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CANONICAL DECOMPOSITION OF HARMONIZABLE

ISOTROPIC RANDOM CURRENTS

BY YUKINAO ISOKAWA

Abstracts. First we show that the difference between harmonizable isotropic
random currents and homogeneous isotropic ones is small in some sense. Next
we obtain the quasi canonical decomposition of harmonizable isotropic random
currents, and discuss the possibility of the canonical decomposition of them.
Then we show that a certain kind of harmonizable isotropic random currents
which is not homogeneous has the canonical decomposition.

§ 1. Introduction

Let 2P be a class of random ^-currents. We say that a random current
Up has the quasi canonical decomposition in 2P if it has the unique decomposi-
tion UP=U$+UP+UP in 2P such that dUp=0, δUs

p=0 and JUh

p=0. The
random currents Up, Up and U% are called the irrotational, the solenoidal and
the harmonic components of Up respectively. If the covariances between any
two components are zero in the quasi canonical decomposition, we call it the
canonical decomposition. Physically the quasi canonical decomposition means
the decomposition of a wave into the longitudinal one and the transversal one,
and the canonical decomposition corresponds to the case where these two kinds
of waves are stochastically independent.

Let Up be the class of homogeneous isotropic random /)-currents, and 2BP

be the class of harmonizable isotropic random /^-currents. K. Ito (1956) has
shown that every random current in VLP has the canonical decomposition in it.
In this paper we investigate the possibility of the canonical decomposition in

In Theorem 1 of § 2 we have two characterizations of the class Up in the
broader class SBP. The results may be understood as those stating that the
difference between two classes is not large. Then we introduce a class %$p of
isotropic random currents which are superpositions of independent plane waves.
This class stands between VLP and 2BP.

In § 3 we first show that every random current in 2δp has the quasi canon-
ical decomposition, but it is not necessarily the canonical one. Next we show
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that the canonical decomposition is possible in 33P. This means that we can
not characterize VLP by using the possibility of the canonical decomposition.

§2. Relations among classes Up, %$p and 2δp

Let L be the Hubert space of random variables with mean 0 and finite
variance. In L the inner product <, > of two elements is defined by their
covariance. Let %p be the linear space of smooth ^-vector fields with compact
support, where we introduce the Schwartz topology. A random ^-current Up

is defined as a continuous linear map

Up : ^n-P^φn-p-^Up(φn-p)^L .

For a random /^-current Up and a constant £-vector apj we define (Up, ap) as
a random distribution, (Up, ap)(φ)—Up(φ^ap). The function defined by

p(φ, φ; ap, bp)=<(Up, ap){φ), (UPf bp)(φ)>

is called the covariance bilinear form of Up. For a ^-vector field φp^^)p and
a random /^-current Up, a motion g: Rn^>x—>gx&Rn induces a new /^-vector
field gφp and a new random /)-current gUp as

(gφP)W=gφp(g~1x) and (gϋp)(φn-p)=Up(gφn-p).

If the covariance bilinear form of gUp does not depend on all translations g or
all rotations g, then Up is said to be homogeneous or isotropic respectively. A
random current Up is said to be isotropic about the point h if the translated
random current hUp is isotropic. We say that a random current is harmonizable
and its spectral measures are m(dλ, dμ ap, bp) if its its covariance bilinear
form is written as

p(φ, φ; ap,
 bp) = \RnχRn3φ(λ)$φ(μ)m(dλ, dμ; ap> bp),

where m(dλ, dμ; ap, bp) is a complex-valued tempered measure for each pair of
constant ^-vectors ap, bp, and Ξφ denotes the Fourier transform of a function φ,

A random measure is defined as a random current whose covariance bilinear
form is of the form

ρ(φ, ψ; dp, bp)=^Rn^Rnφ(λ)ψζμ)m(dλ, dμ; ap, bp),

where m is a complex-valued tempered measure. In particular, if the support
of m is contained in the diagonal set {(λ, μ)^RnxRn; λ—μ) for every ap, bp,
it is called an orthogonal random measure.
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In the below we frequently use the following lemma, which can be proved
as in the proof of Proposition 5.1 of M. M. Rao (1969).

LEMMA 1. A harmomzable random current with spectral measures m(dλ, dμ
ap, bp) is isotropic if and only if m(d(gλ), d(gμ); gap, gbp)=m(dλ, dμ; av, bp)
hold for all rotations g and all ap and bp.

K. Ito has shown that a homogeneous random current is the Fourier
transform of an orthogonal random measure. Applying Theorem 3.1 of M. M.
Rao, we have similar representations for harmonizable random currents. We
denote the Fourier transform of φn-p^^)n-p by 3φn-p.

PROPOSITION 1. A harmonizable random current Up can be represented by
a random measure Mp as its Fourier transform, Up(φn-p) = Mp('Ξφn-p). Conversely
the random current defined by the Fourier transform of a random measure is
harmonizable.

It is obvious from Proposition 1 that Up is contained in ί&p. The following
theorem states that the difference between these two classes is not so large as
was expected by the comparison of their spectral measures.

THEOREM 1. A harmonizable random current in 2δp which is isotropic about
the point hφ§ is homogeneous. Similarly, a random current Up in ϊΰ$p whose
covariance bilinear form coincides with that of hUp for a translation h is homo-
geneous.

Proof. We only prove the first assertion as the proof of the second is
similar. If Up has the spectral measures m(dλ, dμ; ap, bp), hUp has the spectral
measure exp(i(λ—μ, h))m{dλ, dμ; aP, bp). Using Lemma 1, we have

{l-exp(/U-μ, h-g-'h^midλ, dμ; ap, bp) = 0

for all ap, bp, λ, μ and g. Throughout the argument we fix ap and bp. For
any g, there is a null set Ng with respect to the measure m(dλ, dμ; ap, bp)
such that

(1) expm-μ)-g(λ-μ), Λ)) = l

for all (λ, μ)&Ng. Take a countable dense subset C of the orthogonal group
0{n), and put N—\JNg. Choose any element (λ, μ)&N, and fix it. Then,

noting the continuity, we see that (1) hold for all g e O(n). We define
F—{{λ—μ)—g{λ—μ);g^O{n)} and P—{x^Rn; x is orthogonal to h). Since
F is connected, F is contained in P. If λ—μφO, we have n=dim F^άim P —
n—1. This is a contradiction. Accordingly the complement of the diagonal
set is contained in N. Since TV is a null set, the measure m(dλ, dμ; ap, bp) is
concentrated on the diagonal set. Therefore Up is homogeneous.
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We introduce a class of random £-currents which may be understood as
the superpositions of independent plane waves. Let h be a complex-valued
function on R1 which is expressed as

by a complex-valued measure H such that the integrals

( \a\-N\H(da)\,\ \a\»\H(da)\
JlαlSl J|α|>l

are finite for all TV^O. Let Mp be an orthogonal isotropic random measure on
Rn by which complex-valued tempered measures m are defined as

m(dt; ap, bp)=<(Mp(dt), ap\ {Mp{dt), bp)>.

We can prove easily that the map ^ . ^ ^ . p ^ ^ . p G ^ . p is continuous,
where

Φφn-p)(f)=\ n

Accordingly we can define a random current Up as the φ-transform of Mp,
Up(φn-p)=Mpφφn-P) Now we define a class SSP as the totality of the ί>-trans-
form of orthogonal isotropic random ^-measures for any h.

PROPOSITION 2.

Proof. It is obvious that 33P contains Up. Consider a random current Up

in S5P. From the assumption on h it follows that ξ>φ is a rapidly decreasing
infinitely differentiable function for any φ^%. Thus we can write the covari-
ance bilinear form of Up as

p(φ, φ; ap, bp)=\ nΦφ)(t)φ4W)m(dt; ap, bp).

From this expression we can see easily that Up is isotropic. Now we define
', at^Λ} for any bounded Borel set A in Rn, and

zUu Λ2; ap, bp) = \ HUMWUf))m{dt ap, bp)

for any bounded Borel set Aλ and A2. Noting that

we can rewrite the covariance bilinear form as

z(φ, ψ; ap, bp)=^^Rn(&φXλ)(%ψ)(μ)z(dλ, dμ\ ap, bp).
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Moreover we can prove that z is a tempered measure. Therefore Up belongs
to SB,.

§ 3. Canonical decomposition in classes UP9 33 p and 2δp

First we consider the quasi canonical decomposition of harmonizable random
currents.

PROPOSITION 3. Every harmonizable random current has the quasi canonical
decomposition in which all components are harmonizable.

Proof. Let Up be a harmonizable random current which is the Fourier
transform of Mp. We define four random measures M%, M% Mp and Mp as

Mh

p(dλ)=Mp(dλn {0}), M%dλ)=Mp{dλ- {0}),

Mρ(dλ)=\λ\-2λΛ(λvMu

p(dλ)), Mp(dλ)=\λ\-2λW(λAM^dλ)).

Moreover we define three random currents U% Up and U% as the Fourier
transform of Mp, Mp and Mp respectively. Then, as in the proof of Theorem
5.2 of K. Ito, we can show that Up has the quasi canonical decomposition.

Now we investigate the possibility of the canonical decomposition in 2BP.
We put D—{(λ, μ)<BRnχRn; λ and μ are linearly independent}, and for each
(λ, μ)^D, we choose a system of vectors {<f = | ̂  | ~1^, rj—\μ\~1μ, ζ ; (1^/^n—2)}
such that ζ/s are orthonormal and orthogonal to both ξ and η. Then, defining
a measure m in the domain D as

Mdλ, dμ)=m(dλ, dμ ξΛζiΛζiΛ-Λζp-u ^Ξ§^ηmA^A'''A^-^

we have the following theorem.

THEOREM 2. Every random current Up in 2BP has the quasi canonical de-
composition in it. Its irrotational component and solenoidal component are mutually
orthogonal if and only if the measure m is identically zero in the domain D.

Proof. From Proposition 3, Up has the quasi canonical decomposition Up=
Ul+Uρ+Us

p where all components are harmonizable. We have to show that
they are also isotropic. We only prove for Uρ. Noting the identity (λΛ(λVap), bp)
— {apy λΛ(λVbp)), we have the following expression

m\dλ, dμ; apj bp)=mu(dλ, dμ;ξΛ(ξVap), ηΛ(ηVbp))

for spectral measures of Up. Then, using Lemma 1, we can see that Up is
isotropic.

Similarly cross-spectral measures of Up and Up can be written as

mx\dλ, dμ\ ap, bp) = mu(dλ, dμ; ξΛ(ξVap), η\J{η/\bp)).
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By the same reasoning as in the proof of Theorem 7.5 of I. Kubo (1967), we
can rewrite them as

mιs{dλ, dμ; ap, bp)=-^—^—γψ^iξΛ(ςVαp), rjW{η/\bv))m{dλ, dμ)

in the domain D.
From this expression we derive heuristically that mιs is identically zero in

the complement of D although we can prove it rigorously by the same reason-
ing as in the above. In fact, we see easily that the coefficient of m in the
above expression is bounded in ξ and ΎJ, and moreover, when rj tends to ζ or
(—ζ), ζ—(ζ> rj)η is nearly perpendicular to ξ and then m(dλ, dμ) is nearly equal
to zero. Thus the proof is completed.

Every random current in 2BP does not have the canonical decomposition,
while every random current in VLP has it. On the other hand, Theorem 1 states
that the difference between Πp and 2BP is not large. Thus one may ask whether
a random current in 2δp which has the canonical decomposition is homogeneous
or not. The following theorem answers this question in the negative way.

THEOREM 3. Every random current in ?&v has the canonical decomposition
m it.

Proof. The proof of the quasi canonical decomposition of random currents
in %$p is similar to that of harmonizable random currents in Proposition 3. We
can see easily the orthogonality of the harmonic component and the other two
ones. In the below we show that the irrotational component and the solenoidal
component are mutually orthogonal. For any bounded Borel set Λ not contain-
ing 0, we put c{Λ)—{t^Rn there is a^R1 and λ^Rn such that t=aλ}. Using
the notation in the proof of Proposition 2, we see that z(Λl9 Λ2; ap, bp) is zero
for any bounded Borel sets Λx and Λ2 such that c{Λλ)r\c(Λ2)= {0}. Accordingly,
by Theorem 2, we have the conclusion.
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