
J. BURBEA
KODAI MATH. J.
5 (1982), 339-354

NORM INEQUALITIES OF EXPONENTIAL TYPE

FOR HOLOMORPHIC FUNCTIONS

BY JACOB BURBEA

Abstract. Let Δp={z^C: \z\<p} with p = l, oo and let H(ΔP) stand for
the class of holomorphic functions in Δp. Let φ^H(Δp) with Δp being the do-
main of holomorphy of φ and 0(O)=O, φw(0)>0 for n = l, 2, •••. Then k(z, ζ)
=φ(zζ) is the reproducing kernel of a uniquely determined Hubert space Hφ of
functions f^H(Δp) with /(0)=0 and norm \\f\\φ. The function φ=expφ also
determines a unique Hubert space Hψ of functions g<=H(Δp) with norm \\g\\φ

and such that K(z, ζ)=ψ(zQ, z, ζ^Δp, is its reproducing kernel. The following
is proved: Let f^Hφy then expf^Hψ and

with equality if and only if / is of the form f(z)=k(z, Q~φ{zQ for some
The method of proof of this sharp inequality is based on ideas of both Aronszajn
and Milin, and it can be extended by replacing the exponential function by any
entire function with non-negative Taylor-coefficients. We also give several
applications of this inequality in the theory of entire functions and functions
holomorphic in the unit disk.

1. Introduction.

Let Λ be an abstract non-void set and let k( , •) be a scalar-valued kernel
on ΛxΛ. For simplicity, we always assume that the underlying scalar-field is
the complex-field C. We also assume that k{-, •) is a positive-definite kernel
on ΛxΛ; that is

N

Σ k(zm, Zn)θCmάn^
m, π=l

for any finite set {zm}m=i of points of Λ and any corresponding complex num-
bers {αm}SLi. As is well-known, this condition is equivalent to the existence
of a uniquely determined Hubert space Hk of functions on Λ and admitting
i ( , •) as a reproducing kernel, namely
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/(*) = (/, K ,z))k

for any z^A and every f^Hk (see Aronszajn [1]).
Given any entire function F with non-negative Taylor coefficients, we con-

sider the new kernel K{ , -)=F[k( , •)]• This kernel, in view of Schur's theo-
rem, is clearly positive-definite on ΛxΛ and hence, as before, it is the repro-
ducing kernel of a uniquely determined Hubert space Hκ of functions on A.
The structure of this Hubert space Hκ involves tensor-products of Hk and is
rather complicated (see Aronszajn [1], Burbea [4] and Saitoh [9]). The follow-
ing, however is known (see Burbea [4]): Assume that f^Hk, then
and

with equality holding if /—&(•, ζ) for some ζ^Λ.
The equestion of the necessity of the above condition in the equality state-

ment requires, in general, some additional assumptions on F and on both A and
k( , •)• For example, the proof provided in this paper shows that this condition
is necessary if the entire function F has positive Taylor coefficients, A is Δp

= {z^C: \z\<p}, ρ — 1, °o and k{z, ζ)—φ(zζ), z, ζ^Δp where φ is holomorphic
in Δp, with Δp being its domain of holomorphy, and 0(0)=0, 0cn)(O)>O for
n — 1, 2, •••. In this paper, for simplicity and clarity, we treat only the typical
case of F(ί)=exp (t). The method of the present proof is based on ideas of
both Aronszajn [1] and Milin [6] (see also Pommerenke [8, pp. 78-88]). This
results in a rather general theorem which is applicable in the theory of entire
functions and functions holomorphic in the unit disk. This sharp inequality will
also enable us to provide a shorter proof for a similar inequality on holomorphic
functions in the unit disk. The latter was previously proved by us in [4]. A
more special case of it was first proved by Saitoh [9], but his proof is rather
difficult and involved.

In this paper we also introduce and study, in light of the above inequality,
several concrete reproducing spaces, as the so called "generalized Fischer-spaces"
and "generalized Hardy-spaces". This study forms an extension of the examples
previously developed by us [3] in connection with the total positivity of repro-
ducing kernels. The ordinary Fischer and Hardy spaces were also studied by
several authors (cf. [2], [7] and [10]) from various points of view. These
spaces have an intimate connection with quantum theory and as such have
attracted some attention from physicists (see, for example, Bargmann [2]).
They also have connection with the coefficient estimates for univalent functions
[6, 8, 9]. The results here can be also extended to cover the case of several
complex variables but we shall not pursue this here (see, however, Burbea [5]).

§2. Spaces of Square Summable Series.

In this paper H(D) stands for the class of all holomorphic functions in a
domain D of the complex plane C while Δ designates the unit disk in C. We
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shall also use the notation Δp—{z^C\ \z\<ρ} with p — l, oo and thus Δx—Δ
while Joo=C. Let

(2.1) # b ) = Σ c / n̂>0, n^l,
71 = 1

be holomorphic in J^ and having J^ as its disk of convergence. We write

Hφ={f^H(Δp): f(z)=±anz
n, Σ ^ k J 2 ^ } .

n=l 7i=l

Clearly, this is a Hubert space of functions /, holomorphic in Δp, /(0)=0 and
whose norm is

(2.2)

We have

/(C)= Σ αnζ"= Σ - - - - B ^ - - = ( / ,
7 1 = 1 n=i Cn

and

1/(01 ̂

which means that

is the reproducing kernel of Hφ and that {φn}n=i with φn(z) — Vcn^n is a com-
plete orthonormal system for Hφ.

We now consider a new function

(2.3) ^(z)=

Clearly, ψ^H(Δp) and the coefficients of its expansion

)= Σ dnz
n

71 = 0

satisfy

(2.4) rfo=l, rfn=-Σ
72 Jfe=i

This shows that ί/n>0 for all n^O and, in particular

di=clf

d\ +
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d4=^ctJr — c2

1c2+c1cs+ — c2

2+

and so on. In general,

d n = Σ - Γ - j - ( Σ Cn~ Cnk),

where n^l, j = l, ••• , k, are integers. This show that dn = dn (cu ••• , cn), n ^ l ,
is a polynomial of degree n in clf ••• , cn and of rational coefficients. More-
over, for any ΛeC, we have

dn(λclt •••, λncn)=λndn(cly ••• , c n),

Now, the new function ψ determines another Hubert space Hψ of functions g,

(2.5) g ( z ) = Σ δ » z n , ^ e i 0 ,

holomorphic in J^, with | |^||^<oo where

(2.6) llglU={ΣdήΊft»l 8} 1 / 8.

As before, this Hubert space has

iΓ(z, ζ)=ψ(zQ=exp{ψ(zζ)} z, ζ e J , ,

as its reproducing kernel. We also note that, as in the case of φ, Δp is the
domain of holomorphy of ψ.

The main theorem in this direction is:

THEOREM 1. Let f^Hφ, then expf^Hφ and

with equality if and only if f=k( , ζ) for some ζ^Δp. In other words, if and
only if f is of the form

f(z)=φ(zζ),

for some

In order to prove this theorem we make the following observation: Let
with

(2.7) /(z)=Σα»*
π=i

and consider its exponential transform

(2.8) g(z)
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Then, as in (2.4),

(2.9) 6o=l, bn=— Έkakbn-k, n ^ l .
n k=i

In view of (2.1)-(2.9), Theorem 1 is, therefore, completely equivalent to the fol-
lowing lemma:

LEMMA 1. Let the notation of (2.1)—(2.9) apply. Then

(2.10) Σ d ή Ί
0

if the right hand side is finite. Equality holds if and only if an = cnζ
n(n'^ϊ) and

bn=dnζ
n (w^O) for some

Proof. For re[0, 1), define

)= Σ cή11 fl» I arn , β(r)= Σ ^n11 *„ I *rn .
i oπ=i

Using (2.4), (2.9) and Cauchy-Schwarz inequality

1

ft2

and thus

(2.11) ndn\bn\
2^Zjk —-j .

fc = l Ck dn-k

This shows that B'{r)^A'(r)B(r) or [\ogB(r)~\'^A'(r). Consequently, since
Λ(0)=0 and 5(0)=1,

log β(r)=

and (2.10) follows by letting r->l~. In view of Dog B(r)J^A\r), re[0, 1),
equality in (2.10) holds if and only if B'(r)=A'(r)B(r) for each re[0, 1) which
is equivalent to having equality in (2.11) for every n ^ l . This in turn is equi-
valent to an existence of λn^C so that

(2.12) akbn-k=λnckdn-k, k = l, 2, •••, n .

Putting k — n in (2.12) results in an=λncn. On the other hand, summing up
(2.12) from k = l through k = n, and, using (2.4) and (2.9) yields bn=λndn. Con-
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sequently,

(2.13) an=cndn-
1bn, n = l,2,

and with (2.9) this also shows

1 n-l

(2.14) an(dn—cn)= — cn Σ (n — k)dkck-
ιakb

n k=i

Now, the only solution of (213) subject to (2.4) and (2.9) is

(2.15) an = cnζ
n, ζΞΞflxCΓ1 n = l, 2, •••,

and, therefore, bn = dnζ
n for n^O. Indeed, for n = l, (2.15) is trivially satisfied

while for n^l, by (2.14) and the inductive assumption,

_ 1 n-l
an(dn-cn)=cnζ

n— Σ kckdn-k,
n k=ι

In view of (2.4) this may be written as

an(dn-cn)=cnζ
n(dn-cn),

However, by (2.4) we have dn>cn for every n > l and, therefore, an=cnζ
n, and

(2.15) follows. Finally, the right hand side of (2.10) for this solution

is assumed to be finite. Since the disk of convergence of φ is Δp (p = l, oo) we
must have ζ^Δp. This concludes the proof of the lemma.

§ 3. Applications.

Many interesting norm-inequalities may be deduced from Theorem 1. How-
ever, before so doing we introduce some notation from the theory of hyper-
geometric and confluent hypergeometric functions.

In this paper, a, β, γ, δ, μ, p and q are real positive numbers. By (a)n we
mean (α) 0 =l and (α) n =α(α+l) ••• (a+n — 1) for n ^ l . An alternative definition
for (ά)n is (α) n =Γ(α+n)/Γ(α). The function

F (a β'T' z ^ - J ^ ^ V Γ^±^P)I\β±np±
ί l > P>T'Z)- Γ(a)Γ(β) Ά Γ(r+np)Γa + np)

is holomorphic in the unit disk Δ, which also forms its disk of convergence. In
particular,

F&, β γ: ^)=2F1(α, β γ : z)= Σ - ^ ψ - jγzn

n=° \ϊn) n !
is the familiar hypergeometric function. Moreover, if p is an integer, then
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F (a β * γ z)= Σ M n p ^ n p λ ~n

and therefore

with

(3.2) ω=e2πι/p, p = l, 2,

W e define Fa>p(z)=Fp(a, β; β : z ) ; h e n c e

(3.3) F α , p ( ^ ) = — Σ (

where p and α> are as in (3.3). In particular,

(3.4) Fa.i(z)=a~z)-a,

(3.5) Fa,2(z)=j{(l-Vzy

We also note that F1,p(z)=(l—z)~1, independently of p.
The well-known integral representation

—p) Jo

when applied to (3.1) and (3.3) induces the generalization

(3.6) Fp(a, β γ: z )

for γ>β and /> = 1, 2,
Another related function that we shall consider is

Ga.P(z)=zFp(a+p; 1;

This function can be also extended to the case when a=0. In fact,

Go,p(z)=zFp(pf 1; l + £ : z ) = - l o g ( l

independently of p. Of course,

(3.7) Ga.p(z)=pB(a, p){Fa.p(z)-l},

where

5(α,ί)=Γ(α)

Evidently,

lim Ga, p(z)=G0. p(z)=-log (1-z).
a-*0
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Moreover, if p is an integer,

(ω=e2πt/p).

In particular,

and

(3.8)

We now turn to the entire functions

- Γ(a+np)Γ(β+np)
pK ' H> '' ' J~~ Γ(a)Γ(β) έ^o Γ(γ+np)Γ{δ + np) Γ(l+np) '

(3.9) Ep(a; β : z ) = Ep(a,r;r, β : z )

a n d

(3.10) Ea>p(z) = Ep(l;a:z).

Again, when p is an integer, we have

Ep(a, β; γ, δ : z)=—g\F2(a, β γ, δ: ωkz1/p),

(3.11) 1 p-i
EΛa β : z)= — Σ iF^a β : ωkz1/p)

p k=o

and

1 p-i k

where 2F2 and ^ are the familiar confluent hypergeometric functions. Thus

/*) ION Z7 / ~ \ xτ\ pOjkzl/p / O2πι/p jv i o \

In particular

Eltl(z)=ez, E1,2(z)=coshVz.

The well-known integral representation

when applied to (3.11) and (3.12), induces the generalizations
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(3.13) Ep(a;β:z)=τ~^I:^\1E1,p(Pz)t''-\l-tγ-a-1dt (β>a)

and

for p = l, 2, •••. In p a r t i c u l a r ,

(3.14) E2(a;β:z)=Ί

(ω=et"ll>, p = l, 2,E t . p ( z ) Λ ΰ r Σ β » C e l
p z k—0

and so

E2>1{z)=z-\ez-l), £2 > 2(z)=sinh Vz/Vz
and

α . 2 W ( ) ( (
Jo

Finally, let f^H(Jp) be given by

/ ( ) Σ » , ,
71 = 0

and let rE[0, 1]. The "r-ίA fractional derivative" of / is

where [1—r] stands for the integer value of 1—r (i. e. 1 if r=0 and 0 if O O ^ l ) .
Clearly, f<r>^H{Δp), and f<0>=f and / < 1 > = / / . We shall also write /+ for /<1/2>,
that is

We now give concrete examples for functions holomorphic in the unit disk
and entire functions.

§ 4. Generalized Hardy Spaces.

The function φ(z)=Fp(a, β γ: z) generates a reproducing kernel space
Sί\_p: a, β γ'] of all functions f

normed by
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^ Γ(r+np)Γq+np)
MWjrLp a.β ri- Γ { γ )

The reproducing kernel of this space is

K(z,Q=Fv{a, β γ zQ;

In particular, when β—T> the reproducing kernel is K(z, ζ)=Fa>p(zQ. The cor-
responding reproducing space of the latter is denoted by Ma,p, Ί.e.Ma>P—
M\_p : a, β; /3], and the corresponding norm by |HU> P. The integral representa-
tion (3.6) shows that any Sί\_p: a, β; γ~]t where p is an integer and γ>β, is a
weighted direct sum of spaces Ma,v defined on disks Δ1/t={z^C: \z\<l/t},
0 < f < l . The spaces Si\_p : a, β; γ~] may be regarded as generalizations of Hardy
speces (see also [3, 4] and [9]); in particular, JCa>p will be called the "(α, p)-
Hardy space11. The norm of Ma,p can be realized as

(4.1)

where / + is the previously defined half-fractional derivative of/ and dσ{z)—dxdy
is the area Lebesgue measure of C. In particular, when α ^ l , we have

(4.2) ||/||2||/|| ^
pπ

(4.3) ll/ll?.p = ™ [ \f{z)\*\dz\,

where in the last integral, / stands for the nontangential boundary values of
the holomorphic function / in Δ. Thus, MltV=JC1Λ (for any p) is the Hardy-
Szego space with the Szegδ kernel (1—zζ)~ι, M2,\ is the Bergman-space with
the kernel (1—zζ)"2, and JCa,lf α > l , is the Bergman-space with the kernel
(l—zζ)~a. These spaces are well-known and their norms are realized as genuine
integrals. Formulae (4.2)-(4.3) show that same is true for all Ma,v with αΞ>l
and p>0. In particular, as the reproducing kernel Fa,p(zζ) of JCa,P, for integer
p, admits a closed form expression through (3.3), new and concrete representa-
tions are obtained. For example, a use of (3.5) and (4.2) shows the following
interesting integral representation: Let a>\, then for any /, holomorphic in Δ
and such that

it holds that

for all
Of course, when Theorem 1 is applied to these spaces it induces sharp norm
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inequalities of exponential type. In order to be more concrete, however, we shall
also consider the reproducing kernel space 3)q,a>v generated by the function φ{z)
Ξ^Gα,p(^). In veiw of (3.7) and (4.1), this is a space of functions / in H{Δ),
/(0)=0 and with the norm

and hence

(4.5) ll/«-,α.P

This space can be also extended to include the case of α=0. Indeed, for a—Q
we have the Dirichlet norm

(4-6) ^\.t.p=^\Δ\nz)\ιdσ{z)

independently of p. For this reason, the spaces 3)q,a,p will be called generalized
"{q, a, pyDinchlet spaces'1. When p — l, we shall write simply S)q>a instead of
£)q,a,i and we note that £)q,o=£)q>o,p for any p. The reproducing kernel of
£>q,a,P is

kq,a,v(z, ζ)=qpB(a, p){Fa,p(zζ)-l}.

In particular, the reproducing kernel of <Dq,a is

kq.a(z, ζ)=qa-'{{l-zQ-*-l}, α>0

or

kq,o(z, ζ)=—?log(l—zζ).

We also note that the norm of S)q,a,p for α ^ l can be also realized, in view of
(4.4)-(4.5), as a multiple of the integrals (4.2)-(4.3).

We now consider the reproducing kernel space Sq,a,p generated by
exp{qGa,p(z)}. Again, we write βq,a for βq,aΛ. The reproducing kernel of
6q,a,p is exp{kq,a,p(z, ζ)}, and we note that εq,0 coincides with the previously
defined Hardy space MqΛ whose reproducing kernel is (1—zζ)~q. According to
Theorem 1, if f<^£>q>a,p then exp/ is in βq,a,P and

(4 7 ) | |exp/| | |- ί > α i p^exp \\f\\%q>a,p

with equality if and only if f=qGa,P('ζ) for some
A specially interesting case of this result is when p = L In this case

exp{qGaιl(z)}=Έ ~\pJjl'. oc)zm

m=0 TYl !

where for any a^O, pm(q: a)>0 for all q>0 and m^O. The coefficients pm(q)
~pm(q: a) are polynomials of degree m in q, satisfying
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po(q) — l , pm+i(q)

and thus

p1(g)=gf p

and in general

: a)=pn(q)= Σ " M H Σ (-1)*( " W)» ( Q ) ,
71=1 ΐl ! L £=i \ K ' J\(X '

Therefore pm(q) is a monic ploynomial with pm(0)=0 for m ^ l . Moreover,
/>TO(^: a) is, for m ^ l , a polynomial of degree m—1 in a and

It follows that the norm of Sq,a may be given by

where

With these more concrete norms, (4.7) gives the following result: If
then e x ρ / e £ ς > α and

with equality if and only if f=kq>a(-, ζ) for some ζez/. We note that in view
of (4.4)-(4.6), the norm of £Dq,a is (a/q)1/2 times the Hardy-space norm || |L i
when α > 0 and (l/q)1/2 times the Dirichlet norm when α=0. The special case
of this result when α = 0 appears also in Burbea [4] with a somewhat similar
proof. The more special case of a=0 but q^l was proved earliear by Saitoh
[9], by using different methods.

§5. Generalized Fischer Spaces.

The function ψ(z)=Ep(a, β γ, δ : μz) generates a reproducing kernel space
a, β;T, δ: μ] of all functions

(5.1) / ( * ) = Σ α » * n ,
71 = 0

normed by

Γ(a)Γ(β) - Γ(γ+
Il/ll3ΐi>:«./ϊ;r.ί.^- Γ(γ)Γ(δ) h Γ{a+np)Γ\β+np)

The reproducing kernel of this space is

K(z, ζ)=Ep{a, β;r,δ: μzζ); z,
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These spaces may be regarded as generalizations of Fischer spaces (see also [2],
[3], [7] and [10]). We shall also consider particular cases of these spaces,
namely $p(a; β: μ) = S\_p: a,γ',γ,β: μ], %p(a: μ) = ^p(l; a: μ) and_3 r

p(α:; β: μ)
= £F[£: a, 1; a+1, β: μ~] with the reproducing kernels Ep(a; β: μzζ), Ea,p(μzQ
and Ep(a, 1 α + 1 , β : μzζ), respectively. The integral representation (3.13) shows
that any 3p(a; β: μ), where p is an integer and β>a, is a weighted direct
sum of spaces 9^(1: sμ), 0 < s < l , with the weight p-1sa/p-\l-s1/p)β-a~1. The
reproducing kernel of 9^(1: sμ) is, of course, ElιP(μszζ) which may be evaluated
by (3.12).

The norm of 3p(a: μ) can be realized as

(5.2)

In fact, we shall verify directly that (5.2) induces a reproducing kernel space
£Fp(α: μ) of entire functions with the reproducing kernel Ea,p(μzQ. Let 0<r<oo
and define Δr—{z^C\ | z | < r } . Consider

Then

and for f^9p(a: μ) given by (5.1),

i (α) n=o a

with

It follows that (i) 0<γn(r)<l, (ii) γn(r) is a continuously increasing function of
r and (iii) limτ'Λ(r)=l. From these properties it follows (an application of B.

Levi's theorem) that

(5.3) U^^T—

Moreover, by Cauchy-Schwarz inequality

\J \Z)\ I Z J U>nZ I =^l Z J n I "re A Z J Γ / I . Λ J
71 = 0 \ 7Z = 0 Λ^

and thus by (3.8)-(3.10) and (5.3)

This shows that $p(a: μ) is a Hubert space with a reproducing kernel K( , •)•
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Now the sequence

r Γ(ά) i 1 / 2

is clearly orthonormal in 1p(a: μ) and by (5.3) it is also complete. Therefore

K{z, ζ)= Σ φn{z)φjζ)=Ea

n0

and our assertions follow.
The norm-integral (5.2) induces many interesting concrete integral representa-

tions for entire functions, some of which are by now classical. For example,
the space 9Ί(1: μ) is the ordinary Fischer space [7] with the reproducing kernel
Ehl(μzζ)ΞEeμz^ and hence the spaces $p(a: μ) constitute concrete extensions. In
particular, new representation formulae are obtained with S^α: μ) and Ea>1(μzζ)

. a: μzζ), with 9^(2: μ) and E2ιl(μzζ)=lμzζ']-1(eμzζ-l), with g 2 (α: μ) and
2~1{1F1(l;a: ^μzζ)+1F1(l; a: -^ μzζ)}, with SF2(1 μ) and Eh2(μzζ)

= coshv/μzζ, with 9^(2: μ) and E2,2{μzζ)=$\nh ^ μzζ I ̂  μzζ, and so on, in view
of (3.13M3.14).

The norm of the related Fischer space %p(a; β: μ) admits also an integral
realization. In fact, the norm is related to the norm of %p(a: μ) in (5.2) via

and hence we may define 3p(oo β : μ) as £Fp(β : μ), and §p(a; a : μ) = <Ξp{a+1: μ).
Notice that the right hand side of (5.3) is non-negative even if β>a. This can
also be shown directly by observing that

and thus

with equality if and only if / is a constant.
The reproducing kernel Ep(a, 1; α + 1 , β; μzζ) of 3p(a; β: μ) is also closely

connected with that of $p(a: μ). In fact, writing 5p(a: μ) for §p(a; 1: μ) we
see that the reproducing kernel of %p(a: μ) becomes Ep(a; a+1: μzζ). In parti-
cular, when p is an integer it follows from (3.11) that

Ep(a; a+l:μzζ)^
p k=i

On the other hand, applying Kummer's relation

1F1{a\ b: z)=et

1F1φ-a-t b: -z), b>a>0,

yields
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In particular

These relationships, in view of (5.2) and (5.3), also give new concrete integral
representation formulae.

We now consider the space 3r°[/?: a, β γ, δ : μ~] consisting of all / e
£F[/>: a, β',y, δ : μ~] with /(0)=0. This is a closed subspace of ?[/>: α, /3 f, <5 : μ]
and, therefore, it is a Hubert space with the reproducing kernel k(z, ζ)Ξ
£ p (α, j8; γ, δ : μzQ—\. Let £[/> \ a, β; γ, δ : //] be the Hubert space generated
by

α, ^ r, δ: μzζ)}.

Theorem 1 then shows that if /e£F°[/>: α, β; p, 5 : μ], then exp/ is m
: α, j8 γ, δ : μ] and

with equality if and only if / is of the form f(z)~Ep(a, β γ, δ : μzζ)—I for
some ζ e C .

A particularly interesting case occurs for 3μ = 3°[l; 1, 1; 1, 1: μ~] and €μ

Ξ<?[1 : 1, 1 1, 1: μ]. In this case the reproducing kernels of <3μ and βμ are ^(z, ζ)
—e

μz^—l and 7Γ(z, ζ ) ^ ^ " 1 exp{^^2^}, respectively. The norm of <3μy in view of
(5.2), is

7Γ JC

The norm of βμ on the other hand is determined from the expansion

n=o n!

where

Sn^e-'Σ -^j, n=Q, 1,

are the Stirling numbers of the second kind; s0—1, Si = l, 52=2, s 3=5, s4 = 15,
s5=52, s6=203 and in general

We also note that sn is the number of different partitions of the set {1, 2, ••• , n)
and it satisfies the recursion relation

n
k=o
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and

It follows that

k(z, C)=«r

JACOB BURBEA

n=o n!

00 n ' 1 fr™ 1 2

110.112 — v ' '
I I Λ l i e .. Z_J 11

where

We have therefore shown the following result: Let f&%μ, then e x p / e έ ^ and

with equality if and only if / is of the form f(z)—e~1exρ{eμz^} for some
Acknowledgement: The author is grateful to Professor S. Saitoh for valuable

comments on an earlier draft of this paper.
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