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ON ANALYTIC CENTERS OF COMPACT SETS

BY SHOJI KOBAYASHI

Introduction. In this paper we are concerned with a certain extremal
problem involving second derivatives of bounded analytic functions at oo, an-
logous to the well-known extremal problem involving first derivatives that gives
rise to the Ahlfors function, or to the Riemann map in the case of simply con-
nected domains.

The concepts of analytic diameter and analytic center were first introduced
by Vitushkin [10, 11] in the way of developping the theory of rational approxi-
mation. In 1974 F. Minsker [8] obtained their several properties mainly for
planar continua and presented open problems on analytic diameters and analytic
centers of general planar sets. Recently the author and N. Suita [7] investi-
gated certain properties of analytic diameters, analytic centers and the associated
extremal problems for planar compact sets, and also offered negative answers
to the Minsker's problems except the fourth one which asks whether the set of
analytic centers of a planar set is contained in its convex hull. In this paper
we answer this Minsker's fourth problem affirmatively under a certain sym-
metric condition.

In Section 1 we list the definitions and notation which we use throughout
this paper. In Section 2 we state preliminary known results as a series of
lemmas for the convenience of citation. In Section 3 we prove our main theo-
rems, one of which estimates the size of the analytic centers of a compact set
when the compact set is contained in a closed disc, and the other when the
compact set lies between two lines. In Section 4 we obtain the set of analytic
centers as a exact form for simple symmetric compact sets on a line, which
shows that the estimate given in [7, Theorem 2] by the author and Suita is
sharp.

1. Definitions and notation. Let K be a compact set in the complex plane
C. We denote by D—D{K) the unbounded component of the complement Kc of
K. Let AB(D) be the Banach space of all bounded analytic functions in D with
the uniform norm IHU, this is

(1.1) H/IU

Received March 30, 1981

318



ON ANALYTIC CENTERS OF COMPACT SETS 319

for every f^ΛB(D). Let J.(K) denote the admissible functions for K, which
means

(1.2) Jl(K)={f<=AB(D): | | / | U ^ 1 , /(oo)=0}.

The analytic capacity γ(K) of K is defined by

(1.3)

It is well known that there exists a unique extremal function fo(=Jί(K) with
f{(oo)=γ(K), which is called the Ahlfors function ([1], [2], [3]).

By Taylor's theorem, any function / analytic at oo can be expressed in the
form

for every Z O G C . Here β(f, zQ) is given by

(1.5) β(f, zo)= - = M f(z)(z-zo)dz
Zπi J\Z\=R

for such a large R>0 that the disc {z: \z\<R) contains K. For each compact
set K with γ(K)>0, define

(1.6) β(K, z)=sup{\β(f, z)\/γ(K): /eΛtfOL

for every z^C. If γ(K)=0, define β{K, z)—0 for every Z G C . The analytic dia-
meter β(K) of if is defined by

(1.7) β{K)=mίβ{K,z).

Any point z0 for which β(K)=β(K, z0) is called an analytic center of ϋf, and we
denote by c(K) the set of all analytic centers of K. It is known that c(K) is
a nonempty compact convex set for any K with γ(K)>0 ([4], [8]).

It is well known that if γ(K)>0 then for every ZGΞC there exists a unique
function f^Jl(K) for which β(K, z)=β(f, z)/γ(K) (see for example [3] or [5]).
We call such a function the z-extremal function and denote it by fz. Any z-
extremal function with z^ciK) is called a β-extremal function. The author and
Suita [7] showed that there uniquely exists the /3-extremal function while c(K)
can contain more than one points (see Lemma β in the next section). We denote
the /3-extremal function by /#.

Since all concepts defined above remains unchanged if we add to K the
relatively compact components of Kc, throughout this paper we assume that Kc

has no relatively compact components. For any K with γ(K)=Q the problem
which we consider in this paper reduces to an obvious one, so we assume γ(K)
>0 throughout this paper.
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2. Preliminary lemmas. In this section we state several known results on
analytic centers as a series of lemmas. Lemma 1 states how analytic diameters
and analytic centers depend on conformal maps. For the proof see [7].

LEMMA 1. Let K3 (/=1, 2) be two compact sets. Suppose that there exists
a conformal map φ of D{K^) onto D(K2) with an expansion

(2.1)

about oo, then

(2.2)

and

(2.3)

where by cCKΊ)+α0 W£ denote the set {z-\-a0:

Lemmas 2, , 5 are proved by Minsker [8]

LEMMA 2. For an arbitrary compact set K,

(2.2)

LEMMA 3. // K is symmetric with respect to a line, then so are β(K, z) and
c{K).

LEMMA 4. // K is contained in a closed disc of radius r, then

(2.3) β{K)Sr

and c{K) is contained in the closed disc of radius 2r with the same center.

LEMMA 5. // K is a continum which contains more than one points, then

(2.4) γ(K)=β(K)

and c(K) is a singleton which is contained in the convex hull of K.

The author and Suita proved the following ([7, Theorem 1, 4 and 5);

LEMMA 6. There exists a unique β-extremal function /# and

(2.5) /«oo)=0

holds.

LEMMA 7. Suppose that K consists of a finite number of mutually disjoint
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continua whose boundary is an analytic closed Jordan curve. If zo^c(K), then
there exists a function g analytic in a neighborhood of D with g(oo)~0 such that

(2.6) ~ \ \z-zo-g(z)\\dz\=r(K)β(K)
Δ7Ϊ jdK

and

(2.7) jf*(zXz-zo-g(z))dz^O

along dK.

LEMMA 8. Suppose that K consists of a finite number of mutually disjoint
continua each of which contains more than points, then c(K) is a singleton or a
line segument.

3. Main results. Theorem 1 is a sharper version of a Minsker's result
Lemma 4 in the preceding section.

THEOREM 1. // K is contained in a closed disc of radius r, then c(K) is
contained in the open disc of radius R with the same center, where R=β(K) +
r(l-γ\K)/rη.

Proof. We may assume that K is contained in the disc {z: \z\^r}, if
necessary by using Lemma 1. Let f0 be the Ahlfors function for K, and define

(3.1) F{z.

Then we easily see F<=J,(K) and

(3.2) F'(co)=f»(oo)/2r(l- ϊ^β-

by a simple calculation. Therefore we obtain

(3.3)

since |F'(oo) | ^γ(K). Suppose ZO<BC(K), then we see

(3.4) I βifo, *,) I = I jfS(co)-Ztf't (co) I <γ(K)β{K)

since f0 does not coincide with /*. Combining (3.3) and (3.4), we obtain

(3.5) \z

as desired.
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Remark. Since we see β(K)^r by (2.3) if the hypothesis of Theorem 1 is
satisfied, Theorem 1 includes the Minsker's estimate on the size of c(K) stated
in Lemma 4.

THEOREM 2. Suppose that K lies between parallel two lines, then at least
one of the two components of the plane separated by the two lines which do not
contain K contains no analytic centers of K.

Proof. By using Lemma 1, if necessary, we may assume that the parallel
two lines be {z:Rez=0} and [ ? : R e z = l } . Let K be contained in {z: O^Rez^l} .
Suppose that there exist z0, z^c(K) with

(3.6) Rez 0 <0

and

(3.7) R e Z i M .

Let {Dn} be a regular exhaustion of D=D(K), where "regular" means that the
boundary dDn of Dn consists of a finite number of mutually disjoint closed
analytic Jordan curves for each n. Let Kn=Dc

n, and fn,3 be the ^-extremal
function for Kn for /=0, 1. It is well known that fn>J converges to /* uni-
formly on every compact set of D as n->co, since Zj^c(K) means that zr

extremal function for K coincides with /*. By Lemma 7 or Theorem 9.4 of [5],
we see that there exists a function gn,3 analytic in a neighborhood of Dn with
gnj(°°)—0 such that

(3.8) -=— l*-z,-*»./z)ll<fe|=r(tf»)#K»,z,)

and

(3.9) —fn.j(zXz-zj-gnιJ(
I

along dDn. By the residue theorem, we see

(3.10) -r^- U-^)/n.lW(^-2Π-^n.lfe))^
2ττz Jaz)n

= ^ i A . i(oo)-Uo+^i)/S. i(oo)/2+/ί, ι

and

(3.11) "2^-J fe-^)/».oW(^-2ro-^n,oW)rf^

By (3.6) and (3.7) there exists a <5>0 such that

(3.13) Re(z-zo)^δ
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and

(3.13) Reiz

if z^dDn, for every sufficiently large n. Combining (3.8), (3.10) and (3.12), we
see

(3.14)

=R* L-J (z-zβ)f»M)(z-Zi-g«. i{z))dz\

Similarly by (3.9), (3.11) and (3.13), we obtain

(3.15) Re {zozj'n. o(°o)-(z0+*i)/ίί. o(°o)/2+/5ί, 0(°°)/6}

ύ-δγ(Kn)β(Kn,z0).

Letting n^oo, we obtain from (3.14)

(3.16)

while from (3.15)

(3.17)

This is a contradiction.

COROLLARY 1. // K lies on a line, then c(K) lies on the line.

Proof. Consider the case where the two lines coincide in the theorem.

COROLLARY 2. // K is symmetric with respect to a point, then c(K) is con-
tained in the convex hull co(K) of K.

Proof. By applying Lemma 1, if necessary, we may assume that K is sym-
metric with respect to the origin. Then we see that c{K) is also symmetric
with respect to the origin. Suppose that there exists z^c(K) with z^co(K),
then there exists a line / which separates z and K. Set zo=z and z1=—z, and
let / and — / be the parallel two lines in the theorem.

4. Examples. In [7] the author and Suita offered two types of symmetric
compact sets on a line which has more than one analytic centers. In this sec-
tion we obtain the set of analytic centers of such compact sets in a more exact
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form.

EXAMPLE 1. Let 0<a<b and K^[_~b, -α]W[α, 6] be a symmetric com-
pact set which lies on the real line, then

(4.1) <:(#!)=[-α, α ] .

EXAMPLE 2. Let 0<a<b<c<d with

(4.2) b2-a2=d2-c2

and K2=t-d, -c]W[-δ, -α]W[α, fc]U[c, d], then

(4.3) * ( # 8 ) = [ - α , fl].

Remark. In [7] it is shown that if i^ is such a compact set as mentioned
in Example 1 then

(4.4)

and

(4.5)

for some positive number δ. For such a compact set K2 as mentioned in Ex-
ample 2 it is shown by a similar way

(4.6) β(K2)=2ψ2-a2)/(b-a + d-c)

and

(4.7) c ( / Q = [ - 3 , 3]

for some positive number <5.
Theorem 2 of [7] states

(4.8) άmmc(K)^2β(K)

as for the size of c(K). Since the /3-extremal function /# differs from the Ahl-
fors function /0, we easily see that we can omit the equality in (4.8), that is,

(4.9) άimc(K)<2β(K)

holds. On observing (4.1) and (4.4) when a/b, we see that the estimate on the
size of c{K) is sharp.

Proof of Examples 1 and 2. We can prove the two examples by a similar
way. Let K be such a compact set as mentioned in Examples 1 or 2. Let G(z)
be the Green's function of D=D(K) with a logarithmic singularity at oo, so
G(z) is harmonic in D—{co}, G(z)=0 on dD and G(z)—log\z\ is harmonic near
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oo. The harmonic conjugate *G of G is locally defined, up to an additive con-
stant, so that the differential

(4.10) P(z)dz= — d(G(z)+i*G(z))

is globally well-defined in D. It is seen that P(z)dz is analytic in D— {00} and
that it has a simple pole at 00 with residue —/. As for the boundary dD of
D we consider it two-ply so that it surrounds D, then we obtain

(4.11) P(z)dz= d*df~ds= ~ds

along dD, where ds denotes the arc length and d/dn the inner normal deriva-
tive. Therefore, in paticular, we see

(4.12) P(z)dz^0

along 3D.
Let Kl=la2, 62] and K\=[_a\ 62]W[C

2, d 2]. By K2 we denote K\ or K\,
respectively. Let G2(z) be the Green's function of D2—D(K2) with a logarithmic
singularity at 00. Then we easily see

(4.13)

and

(4.14) P(z)dz=zP2(z2)dz

for z^D, where

(4.15) P»(z)dz= —d(GB(z)+ί*G2(*)).
i

For any F^Jί(K2) set f(z)=F(z2), then f<=Jl(K) and /3(/, 0)=F/(oo). There-
fore we see by (1.3), (1.6) and (1.7)

(4.16) β β

o)| : Fe=Jl(K2)}

since O^c(K) by Lemma 3. Let /* be the /3-extremal function for K. Since
/*(-2τ)=/*(—z) by symmetry, there is an F<=Jl(K2) such that f*(z)=F(z2). There-
fore we see by (1.3)

(4.17)

Combining (4.16) and (4.17) we obtain

(4.18)
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and

(4.19) U(z)=F0(z*),

where Fo is the Ahlfors function for K2.
By (4.10), (4.14) and (4.19) we see that the zeros of /* coincides with those

of P(z)dz/z with counting multiplicity in D— {oo}, since Fo and P2{z)dz have
the same zeros in D2— {o°} by symmetry (cf. [6], [9]). Applying Lemma 7
(and together with Lemma 1), we see that there exists a function g0 analytic
in D and continuous on D with gQ(oo)=0 such that

(4.20) -?-[ \z-go(z)\\dz\=r(K)β(K)
LTZ JdD

and

(4.21) jf*(z)(z-go(z))dz^O

along 3D, since O^c(K). We see that (l/i)f*(z)(z—go(z))dz and P(z)dz have the
same zeros and poles with counting multiplicity in D, since z—go(z) has a sim-
ple zero at 0 by symmetry. They are both nonnegative along 3D by (4.12) and
(4.21), so we obtain by comparing the residue at 00

(4.22) jU(zXz-go(z))dz=γ(K)β(K)P(z)dz.

Suppose zx^c{K), and we show z x e [ — a, α]. Again by Lemma 7 there
exists gi analytic in D with gi(°o)=0 such that

(4.23) γMz)(z-21-g1(z))dz^0

along 3D. By a similar argument which we used above we see that the dif-
ferential

(4.24) -^UizXz-goiz^dz-jUizXz-z^g^dz

has the same zeros as P(z)dz/z, and hence we obtain by comparing the coefficient

(4.25) jMzXz1-go(z)+g1(z))dz=z1γ(K)β(<K)P(z)/z.

Therefore we see by (4.22) and (4.25)

(4.26) jU(z)(z-z1-g1(z))dz=r(K)β{K)(l'-z1/z)P(z)dz.

Since (4.26) must be nonnegative along 3D by (4.23), we see
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(4.27) * i /z€Ξ[- l , 1 ] ,

for any z^dD, and hence we obtain

(4.28) z i e [ - α , α] ,

as desired.
Next suppose ^ G f - a, a], and we show that zx is an analytic center of K.

For any f^Jί(K) we see by the residue theorem

(4.29) i g ( / ί 2 r i ) = 1 f / ( 2 r ) ( z _
27Π J5Z)

= _j_r γ(K)β(K)P(z) {z

2π JdD zf*(z)

since P(z)/zf*(z) is analytic in 2λ Therefore we see

(4.30) i8(/f,z1)=sup{|i8(/,

= ~2^L / ( z ) TfΛzΓ{z~Zl) ' ^ '

J8(/iΓ)(l-zI/z)P(z)ί/z
3D

= β(K),

since 1—zJz^O for ze3.D. Then we obtain ^ecC/iΓ) by (1.7).

5. Concluding remarks. On observing Corollary 2 to Theorem 2 and Ex-
amples 1 and 2, it seems likely that for any compact set the set of its analytic
centers is contained in its convex hull.

In the proof of Examples 1 and 2 we only used the fact that K is a com-
pact set symmetric with respect to 0 which lies on the real line and that the
critical points of the Green's function of D2=D(K2) with a logarithmic singularity
at oo coincide with the zeros of the Ahlfors function for K2 except one at CXD.
If there exist any other sets with such property as K2, we can construct a set
K by considering the inverse image by z2 such that c{K) is a closed interval
symmetric with respect to 0 on the real line which intersects with K only at
the terminal points. But we know no other such sets than those we used in
Examples 1 and 2 (cf. [6, p. 297]).
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