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AN ENTIRE FUNCTION RELATED TO

THEOREMS OF BARRY

BY HIDEHARU UEDA

0. Introduction.

Let f{z) be an entire function of order p and lower order μ, where O^μg
p^l. The classical cos πp theorem of Wiman and Valiron states that, given
ε>0, the inequality

(1) logm*(r, jQXcos πp — ε) log M(r, f)

holds for a sequence r=rΛ-»oo, where

m*{r, /)=min|/(z) | , M{r, /)=max|/(z) | .

This was sharpened by Kjellberg [5], who showed that (1) holds with p re-
placed by μ « 1 ) , independently of the value of p.

Much work including the above has been performed related to the cos πp
theorem. The starting point of the considerations presented here is the follow-
ing results due to Barry.

THEOREM A. ([1]) // p<a<l, and if

(2) E= {r log m*(r, /)>cos πa log M(r, /)} ,

then

(3) log dens E^l-p/a.

THEOREM B. ([2]) If μ<a<l, and if E is defined by (2), then

(4) log dens E ̂  1—μ\a .

The estimates (3) and (4) are both sharp in the sense that the sign Ξ> cannot
be replaced by >. In fact, the following theorem was proved by Hayman.

THEOREM C. ([4, Theorem 1.]) Given any numbers p, a, such that 0<p<a<l,
there exists an entire function f(z) of order p and regular growth such that

log dens £=log dens E — l—p/a ,
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where E is the set defined by (2).

The function f(z) in Theorem C satisfies both (3) and (4) with the sign of
equality. Motivated by this fact, the following problem is naturally raised.

Problem. Let μf p, a be any numbers such that 0^μ^ρ<a<l. Then is
it possible to construct an entire function f(z) of order p and lower order μ
such that

1—pi a—log dens E^log dens E — \—μja ,

where E is the set defined by (2)?
Observe first that for entire functions f(z) of order 0, the Barry's estimates

(3) and (4) imply log dens £ = 1 , so that our problem is solved affirmatively for
μ=p=zθ. And since, for 0<μ=p<a<l, Hayman has given examples satisfying
the conclusion of our problem, we may consider the case 0^μ<p<a<l.

In this paper we prove the following

THEOREM. Given any numbers μ, p, a, such that 0^μ<p<a<l, there exists
an entire function f{z) of order p and lower order μ and such that

l—p/a=log dens £<log dens E — l—μ/a ,

where E is defined by (2).

All the above results combine to show that our problem is solved affirma-
tively in all cases.

In §§1-4, we suppose μ>0; a special argument when μ=0 is in §5.

1. Construction of a continuous increasing function v(t).

Let / be the positive number satisfying

Define a sequence {rm}°S by

(1.2) r o = l , rT O=

Further let {am}°S be a decreasing sequence tending to a such that α o < l , and
let {rr

m}™ be an increasing sequence defined by

r

Then, since μ<ct^am, we deduce from (1.2) and (1.3) that

rm<r'm<rm+1 (m=0, 1, 2, •••).

Now, we define a nonnegative function λ(t) ( ί^ l) as follows:
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oim (rm^t^r'm ra=0, 1, 2, •••)

w)=
0 (r'm<t<rm+1; m = 0 , 1, 2, •••).

(1.4)

Then corresponding to Λ(0, we take a continuous increasing function v(r) ( r ^
with

(1.5)

Here we show the following

LEMMA 1. 77ze ^rύter and lower order of v{r) are equal to p and μ, respec-
tively.

Proof. Consider the interval rm^r<rm+1 (ra=0, 1, 2, •••)• By (1.5)

Hence, if rm^r^r'm, we deduce from (1.4), (1.3) and (1.2) that

= // log r m + α m log ( — ) .

Similarly, if rf

mSr<rm+ι, we deduce that

logv(r)=Σ ~ Λ
s=θjr,j ί

Thus

(1.6)
log

logr

logr

log

^ r ^ ; m = 0 , 1, 2, •••)

h l ; ? n = 0 , 1,2, •••).

From this, we see that

lim
logr

^
logr

and
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(1.7) M^
11111 . 11111 IΛ .

r m-oo l o g r m 771-ocΛ l o g r m

It remains to compute log rm+i/log r'm. We have

u _ logr m + 1

Using (1.2) and (1.3), we obtain

logr m + 1 _ (/+l) m log3

log r'm (/+i)m-i l o g 3 +-ϋ_/(/+ 1)m-i l o g 3

(1.8)

Since αm->α: as m-^oo, it follows from (1.8), (1.7) and (1.1) that

This proves Lemma 1.

—- logy(r) ^α(/+l)
l im — = •—-— = p ,
r-oo log r a+μl

2. A set i 7 on the positive real axis.

Set

(2.1) K'n=
 r-m±1- = 3 Z C £ + 1 ) T O

and define

(2.2) /fm

In view of (1.3), (2.1) and (2.2), we have rf

m/Km>Kmrm (?n^
Now let

(2.3) F= 0 ίKnrn, r'JKm-\ .
771= 7710

Then we have the following

LEMMA 2. log dens F^p/a, log dens F^μ/a.

Proof. Let i? be a large positive number and let m1 be the integer such
that rr

mi/Kmi^R<rf

mi+1/Kmi+i. Suppose first that r'mi/Kmi^R<Kmi+1rmi+i and
m^πio. Then we have from (2.3), (1.3) and (2.1) that
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JFΠZl.Rl I m = m0JKmrm I

= Σ {-^~logK;

In view of (2.2)

(2.4) log Km = o(\og Kf

m) (m -* oo).

Also αm—># as m-^co. Hence given ε>0, we can choose N=N(ε), so that for

(2.5) ( A > _ A ( 1 _ ε ) 21 log ^ = - ^ - ( l - ε ) l o g ^ ώ - .
JFΠZlRΊ t a N a Γ

Since R<Kmi+1rmi+1, it follows from (1.2), (2.1) and (2.4) that

logr m i + 1 logrm1+i = JogTmi+i
log R log (Kmi+1rmi+1) log i Γ m i + 1 + l o g r w

= fc*^ΐ* (m^oo)
logr m i + 1

>l-ε

Thus for all sufficiently large i ? e θ [>m//JΓTO, / ί m + 1 r m + 1 ]
7tt = 0

(2.6) _ J L _ J ^ i j π ^ . > _ ^ α _ β ) . .

Next suppose that i^m i+irm i+i^^<Γm1+i/^m1+i and m^wio. In this case, we

have from (2.3), (1.3), (2.1) and (2.5) that

-T-= Σ |-^logΛΓ;-21og/f m

Since Kmi+1rmi+1^R, it follows from (1.2), (2.1) and (2.4) that

log Jg-log Kmi+1-a-(μ/a)Q.-e)) log r m i + 1 -(^/α)( l- £ ) log rN

log β

e))jogr«1±1_ ^ ^

log Kmi+ιrmi+ι
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Thus for all sufficiently large i ? e θ LKm+1rm+u r/

m+1/Km+1']
m 0

Together, (2.6) and (2.7) give

log R jFΓici.β] t a

for all sufficiently large R, i. e.

g ^ ( )
a

Since ε is an arbitrary positive number independent of F, we have

log dens F^ μ- .
a

In order to show that log dens F^p/a, we put R=r/

πll/Kmi=Rmi in (2.5).
Then from (2.1), (1.3), (2.4) and (1.1) it follows that

1 f dt y μ ^\ogrmi+1-logrN

log Rm1J*'nιi.Rmii t a log r'mi—log Kmi

— JLn— ) l o g r ^i+ l Q g ^ ί ~ l o g rN

a log r m i + - ^ log K'ni-log Kmi

= μ ( 1 c ) (/+1Γ'-1 log 3+/(/+l)^-'log 3-0(1)

Thus

log dens F ^ Πm Ί — ^ f -^-^-^-(1-ε) 2.
m^oo log /cT O l JFn[i,i?mi] ί α

Agoin, since ε is an arbitrary positive number independent of F, we obtain

log dens F ^ -— .
a

This completes the proof of Lemma 2.
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3. An entire function f(z) of genus zero associated with [>(0]

Let f(z) be a canonical product all of whose zeros {αn}T are real and nega-
tive and such that

(3.1) n(t) = n(t,0)=\

It follows from Lemma 1.4 in [3], Lemma 1 and (3.1) that

| | t

This implies that f(z) has genus zero, and so for | arg z \ < π we have [3, p 21]

-^—dt.
Ji t(t + Z)

First we prove the following

LEMMA 3. f(z) has order p and lower order μ.

Proof. We denote the order and lower order of f(z) by pf and μf, re-
spectively. Take ε>0 small so that 0<μ—ε<p + ε<1. By Lemma 1

(3.3) tμ~ε:.

From (3.2) and (3.3) it follows that

log M(r, f)=r^-^dt

Ch n(t0) . ΓTO tp +

- Ji t(t+r) Jo t(t+:t(ί+r)

) (r-»oo).
Similarly

ίo/r U

2 1 + e —

rμ~ε

O(^ ε ) (r->oo).
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Since we can choose ε(>0) arbitrarily small, we deduce that

Next, we proceed to show that p/^ρ. For this purpose, note that N(t, 0)
has the same order as n(t), and so by Lemma 1 it has order p. Further the
first fundamental theorem gives T(ί, f)^N(t, 0). Thus we have />/=J°

It remains to prove that μ/ύμ. The proof is a little more complicated. Set

and write log M(R, f) as follows:

(3.4)

Using (1.3) and (2.4), we have Rm^r/

m-1 (m^m2). It is clear that

It is a consequence of (1.6) that v(t)/ta° decreases for all ίΞ>l. Thus

S°° v(R) dt 1 / 1 v-^o

. fao— =R °v(R) ί )
(3.5) r u R " * l - « Λ r . /

1 / 1 y-«o
1—α0 \ Km-! / m = 2 .

Now, by (1.6) and (3.1), n(0 = [ r£ j for rf

m-λ^tSrm. Thus, from (2.1), (1.3)
and (2.4) it follows that

'•=!>« tog-^"l

! I 1 rv

= Crft]log Km'\ r'm-

(3.6) ^ " ^

- ( l - -^-)(log /fi-Orft (m -^ oo).

Finally, by (1.6), (2.1) and (1.3)
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rs-i / Jrm_i

Also in view of (2.4)

Further, it is easy to see that

Thus

γt1 (m-l / 1 \ μ(m-s) Λ

/i< — — +(log K'm.M Σ ( τ ) +jo\rZ

(3.7) " 7 U > j Λ 3 y J

< - ^ 7 + ( — + Jo)dog ΛΓi.-Orft .

Substituting (3.5)-(3.7) into (3.4), we obtain

log M(R, / )< {o(l)+0(log ^ - ^

rm-1)=r&O(log rm) (m -> oo).

Therefore by (1.2), (2.1) and (2.4)

log/? logrm-log/Γm-! ^

This shows that μ/^μ. This completes the proof of Lemma 3.

Now, we choose {am}™ as follows:

Here we show the following

LEMMA 4. For all sufficiently large

log m*(r, /)<cos πa log M(r, f).

/. We make use of Lemma 3 in [4]. Because of (1.2), (3.8), (1.3), (1.4),
(1.5) and (2.2), this lemma is applicable to our f(z). Hence we deduce that for
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m, r'm/Kml

logM(r, / ) ^

log m*(r, f)^v{r)[π cot ττα:m + θ ( - ^ - ) } + (9(log r)

where δ<^(0> 1] is a constant depending only on a0 and μ.
Therefore by (2.1), (2.2), Lemma 1 and (3.8)

log τn*(r, /) ^ ( 1 \ , n / l o g r
log M{r, f)

-cos πam+θ{ { ι + i y m

= cos 7rαTO+6>(αm—a) (m -> oo)

<cos πα (m^m3).

This gives the desired result.

4. Proof of Theorem; the case μ>0.

Define £ by (2). Then by Lemma 4 EίΛFίΛ(R, oo)=φ for all sufficiently
large R. Hence

log dens

so that

(4.1) log dens £+log dens F^l, log dens £-Hog dens F^l.

It follows from (4.1) and Lemma 2 that

(4.2) log dens E^l-p/a, log dens E^l-μ/a .

Now, we use Lemma 3 and Theorem A or Theorem B to obtain

(4.3) log dens E^l—p/a , log dens E^l—μ/a .

Combining (4.2) and (4.3), we have

1—p/α=log dens £<log dens E = l—μ/a .

This is the desired result.

5. The case μ=0.

For given p and a, we put
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L = ap/(a—p),

and define three sequences {rm}?, {αm}?, {μ™}? by

Further let {rU? be a sequence defined by

rm+

= L/m.

Since αm->α and μm->0, there exists a positive integer ra3 such that m^m3

implies μm<am, so we deduce that rm<r'vt<rm+1 (m^m3). Now, we define a
nonnegative function λ(t) ( ί^ r m 3 ) by (1.4) and set

LEMMA 5. The order and lower order of v(r) are equal to p and 0, respec-
tively.

Proof. Consider the interval r m ^ r < r m + i (m^7n3). As in the proof of
Lemma 1, we have for rm^r^r'm

logi<r)=
m-l

= Σ rm

and for r^^

Hence

= L log 3 m Σ s ι +am log (-^

m - l

Σ s!
=αOT log r-\am-LΛ=^3p-\ log rm ,

logp(r)= Σi" . log(-^ ± L )=Llog3 Σ s ! = L - ^ — log rm .

log r

= Π 5 L

log r m-oo m! log r m

— logrm= L lim- —
l ί
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\ogrn=L lim
— logrm+(μm/am)log(rm+1/rm)

— 1 oL
hmhm = ΓΓ

Next, we set
jy~ ~ /V q m m!
-ί^m — 'm + l/'m — ^

and define

It is easy to see that r'm/Km>Kmrm (m^m4). Here we estimate the size of
the set

F= 0 IKnr^r'JK^.

LEMMA

Proof.

\
JFΠίl, J

6.

Put

Λ

log dens F^,

R=r'JKm

Tΐl ( f t

s=m4 I α s

__ L(l-e) .

p/a.

Og i ί

m4).

771

V1

Then

\ogKs}>

c f

1 — p m

Z J

so that

log/?Jί nci,Λ: ί α & logr^-logA:m

m m

T(λ_r\ Σ s! L(l-e) Σ s!

α ?72! Jr(L/am)m \ {a+L(a/am)} m !

Thus

log dens F^(l—

Since ε is an arbitrary positive number independent of F, we have

log dens F^p/a.

Now, set n(t)=0 ( ί<r m 3 ), = |>(0] ( ί^ r m 3 ) , and define /(*) as in §3. In this
case, f(z) satisfies

logf(z)=z\~ Ί7~^γdt (|argz|<τr).
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LEMMA 7. f(z) has order p and lower order 0.

Proof. As in the proof of Lemma 3, we can easily see that f(z) has order
p. We prove that the lower order of f(z) is equal to 0. Set R=rm/Km-1=RΊILf

and write log M(R, f) as (3.4). Then

1 / 1 γ-«i , N
: T ^ — \ κ — / vv™)

'(\ogKf

m-τ)v(rm) (m —> oo),

[ 1 m - 1

+(log/fί»-,) ΣΣ
s=m 3 +l

Thus

logM(i?, f)<v(rm)O(\ogK'n-i) (m-^oo),

log log M(Λ, /) < log v(rm)+O(log log K'^)

logR logrm-log/ίm_!

m - 1

(m —> o o ) .

Finally we modify the argument of the proof of Lemma 3 in [4] to obtain

for Knrm^r^r'm/K

log Mir. f)^r){^^ + θ ( l o ^ - ) } + O(log r),

log m*(r, /)^Kr){π cot παm + θ(- lo |
2

/^7-)} + θαog r).

Thus

log m*(r, /) ιn/JLWn/ log r
<COS TΓαf + Ul ) + ̂ l: Γ T ; τ ^ < C O S TΓαfTO + Ul ^

log M{r, f) ~ m \\ogKf

= cos πam + oia-m — α:)<cos πα (reFΠ[r n l 7 , oo)) .
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From this and Lemma 6 we deduce that

log dens E^l—p/a.

On the other hand, from Lemma 7 and Theorem A or Theorem B it follows that

1—p/αrglog dens £<log dens E=l.

Hence

l—ρ/a—log dens E< log dens E—l.

This completes the proof.
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