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AN ENTIRE FUNCTION RELATED TO
THEOREMS OF BARRY

By HIDEHARU UEDA

0. Introduction.

Let f(z) be an entire function of order p and lower order u, where 0=p=
p=1l. The classical coswp theorem of Wiman and Valiron states that, given
&>0, the inequality

(€5} log m*(r, f)>(cos mo—e)log M(r, f)
holds for a sequence r=r,—c0, where

m*(r, f)=min| /)], M, f)=max|f(z)].

This was sharpened by Kjellberg [5], who showed that (1) holds with p re-
placed by p (<1), independently of the value of p.

Much work including the above has been performed related to the cosmp
theorem. The starting point of the considerations presented here is the follow-
ing results due to Barry.

THEOREM A. ([1]) If p<a<l, and if

2) E={r;log m*(r, f)>cos ra log M(r, f)},
then
(3) logdens E=z1—p/a.

THEOREM B. ([2]) If pu<a<l, and if E 1s defined by (2), then
4 log dens E=1—p\ex .

The estimates (3) and (4) are both sharp in the sense that the sign = cannot
be replaced by >. In fact, the following theorem was proved by Hayman.

TrEOREM C. ([4, Theorem 1.]) Guven any numbers p, @, such that 0< p<a<1,
there exists an entive function f(z) of ovder p and regular growth such that

log dens E=log dens E=1—p/a,
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where E 15 the set defined by (2).

The function f(z) in Theorem C satisfies both (3) and (4) with the sign of
equality. Motivated by this fact, the following problem is naturally raised.

Problem. Let p, p, @ be any numbers such that 0=pg=p<a<l. Then is
it possible to construct an entire function f(z) of order p and lower order
such that

1—p/a=log dens E<log dens E=1—p/a,

where E is the set defined by (2)?

Observe first that for entire functions f(z) of order 0, the Barry’s estimates
(3) and (4) imply log dens E=1, so that our problem is solved affirmatively for
p=p=0. And since, for 0<u=p<a<l, Hayman has given examples satisfying
the conclusion of our problem, we may consider the case 0=pu<p<a<l.

In this paper we prove the following

THEOREM. Given any numbers g, p, a, such that 0=pu<p<a<l, there exists
an entire function f(z) of order p and lower ovder p and such that

1—p/a=log dens E<log dens E=1—p/a,
where E 1s defined by (2).

All the above results combine to show that our problem is solved affirma-
tively in all cases.
In §§1-4, we suppose 1>0; a special argument when x=0 is in §5.

1. Construction of a continuous increasing function v(¢).

Let [/ be the positive number satisfying

_ pa(l+1)
(1.1) ——W .
Define a sequence {rn}% by
(1.2) ro=1, rp=3¢+nm"! (m=1).

Further let {an}% be a decreasing sequence tending to a such that «,<1, and
let {rm}% be an increasing sequence defined by

(1.3) ( "n )“m:<1@:1‘)“,

Ym Ym

Then, since p<a=an, we deduce from (1.2) and (1.3) that
ra<ltm<tmer  (m=0,1,2, ).

Now, we define a nonnegative function A() ({=1) as follows:
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An  (n=St=rn;m=0,1,2, )
1.4) A=

0 i <t<rmsr; m=0,1,2, ).

Then corresponding to A(¢), we take a continuous increasing function y(r) (r=1)
with

(1.5) »(r) =exp (S:x(t)t"dt> .
Here we show the following

LEMMA 1. The order and lower order of v(v) are equal to p and p, respec-
tively.

Proof. Consider the interval r, <r<rn.; (m=0, 1,2, ---). By (1.5)
log v(r):g:/i(t)t'la't .
Hence, if r,<r=ry, we deduce from (1.4), (1.3) and (1.2) that

log v(r)="5 S ﬁidH—gT An gy

s=0 Jrs I rm L

7

= TZ;E: a; log (f%>+am log (%)

=5 g () entos ()

Vs

=plog rontan log(rL) .

m

Similarly, if 7, <r<#¥n.1, we deduce that

log v(r) =3 g s gy

s=0Jrs T
=plog rmer.
Thus
A —(Om— 1) log 7m (rm=r=rn;m=0,1,2, )
log v(r) log r
208 Tt (rn=r<rms; m=0,1,2, ).
log r

From this, we see that

lim log v(7) —lim log u(rlnl:#’

oo lOg ¥ m=w  10€ 7 n

and
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(L.7) fim (0820 logulrm) e 108 ¥

- logr  mee logrp mee’ 10g ¥

It remains to compute log 7,+:/logr,. We have

10g "'mes _ log 74
log 77, log 7m~+log #h/rm)
Using (1.2) and (1.3), we obtain
log ¥ms1 (+1™log 3
g7 (1)t log 3+ L1+ 1 log 3

(1.8 :‘1—1%12—
+_a:1
_ an(+1D)
Amtpl
Since ap—a as m—oo, it follows from (1.8), (1.7) and (1.1) that
— log v(r) _ pal+1) _

T
e log r a+pl

This proves Lemma 1.

2. A set I on the positive real axis.

Set

@.1) K= %fl o L S

and define

(2.2) K,=(og K,)¥*.

In view of (1.3), (2.1) and (2.2), we have r5/Kn>Knrm (n=my)
Now let

2.3) F= U [Kurm, r/Kn].

Then we have the following
LEMMA 2. logdens F=p/a, logdens F=p/a.

Proof. Let R be a large positive number and let m, be the integer such
that 75,/Kn, SR<rn,+1/Kn+1. Suppose first that 77, /Kn S R<Kn 117m,+1 and
m,=m, Then we have from (2.3), (1.3) and (2.1) that
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gmn,mitt - 7,:;0 g:::{mm—dti = mzz;o’{l()g <:—;;>—2 log Km}»
= mglo{—(ff; log K7,—2log Km} )

In view of (2.2)
2.4) log K,n=o0(log K},) (m — o0).

Also a,—a as m—oco, Hence given ¢>0, we can choose N=N(e), so that for
m=N

@.5) S

Since R<Kn 41¥m,+1, it follows from (1.2), (2.1) and (2.4) that

dt 1z mi L Fmges
i 10 a2 08 Ka= (L) log =0

10g Tmli 10g Vmy+1 — I_Og rm;ﬂ'__
log R log (Km1+17’m1+1) log Km1+1+10g Ymy+1

_logrma
(1+40(1)) log #m, 41
>1l—e  (m=Ny(e).

(my — o0)

Thus for all sufficiently large Re Qo[rin/Km, K" me1l

(2.6)

1 ¢ dt _ p s
logRSmn,m7 z « (1=

Next suppose that Kp 117m 1= R<rp +1/Kn o1 and my=m,. In this case, we

have from (2.3), (1.3), (2.1) and (2.5) that

g L {-£- 10g Knn—210g Km}—[—log.K—L

FNILRY 1t m=mo\ A my+1Vmy+1

E o Ymy+1 R >
> a(l ¢) log - +logK (my=N).

my+1 my+1

Since K 417m,11=R, it follows from (1.2), (2.1) and (2.4) that

log R—log K +1—(1—(p/a)(1—¢)) log m,s1—(pt/@)(1—¢) log 7y
log R

my+1

R

(my — o0)

> 1o —(U—(/a)1—-e) °E .

log 7m
21— o=~ (/@)1= ™!
my+17my+1

>l—e—(1—(p/a)(1=e)(1—e) (M= Nye))
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=(u/a)(l—e).

Thus for all sufficiently large R€ U [Knestmrs, Phss/Knsi]

1 dt _ # .
@.7) logRSmu Rt - a (1=e).
Together, (2.6) and (2.7) give
1 A gy
log R SFG[I,R] t « (1=e)

for all sufficiently large R, i.e.
log dens F’= —%(1—5)3 .
Since ¢ is an arbitrary positive number independent of F, we have

y43
F > _i_
log dens F= .

In order to show that log dens F=p/a, we put R=rp,/Kn =Ry, in (2.5).
Then from (2.1), (1.3), (2.4) and (1.1) it follows that

1 S dt dar ¢ N3 (1__ )log Fm+1— 108 7y
log R, JFnoiep 3 log 7m,—log Kn,

log rml—i—log K, —logry

=L (1—e
@ log rm1+—log Ko, —log Kn,

gy (D™ log BHIHD™  log 3—0)
« (+1)™-* log 3+(-§—o(1))z(z+1>mrl log 3

(my — 00)

NI S
>a(15) 7

l—l-—a-l

(m;> Ny(e))

7S s P\
—a—|—l( )-a(l e)*.

Thus

[ e at 0
log dens F= lim ————S ——=-—(1—¢)?.

g Ty~ 10g R, FALBm 1 T a'( ¢)
Agoin, since ¢ is an arbitrary positive number independent of F, we obtain

log dens F= L .
o

This completes the proof of Lemma 2.
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3. An entire function f(z) of genus zero associated with [v(f)].

Let f(z) be a canonical product all of whose zeros {a,}$ are real and nega-
tive and such that

(<1

{[v(t)] (tzl).
It follows from Lemma 1.4 in [3], Lemma 1 and (3.1) that

3.1 nt)=n(, 0)=

e _(=n® v(t)
/;1 la, _gx 12 dt<51 dt<oo.
This implies that f(z) has genus zero, and so for |argz| <z we have [3, p2l]
(= n®)
(3.2) log f(z)—zsl i &t

First we prove the following
LEMMA 3. f(z) has order p and lower order p.

Proof. We denote the order and lower order of f(z) by p, and gy, re-
spectively. Take ¢>0 small so that 0<p—e<p+e<l. By Lemma 1

3.3 trresn() =t (t=ti=to(e)=1).
From (3.2) and (3.3) it follows that

og Mer, D=r{ 3

o n(ty)
:rgl tt+7r)

to(14-7)
tot+r

=0(rP*)  (r — o0).

dt

J o potE
trr So i U

A

w yPte-l

—I—r”*eg —-du

=n(t:) log e

Similarly

log M(r, /)= rS Wi +r)

roo u;l e-1
Sto/’l‘ u+1
S u[l -e-1

1

du

du (r=to)

1 e

=5 - =0@r**%)  (r—00).
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Since we can choose ¢(>0) arbitrarily small, we deduce that

pEpS0=0.

Next, we proceed to show that p,=p. For this purpose, note that N(, 0)
has the same order as n(#), and so by Lemma 1 it has order p. Further the

first fundamental theorem gives T(f, f/)=N(t, 0). Thus we have p,=p.
It remains to prove that p,=g. The proof is a little more complicated. Set

R=rn/Kn 1=Rn,

and write log M(R, f) as follows:

tog MR, H=R([™"+(™ +(") ) g

(3.4) T t(t+R)
=0hL+1,+1,.
Using (1.3) and (2.4), we have R,=7,_, (m=m,). It is clear that
= ”t(j) dt.
It is a consequence of (1.6) that v(t)/t*0 decreases for all 1=1. Thus
“ WR) ,, dt . 1 /1 \ima
Ié}?grm Rao 10 = RTOUR) l—a0< rm)

(3.5)

]- 1 1-a
:1—a0<K _1) rho mzm).

Now, by (1.6) and 3.1), n(t)=[r£] for v, .1<t<rn. Thus, from (2.1), (1.3)
and (2.4) it follows that
V'm r;n—l‘l‘R
"m-1 Tmt+R

I,=[r#]log

1 Ym
Kn-1 ¥m-1
o

1+
=[rs]log

(3.6)

Lt (K )=

=[r4]log

1
o
~(1=-E)tog Kn-arty (m—00).

Finally, by (1.6), (2.1) and (1.3)
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Tin—1 V(t)
1 t

Vs )_l_gr'm—l 7o it/ Tm-1)¥m-1 dt

m-1
<
dt= 2 ur) 1og( o

r.=|

Tm-1 t

< i‘{@m— )" =1 log K S

Aoy -1 V-1

. m-1
<L 4 (log Ko7t 2( L )#.
a s§=1

m-1 T'm
Also in view of (2.4)
s 1 1 1 .
_J_,=7=—WT{<§ (7>76D) .
J

Vi+1

Further, it is easy to see that

5 =<

A3
Thus
<o tog K D8 (5) T ol
(3.7) m-1 $>J0
T (L 0)og Koot
A1 7

Substituting (3.5)-(3.7) into (3.4), we obtain
log M(R, f)<{o(1)+O(log K7,-,)+O(log K7 -2)} 74,
=rn0(log K7, -1)
=r40(og rm-)=rH0log rn)  (m— o).
Therefore by (1.2), (2.1) and (2.4)

loglog M(R, f) _ (14o(1))slog rn
log R log rmn—log Koy

This shows that p,;=p. This completes the proof of Lemma 3.
Now, we choose {an}% as follows:

11—« 1
Here we show the following
LEMMA 4. For all sufficiently large r&F

log m*(r, f)<cos za log M(r, f).

=+o)y  (m—o0).

297

Proof. We make use of Lemma 3 in [4]. Because of (1.2), (3.8), (1.3), (1.4),
(1.5) and (2.2), this lemma is applicable to our f(z). Hence we deduce that for
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re [Kmrmr ¥/ K]

log M(r, /)zv(r){ +0( 45 )} +000g ),

Sln Ty
log m*(r, £)=u(r){z cot n'am-l—0< R )}-+0x10g 1),

where d<€(0, 1] is a constant depending only on a, and g.
Therefore by (2.1), (2.2), Lemma 1 and (3.8)

———~——Iﬁ)gg mM*((: }Jf)) <cos nam-i-O( ~)+0( Ij(gr)’)

1
=cos nam+O{W}

=C0S Tyt 0(tn—a) (m — o)
<cos (m=ms) .

This gives the desired result.

4. Proof of Theorem; the case p>0.

Define E by (2). Then by Lemma 4 ENFN(R, 0)=¢ for all sufficiently
large R. Hence

log dens (E+F)<1,
so that
“4.1) log dens E+log dens F<1, log dens E+-log dens F<1.

It follows from (4.1) and Lemma 2 that
4.2) logdens E<1—p/a, Tlogdens E<1l—p/a.

Now, we use Lemma 3 and Theorem A or Theorem B to obtain
4.3) logdens Ez1—p/a, logdens Ex1—p/a.
Combining (4.2) and (4.3), we have

1—p/a=log dens E<log dens E=1—p/a.

This is the desired result.

5. The case p=0.

For given p and a, we put
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L=ap/(a—p),
and define three sequences {rn}%, {an}T, {¢n}S by

l—a 1
2 m+l’

rm=3™, an=a+ tm=L/m.

Further let {r,,}% be a sequence defined by

( 7’~’,n )“m_( Y m+1 ).”m
Ym Tm '

299

Since an—a and p,—0, there exists a positive integer m, such that m=m,
implies pn<an, so we deduce that 7, <rp<rm:; (m=ms). Now, we define a

nonnegative function A(t) (t=rn,) by (1.4) and set

u(r):exp(g: Adt) 27y

LEMMA 5. The order and lower order of v(r) are equal to p and 0, respec-

twely.

Proof. Consider the interval 7, <r<rms;; (m=m,). As in the proof of

Lemma 1, we have for r,<r=ry,

log v(r)= :E:S#s log (&)—I—am log (YL)

Vs m
m-1 ¥
=L log 38;)”33 '+an log (TM—)

m—1
> s!
=a, log r——{am— L s%%—} log #m ,

and for 7 <r<rms1

Z, Vs+1 2 si st
= — )= | — ] S=ms "
log v(r) s;)mspslog( 5 ) Liog3 3 s1=L "% logrs.
Hence
m—1
> s!
lim logv(r) _ lim LS5 —(,
e logr m—e m!
L i s!
Tim A98 Y0 _ i g sfms T 108 7m
r  lOg ¥ Mmoo m!l  logrn
w— log7rm

=L lim ’
m-c 10g ¥,
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log ¥m,

=L lim
m~e 10g 7’m"|'(,um/am) log (*m+1/7m)
I Tm 1 _ al

m-rco 1+L/am C\."I‘L :‘0.
Next, we set

Km:rm+1/7'm:3m'm!
and define
Kn=(log K7,)*#m .

It is easy to see that 7, /Kn>Knrn, (mn=m,. Here we estimate the size of
the set

F= U [Knrm r/Kn].
m=my

LeEmMA 6. logdens F=p/a.
Proof. Put R=r, /K, (m=m,). Then
S ﬁ_ m Sr's/Ksﬂ

FOcL Ry 1 ssmyJKgrs 1t

m

= 3 L log Ki-2tog Ko} > 5 8 ptog KL (s2mu(e)

s=my\ Qg
= L0=9) 03 gy,
[24 s=mg
so that
Clp dt Lo 2
log R Bmm,m t a log i —log Ko
g1 —e) 3 g1
>7[:(1_€> ) SEZQSS ! _ L(]. 5) s§53 .
o ml+(L/an)m! {a+La/an)}m!
Thus

log dens F=(1—¢)p/a.
Since ¢ is an arbitrary positive number independent of F, we have
logdens F=p/a .

Now, set n(t)=0 (t<rn,), =[v(t)] t=rn,), and define f(z) as in §3. In this
case, f(z) satisfies

log f(z):,zgoo n(® dt (larg z| <m).

rm37(f+2)
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LEMMA 7. f(z) has order p and lower order O.

Proof. As in the proof of Lemma 3, we can easily see that f(z) has order
0. We prove that the lower order of f(z) is equal to 0. Set R=r,/Kn-1=Rny,
and write log M(R, f) as (3.4). Then

]. 1 1-ay
= =
Ii= 1—0(1( Km—1> V(rm) (m=my) ,

Iy~ (log Kin-y(rm) — (m—o0),

1<) 4 og Ky S e

m-=1

=u(rm)[ al +(log Kn, z) Z_)l {l@) H

m-1 =my+1 L V(¥ )

m=1 m—1
+(log Ku-p) 2 B8 X “]
s=mg+1

=u(rm)[ ai_l
[

<v(rm) +(m—my—1)e= LoD m-Dl(]gg K;n_z)} .

m-1

Thus

log M(R, /)<v(rn)O(og K5,-1)  (m— o),

log log M(R, f) log v(rm)+0(log log K1, -1)
< P
log R log rm—log K-y

mes!

1og v(rm) _ —(1+ 0(1»,,,,8%'%'3,‘, —0

m

=(140(1) —
(m - o0) .

Finally we modify the argument of the proof of Lemma 3 in [4] to obtain
for Kptrmn<r=rh/Kn, (m=m,)

log M(r, 2o " +0( e )|+ 0log ),

log m*(r, f)<v(r){7r cot T+ O( log%7w>}+ O(ogr).

Thus

log m*(r, f) - m logr
~13ng(7’ 7 =cos nam+0< log K7, )—I—O( . )

=C0S na,,nLO( "1‘ >

=CO0S Tyt 0(an—a)<cos Ta (re FN\[7rp,, ).
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From this and Lemma 6 we deduce that

logdens E<1—p/a.

On the other hand, from Lemma 7 and Theorem A or Theorem B it follows that

Hence

1—p/a=log dens E<log dens E=1.

1—p/a=log dens E<log dens E=1.

This completes the proof.

(1]
£z2]
£3]
[4]

L5]
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