}
\end{equation*}
$$

From (1.4), (1.5) and (1.6) it follows that

$$
\begin{align*}
& \int_{t_{k}}^{t_{k+1}} \frac{\phi(t)-X(t)}{t} d t \\
& \quad=\left(n_{k+1}-n_{k}\right) \int_{t_{k}}^{t_{k+1}}\left[1-\left\{1-\left(\frac{t-t_{k}}{t_{k+1}-t_{k}}\right)^{m_{k}}\right\}^{1 / m_{k}}\right] t^{-1} d t \\
& \quad<\frac{n_{k+1}-n_{k}}{t_{k}} \int_{0}^{1}\left\{1-\left(1-Y^{\left.\left.m_{k}\right)^{1 / m_{k}}\right\}\left(t_{k+1}-t_{k}\right) d Y}\right.\right. \tag{1.9}\\
& \quad \leqq \frac{n_{k+1}-n_{k}}{t_{k}}\left(t_{k+1}-t_{k}\right) \int_{0}^{1}\left\{1-(1-Y)^{1 / m_{k}}\right\} d Y \\
& \quad=\left(n_{k+1}-n_{k}\right)\left(\frac{t_{k+1}}{t_{k}}-1\right) \frac{1}{m_{k}+1} \leqq \log \frac{t_{k+1}}{t_{k}} \quad(k=0,1,2, \cdots) .
\end{align*}
$$

Assume that $t_{k} \leqq r \leqq t_{k+1}$ and put

$$
\begin{equation*}
F(r)=\log \frac{r}{t_{k}}-\int_{t_{k}}^{r} \frac{\phi(t)-X(t)}{t} d t \tag{1.10}
\end{equation*}
$$

Then for $t_{k} \leqq r \leqq t_{k+1}$

$$
r F^{\prime}(r)=1-\left(n_{k+1}-n_{k}\right)\left[1-\left\{1-\left(\frac{r-t_{k}}{t_{k+1}-t_{k}}\right)^{m_{k}}\right\}^{1 / m_{k}}\right]
$$

From this, we see that $r F^{\prime}(r)$ is strictly decreasing for $t_{k} \leqq r \leqq t_{k+1}$, and $t_{k} F^{\prime}\left(t_{k}\right)$ $=1, t_{k+1} F^{\prime}\left(t_{k+1}\right)=1-\left(n_{k+1}-n_{k}\right) \leqq 0$. Thus, there exists a $t_{k}^{\prime} \in\left(t_{k}, t_{k+1}\right]$ such that $F^{\prime}(r)>0\left(t_{k} \leqq r<t_{k}^{\prime}\right), F^{\prime}(r) \leqq 0\left(t_{k}^{\prime} \leqq r \leqq t_{k+1}\right)$. Hence by (1.9) and (1.10)

$$
\begin{equation*}
F(r) \geqq \min \left\{F\left(t_{k}\right), F\left(t_{k+1}\right)\right\}=0 \quad\left(t_{k} \leqq r \leqq t_{k+1}\right) . \tag{1.11}
\end{equation*}
$$

Combining (1.9), (1.10), and (1.11), we have for $t_{k} \leqq r \leqq t_{k+1}$

$$
\begin{align*}
\Lambda_{1}(r)-\tilde{\Lambda}(r) & =\int_{1}^{r} \frac{\phi(t)-X(t)}{t} d t \tag{1.12}\\
& \leqq \sum_{l=0}^{k-l} \log \frac{t_{l+1}}{t_{l}}+\log \frac{r}{t_{k}}=\log r .
\end{align*}
$$

Therefore, (1.1) follows from (1.2), (1.7), (1.8) and (1.12).
This completes the proof of Lemma 1.
Lemma 2. Let $\rho(<1)$ and $L(r)$ be given, where $L(r)$ is a slowly varying function (in $(0, \infty)$) such that $\Lambda(r) \equiv r^{\rho} L(r) \neq O(\log r)$ is a convex, increasing function of $\log r$. Corresponding to $\Lambda(r)$, define $\phi(t)$ and $\Lambda_{1}(r)$ as in Lemma 1 . Then

$$
\begin{equation*}
\lambda(r) \equiv \frac{d \log \left(\Lambda_{1}(r)+1\right)}{d \log r}=\frac{\phi(r)}{\Lambda_{1}(r)+1} \longrightarrow \rho \quad(r \rightarrow \infty) . \tag{1.13}
\end{equation*}
$$

Proof. Put

$$
\begin{equation*}
\Lambda_{1}(r)=r^{\rho} L_{1}(r) . \tag{1.14}
\end{equation*}
$$

Then $L_{1}(r)$ is a slowly varying function in $(0, \infty)$ such that $\Lambda_{1}(r) \neq O(\log r)$ is a convex, increasing function of $\log r$. Define $h(r)$ by

$$
\begin{equation*}
\lambda(r)=\rho+h(r) . \tag{1.15}
\end{equation*}
$$

By the definition of $\lambda(r)$ and the properties of $\phi(r), \lambda(r)$ is a positive, continuous function for $r>1$, which is continuously differentiable off a discrete set $D=\left\{t_{k}\right\}$. By (1.13), (1.14) and (1.15)

$$
\begin{equation*}
\Lambda_{1}(r)+1=r^{\rho} L_{1}(r)+1=\exp \left(\int_{1}^{r} \frac{\lambda(t)}{t} d t\right)=r^{\rho} \exp \left(\int_{1}^{r} \frac{h(t)}{t} d t\right) \tag{1.16}
\end{equation*}
$$

Since $\Lambda_{1}(r)$ is a convex, increasing function of $\log r$, we deduce from (1.15) and (1.16) that

$$
\begin{equation*}
(\lambda(r))^{2}+r h^{\prime}(r) \geqq 0 \quad(r \notin D) . \tag{1.17}
\end{equation*}
$$

First, we prove $\{h(r)\}^{+} \equiv \max \{h(r), 0\} \rightarrow 0(r \rightarrow \infty)$. Suppose that there exists a sequence $\left\{r_{n}\right\} \uparrow \infty$ such that $h\left(r_{n}\right)=\delta$ for some $\delta>0$. Since $L_{1}(r)$ is a slowly varying function in ($0, \infty$), (1.16) implies

$$
\begin{equation*}
\int_{r}^{\sigma r} \frac{h(t)}{t} d t \longrightarrow 0 \quad(r \rightarrow \infty ; \sigma(>1): \text { fixed }) \tag{1.18}
\end{equation*}
$$

Thus there is a $s_{n} \in\left(r_{n}, \sigma r_{n}\right)$ such that $h\left(s_{n}\right)=\delta / 2$ for $n \geqq n_{0}(\sigma)$.
Now, to each $r_{n}\left(n \geqq n_{0}\right)$ we correspond r_{n}^{\prime} by

$$
r_{n}^{\prime}=\inf \left\{s>r_{n} ; h(s)=\delta / 2\right\} .
$$

By the continuity of $h(r)$, we easily see that $h\left(r_{n}^{\prime}\right)=\delta / 2$ and $h(r)>\delta / 2\left(r_{n} \leqq r<r_{n}^{\prime}\right)$. It follows from this and (1.18) that

$$
\begin{equation*}
r_{n}^{\prime} / r_{n} \longrightarrow 1 \quad(n \rightarrow \infty) \tag{1.19}
\end{equation*}
$$

Using the mean value theorem to $\lambda(r)$, we deduce from (1.17) and (1.15) that

$$
\begin{equation*}
-\delta / 2=\lambda\left(r_{n}^{\prime}\right)-\lambda\left(r_{n}\right)=h\left(r_{n}^{\prime}\right)-h\left(r_{n}\right) \geqq-\frac{\left[\lambda\left(r_{n}^{\prime \prime}\right)\right]^{2}}{r_{n}^{\prime \prime}}\left(r_{n}^{\prime}-r_{n}\right) \quad\left(r_{n}<r_{n}^{\prime \prime}<r_{n}^{\prime}\right) . \tag{1.20}
\end{equation*}
$$

By (1.19) and (1.20), $\lambda\left(r_{n}^{\prime \prime}\right) \rightarrow \infty(n \rightarrow \infty)$, which implies

$$
\begin{equation*}
h\left(r_{n}^{\prime \prime}\right)>2 \delta \quad\left(n \geqq n_{1}(\delta)\right) . \tag{1.21}
\end{equation*}
$$

(1.21) and the fact that $h\left(r_{n}^{\prime}\right)=\delta / 2$ yield the existence of $u_{n} \in\left(r_{n}^{\prime \prime}, r_{n}^{\prime}\right)$ satisfying
$h\left(u_{n}\right)=\delta$. Here, define $r_{n}^{\prime \prime \prime}$ by

$$
r_{n}^{\prime \prime \prime}=\sup \left\{u<r_{n}^{\prime} ; h(u)=\delta\right\} .
$$

Then it is easily to see that $h\left(r_{n}^{\prime \prime \prime}\right)=\delta$ and

$$
\begin{equation*}
\delta / 2<h(r)<\delta \quad\left(r_{n}^{\prime \prime \prime}<r<r_{n}^{\prime} ; n \geqq n_{1}(\delta)\right) . \tag{1.22}
\end{equation*}
$$

On the other hand, as we stated above, the mean value theorem gives the existence of $r_{n}^{\prime \prime \prime} \in\left(r_{n}^{\prime \prime \prime}, r_{n}^{\prime}\right)$ such that $h\left(r_{n}^{\prime \prime \prime \prime}\right)>2 \delta$ for $n \geqq n_{1}$. This is impossible. This and (1.18) show that

$$
\begin{equation*}
\{h(r)\}^{+} \longrightarrow 0 \quad(r \rightarrow \infty) . \tag{1.23}
\end{equation*}
$$

Next, we prove

$$
\begin{equation*}
\{h(r)\}^{-} \equiv \max \{-h(r), 0\} \longrightarrow 0 \quad(r \rightarrow \infty) . \tag{1.24}
\end{equation*}
$$

Suppose that there exists a sequence $\left\{R_{n}\right\} \uparrow \infty$ such that $h\left(R_{n}\right)=-\delta^{\prime}$ for some $\delta^{\prime}>0$. Using (1.18), we see that $I_{n} \equiv\left\{s<R_{n} ; h(s)=-\delta^{\prime} / 2\right\}$ is not empty for $n \geqq n_{2}\left(\delta^{\prime}\right)$. Then if we put $R_{n}^{\prime}=\sup I_{n}, h\left(R_{n}^{\prime}\right)=-\delta^{\prime} / 2$ and $R_{n} / R_{n}^{\prime} \rightarrow 1(n \rightarrow \infty)$. It follows from these and (1.17) that for some $R_{n}^{\prime \prime} \in\left(R_{n}^{\prime}, R_{n}\right)$

$$
\begin{equation*}
\left[\lambda\left(R_{n}^{\prime \prime}\right)\right]^{2}>\left(\delta^{\prime} / 2\right)\left(R_{n} / R_{n}^{\prime}-1\right)^{-1} \longrightarrow \infty \quad(n \rightarrow \infty) . \tag{1.25}
\end{equation*}
$$

Since $\lambda(r)>0(r>1), \lambda\left(R_{n}^{\prime \prime}\right)=\rho+h\left(R_{n}^{\prime \prime}\right) \rightarrow \infty(n \rightarrow \infty)$, by (1.25). However, the definition of R_{n}^{\prime} implies that $h(r)<-\delta^{\prime} / 2$ for $R_{n}^{\prime}<r \leqq R_{n}$. This is untenable. This and (1.18) give (1.24). Combining (1.23) and (1.24), we have the desired result.

Lemma 3. Let $\Lambda_{1}(r)=r^{\rho} L_{1}(r)$ be given as in Lemma 2, where $\rho \in(0,1)$. Put

$$
\begin{equation*}
n(r)=\left[\frac{\sin \pi \rho}{\pi}\left(\Lambda_{1}(r)+1\right)\right], \tag{1.26}
\end{equation*}
$$

and let $f(z)$ be the entire function with negative zeros with counting function $n(r)$. Then for a surtable branch of $\log f(z)$,

$$
\begin{equation*}
\log f(z)=\left\{e^{\imath \rho \theta}+o(1)\right\} \Lambda_{1}(r) \quad\left(z=r e^{i \theta},|\theta|<\pi, r \rightarrow \infty\right), \tag{1.27}
\end{equation*}
$$

and the o(1) tends to zero uniformly as $z \rightarrow \infty$ in any sector

$$
-\pi+\eta \leqq \arg z \leqq \pi-\eta \quad(\eta>0) .
$$

Proof. Let m and M be given such that $0<m<\rho<M<1$. By (1.13), there exists a $r_{0} \equiv r_{0}(m, M)$ such that $r \geqq r_{0}$ implies

$$
\begin{equation*}
m \leqq \lambda(r) \leqq M \tag{1.28}
\end{equation*}
$$

It is clear that we may prove Lemma 3 with $n(r)$ replaced by

$$
n_{1}(r)=\left\{\begin{array}{l}
0 \quad\left(r \leqq r_{0}\right) \tag{1.29}\\
{\left[\frac{\sin \pi \rho}{\pi}\left(\Lambda_{1}(r)-\Lambda_{1}\left(r_{0}\right)\right)\right] \quad\left(r>r_{0}\right) .}
\end{array}\right.
$$

Since (1.29) implies that $f(z)$ is of genus zero, we have for a suitable branch of $\log f(z)$

$$
\begin{equation*}
\log f(z)=z \int_{r_{1}}^{\infty} \frac{n_{1}(t)}{t(t+z)} d t \quad(|\arg z|<\pi) \tag{1.30}
\end{equation*}
$$

where $r_{1}\left(>r_{0}\right)$ is the number satisfying $n_{1}(t)=0\left(t<r_{1}\right)$ and $n_{1}\left(r_{1}\right)=1$. By (1.28) and (1.29)

$$
\begin{align*}
& \frac{n_{1}(s)}{n_{1}(r)+1} \leqq \frac{\Lambda_{1}(s)-\Lambda_{1}\left(r_{0}\right)}{\Lambda_{1}(r)-\Lambda_{1}\left(r_{0}\right)} \leqq \frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi_{i}} \cdot \frac{\Lambda_{1}(s)}{\Lambda_{1}(r)} \tag{1.31}\\
& \leqq \frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi}\left(\frac{s}{r}\right)^{M} \quad\left(s>r>r_{1}\right), \\
& \frac{n_{1}(s)}{n_{1}(r)+1} \leqq \frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi}\left(\frac{s}{r}\right)^{m} \quad\left(r>s>r_{1}\right) . \tag{1.32}
\end{align*}
$$

Noting that

$$
e^{i \theta} \int_{0}^{\infty} \frac{u^{\alpha-1}}{u+e^{i \theta}} d u=\frac{\pi}{\sin \pi \alpha} e^{\imath \alpha \theta} \quad(0<\alpha<1,|\theta|<\pi)
$$

we have, for given $\varepsilon>0$

$$
\begin{array}{r}
\int_{0}^{K-1}\left|\frac{u^{\alpha-1}}{u+e^{i \theta}}\right| d u<\varepsilon / 2, \int_{K}^{\infty}\left|\frac{u^{\alpha-1}}{u+e^{2 \theta}}\right| d u<\varepsilon / 2 \quad(K \equiv K(\varepsilon, m, M)>1) \tag{1.33}\\
(\alpha=m, \rho, M ;|\theta| \leqq \pi-\eta, \eta(>0): \text { fixed }) .
\end{array}
$$

Hence, by (1.32) and (1.33), for $|z|=r>K r_{1},|\theta| \leqq \pi-\eta$

$$
\begin{align*}
\left|z \int_{r_{1}}^{K-1 r} \frac{n_{1}(t)}{t(t+z)} d t\right| & \leqq \frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi}\left(n_{1}(r)+1\right) \int_{r_{1}}^{K-1 r}\left|\frac{1}{t+z}\right|\left(\frac{t}{r}\right)^{m-1} d t \\
& \leqq 2 \frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi} n_{1}(r) \int_{0}^{K-1}\left|\frac{u^{m-1}}{u+e^{i \theta}}\right| d u \tag{1.34}\\
& <\frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi} \varepsilon n_{1}(r) .
\end{align*}
$$

In the same way, by (1.31) and (1.33),

$$
\begin{equation*}
\left|z \int_{K r}^{\infty} \frac{n_{1}(t)}{t(t+z)} d t\right|<\frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi} \varepsilon n_{1}(r) \quad\left(|z|=r>K r_{1},|\theta| \leqq \pi-\eta\right) . \tag{1.35}
\end{equation*}
$$

Finally with this choice of K, we choose σ positive but so small that

$$
\begin{equation*}
\sigma \int_{K-1}^{K}\left|\frac{u^{\rho-1}}{u+e^{i \theta}}\right| d u<\varepsilon \quad(|\theta| \leqq \pi-\eta) \tag{1.36}
\end{equation*}
$$

Since $L_{1}(r)$ is a slowly varying function, we have

$$
\begin{equation*}
(1-\sigma)\left(\frac{t}{r}\right)^{\rho}<\frac{n_{1}(t)}{n_{1}(r)}<(1+\sigma)\left(\frac{t}{r}\right)^{\rho} \quad\left(K r>t>K^{-1} r>r_{2}(\sigma)\right) . \tag{1.37}
\end{equation*}
$$

Then, if $|z|=r>K r_{2},|\theta| \leqq \pi-\eta$, (1.36) and (1.37) yield that

$$
\begin{align*}
& \left\lvert\, z \int_{K^{-1} r}^{K r} \frac{n_{1}(t)}{t(t+z)} d t-n_{1}(r) e^{i \theta} \int_{K^{-1}}^{K} \frac{u^{\rho-1}}{u+e^{i \theta}-d u} d\right. \tag{1.38}\\
& \quad \leqq \sigma n_{1}(r) \int_{K^{-1}}^{K}\left|\frac{u^{\rho-1}}{u+e^{2 \theta}}\right| d u<\varepsilon n_{1}(r) .
\end{align*}
$$

Combining (1.30), (1.33), (1.34), (1.35) and (1.38), we have for $|z|=r>$ $\max \left(K r_{1}, K r_{2}\right),|\theta| \leqq \pi-\eta$

$$
\begin{aligned}
& \left|\log f(z)-\frac{\pi}{\sin \pi \rho}-e^{2 \rho \theta} n_{1}(r)\right| \\
& \quad \leqq\left|z \int_{r_{1}}^{K-1 r} \frac{n_{1}(t)}{t(t+z)} d t\right|+\left|z \int_{K^{-1 r} r}^{K r} \frac{n_{1}(t)}{t(t+z)} d t-n_{1}(r) e^{i \theta} \int_{K^{-1}}^{K} \frac{u^{\rho-1}}{u+e^{i \theta}} d u\right| \\
& \quad+\left|z \int_{K r}^{\infty} \frac{n_{1}(t)}{t(t+z)} d t\right|+n_{1}(r) \int_{0}^{K-1}\left|\frac{u^{\rho-1}}{u+e^{i \theta}}\right| d u+n_{1}(r) \int_{K}^{\infty}\left|\frac{u^{\rho-1}}{u+e^{i \theta}}\right| d u \\
& \quad<\left\{2 \frac{\Lambda_{1}\left(r_{0}\right)+\pi}{\pi}+2\right\} \varepsilon n_{1}(r) .
\end{aligned}
$$

This proves (1.27).
2. Proof of Theorem. Let $\rho(0<\rho<1)$ and $\Lambda(r)=r^{\rho} L(r) \neq O(\log r)$ be given. By Lemma 1, we may replace $\Lambda(r)$ by $\Lambda_{1}(r)=r^{\rho} L_{1}(r)$. Further, by Lemma 3, there exists an entire function $f(z)$, of order ρ, such that

$$
\log f(z)=\left\{e^{2 \rho \theta}+o(1)\right\} \Lambda_{1}(r) \quad\left(z=r e^{i \theta},|\theta|<\pi, r \rightarrow \infty\right),
$$

where $o(1)$ tends to zero uniformly as $z \rightarrow \infty$ in any sector $|\arg z| \leqq \pi-\eta$.
By the construction of $f(z)$, it is clear that

$$
m^{*}(r, f)=|f(-r)|, \quad M(r, f)=|f(r)|
$$

Hence

$$
\begin{aligned}
& \log M(r, f) \sim \Lambda_{1}(r) \sim \Lambda(r) \quad(r \rightarrow \infty) \\
& \log m^{*}(r, f)<\log \left|f\left(r e^{2(\pi-\eta)}\right)\right| \\
& \quad \sim[\cos (\pi-\eta) \rho] \Lambda_{1}(r) \\
& \quad \leqq(\cos \pi \rho+o(1)) \log M(r, f) \quad(r \rightarrow \infty)
\end{aligned}
$$

This completes the proof of our theorem.
Remark. From Lemma 3, we easily deduce
Theorem C. Let $\rho(0<\rho<1)$ and $L(r)$ be given, where $L(r)$ is a slowly varying function such that $\Lambda(r)=r^{\rho} L(r)$ is a convex, increasing function of $\log r$. Put

$$
n(r)=\left[\left(\frac{\sin \pi \rho}{\pi}+o(1)\right) \Lambda(r)\right],
$$

and let $f(z)$ be the entire function with negative zeros with counting function $n(r)$. Then

$$
\log |f(z)|=\{\cos \rho \theta+o(1)\} \Lambda(r) \quad\left(z=r e^{i \theta},|\theta|<\pi, r \rightarrow \infty\right),
$$

and the $o(1)$ tends to zero uniformly as $z \rightarrow \infty$ in any sector $|\theta| \leqq \pi-\eta \quad(\eta>0)$.
In particular, we have the following
Corollary. Let

$$
f(z)=\prod_{n=1}^{\infty}\left(1+\frac{z}{a_{n}}\right) \quad\left(0<a_{n} \leqq a_{n+1}\right)
$$

be an entire function. Assume there are a constant $\rho(0<\rho<1)$ and a slowly varying function $L(r)$ snch that $\Lambda(r)=r^{\rho} L(r)$ is a convex, increasing function of $\log r$, and such that

$$
n(r) \equiv n(r, 0, f)=\left[\left(\frac{\sin \pi \rho}{\pi}+o(1)\right) \Lambda(r)\right] .
$$

Then

$$
\begin{aligned}
& \log M(r, f) \sim \Lambda(r) \quad(r \rightarrow \infty), \\
& \log m^{*}(r, f)<(\cos \pi \rho+\varepsilon) \Lambda(r) \quad\left(r>r_{0}(\varepsilon)\right) .
\end{aligned}
$$

For the special case $L(r) \equiv$ constant, this was proved by Titchmarsh [5, Theorems I, III; p 185, p 191].

References

[1] Clunie, J., On integral functions having prescribed asymptotic growth, Canad. J. Math. (1965), 396-404.
[2] Drasin, D., A flexible proximate order, Bull. London Math. Soc. (1974), 129-135.
[3] Drasin, D. and Shea, D.F., Convolution inequalites, regular variation and exceptional sets, J. Analyse Math. (1977), 232-293.
[4] Hayman, W.K., Some examples related to the $\cos \pi \rho$ theorem; Mathematical essays dedicated to A. J. Macıntyre, Ohıo Univ. Press (1970), 149-170.
[5] Titchmarsh, E.C., On integral functions with real negative zeros, Proc. London Math. Soc. (1927), 185-200.
[6] Valiron, G., Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondance régulière, Ann. Fac. Sci. Toulouse, (1913), 117-208.

Department of Mathematics
Daido Institute of Technology
Daido-cho, Minami-ku, Nagoya, Japan

