
H. ITO
KODAI MATH. J.
5 (1982), 253—265

ON THE EXISTENCE OF LONG PERIODIC ORBITS NEAR

THE LIAPUNOV'S PERIODIC FAMILY IN

GENERAL REASONANCE CASES

BY HIDEKAZU ITO

1. Introduction.

In this note, we are concerned with the existence of periodic solutions for
a Hamiltonian system with n degrees of freedom

( L 1 ) { k h h( L 1 ) dt - 9 7 7 ' at ~ dxk

 {k~h >nh

We assume that the Hamiltonian function H(x, y)=H(xu ••• , xn, ylf ••• , yn) is
smooth near the origin and vanishes with its first-order derivatives at the origin,
which implies the origin is an equilibrium point. Here and in what follows,
"smooth" means always C°°. It is to be noted that the Hamiltonian function
H(x, y) is an integral for the system (1.1), i.e., the function H(x, y) is constant
along a solution curve for (1.1).

Let 5 denote the Hessian matrix of H(x, y) at the origin and

Γ 0 I

Ά-,
where / is the nXn identity matrix. Then JS is the coefficient matrix of the
linear terms of the vector field of (1.1) about the origin. As is well known [12],
the eigenvalues of JS occur in pairs ±λlt •••, ±λn. If Λ is purely imaginary
and none of the n—1 quotients λk/λ1(k=2, ••• , n) is an integer, a well-known
theorem by Liapunov guarantees the existence of a one-parameter family of
periodic solutions near the equilibrium (see [10] or section 16 of [12]). Recently
many researches have been devoted to the study of the existence of periodic
solutions in the cases when there exist integer-multiple eigenvalues of λλ among
h, " > λn, i, e., resonance cases. In our previous paper [7], we considered an
autonomous system possessing a nondegenerate integral under general resonance
cases and established an existence theorem for long periodic solutions near an
equilibrium. In this note, we restrict ourselves to the Hamiltonian system (1.1)
and consider the same general resonance situation as in [7]. We then assume
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that the eigenvalues ±λk of JS satisfy the following conditions for an integer

[A.I] ±λk — ±2σk(k=l, " , r) are r pairs of purely imaginary eigenvalues
all of which are integer multiples of λ1=iσ1 such that |<7i|<|<72|
< ••• < \σr\ and

for all integer valued vectors (ju •••, jr) with l ^ Σ ϊ = i l 7 * l ^ 4 .

[A.2] no +λk+r(k = \, •••, s) is an integer multiple of λu where s — n—r.

Under the assumptions [A.I] and [A.2], the Liapunov's theorem guarantees the
existence of a one-parameter family of periodic solutions near the equilibrium
whose primitive (minimal) periods are close to 2π/\σr\. The previous paper
dealt with the existence of long periodic solutions near the equilibrium, and we
know a sufficient condition for the existence of periodic solutions near the
origin with primitive periods near 2π/\σ1\ under [A.I] and [A.2], which are
"long" periodic solutions in contrast with the periodic solutions given by the
Liapunov's theorem. The aim of this note is to establish the existence of periodic
orbits whose primitive periods are close to 2π/1 σx | near the above Liapunov's
periodic family. Our sufficient condition for the existence of the long periodic
orbits will be stated in terms of the coefficients of the second and fourth order
terms of a normal form of the Hamiltonian function. It is stated in the next
section and the proof is given in section 3. K. R. Meyer and J. I. Palmore [8]
have obtained the similar result for Hamiltonian systems with two degrees of
freedom. To establish the existence of periodic orbits as that of fixed points
for some mapping (Poincare mapping), they obtained an area-preserving mapping.
On the other hand, we shall obtain an exact-canonical mapping in place of an
area-preserving one. To prove the existence of fixed points for it, we use the
argument due to G. D. Birkhoff ([3], [4]) and Poincare (see [1] Appendix 9).
Furthermore, a generalization of the theorem is given in section 4, where we
also discuss the connection between the results in this paper and our previous
one [7].

As for the existence of periodic orbits near a given periodic motion, G. D.
Birkhoff [3] studied a fixed point theorem, which is a generalization of Poincare's
geometric theorem (see [2]), and G. D. Birkhoff and D. C. Lewis [4] applied it
for establishing the existence of periodic motions of Hamiltonian systems near
a given periodic motion. This is called the Birkhoff-Lewis fixed point theorem.
It was improved by T. C. Harris [6], and its most generalized form is found in
J. Moser [9]. These are interpreted as fixed point theorems for a local sym-
plectic diffeomorphism near a fixed point, and their application to the Poincare
mapping around a given periodic motion guarantees the existence of infinitely
many periodic orbits with sufficiently long periods. The basic idea for proving
the existence of fixed (periodic) points is due to G. D. Birkhoff, whose argument
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is originally due to Poincare's one (see [1] Appendix). It is the reduction of
the desired fixed points to critical points for a certain function. Our way of
research depends on the similar argument, and we consider the Poincare map-
pings around the periodic orbits given by the Liapunov's theorem. But we
specialize the discussion to the resonance situation defined by [A.I] and [A.2],
and establish the existence of long periodic orbits in the above sense, not
"sufficiently long" periodic orbits. In the proof, a stretching transformation will
play an important role.

I would like to express my sincere gratitude to Professor T. Nishimoto and
Professor Y. Hirasawa for their constant encouragement and valuable advices.
I would like to thank Dr. H. Yamada for several helpful discussions and valuable
comments.

2. Statement.

In order to formulate our result, we have to prepare a normal form of the
Hamiltonian function. This is presented by (2.1) in the following lemma, in
which < , •> denotes the usual scalar product.

LEMMA 1. Consider the Hamiltonian system (1.1) near the origin. Let S be
the Hessian matrix of H(x, y) at the origin. Assume that the eigenvalues of JS
satisfy [A.I] and [A.2]. Then there exists a real analytic canonical transforma-
tion of variables

(x, y) — > (w, ξ, v, η) = (uu ••• , ur, ξlf ••• , ζs, vu ••• vr, ηu ••• , Ύ]s)

such that the Hamiltonian function H—H(x, y) becomes

(2.1) H= Σ σkτk+~ ± gklτkτι+^<Bζt O+K(u, v, ξ, η), τ * = - ^ f ^ - ,

where (qkι) is a real rXr symmetric matrix and B is a real 2sX2s symmetric
matrix, and K(u, v, ξ, η) is a smooth function near the origin such that

K{u, v, ζ\ η*) = O{{\w\ + \ζ\γ).

Here w;(resp. ζ) is a column vector combined with u and ^(resp. ξ and η), and
f2(resp. η2) is a column vector with entries £|(resp. r\\\ k = l, ••• , s).

The transformation is said to be canonical (or symplectic) if it preserves
the 2-form Σk=idXkΛdyk, which implies the above transformation satisfies

(2.2) Σ dxkΛdyk= Σ dukΛdvk+ Σ dξkΛdηk.
k=l k=l * = 1

The system (1.1) is transformed into the Hamiltonian system defined by the
Hamiltonian function (2.1), which can be written in the vector form
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(2.3)

with

dw τ dH
— Jrdt dw '

o /,
-Iv 0

dt

dζ __ dH
-js κ

' = r , s),

where dH/dw and dH/dζ are the vectors of first-order derivatives of H(w, ζ)
given by (2.1), and Iv is the vXι> identity matrix.

The normal form (2.1) is used already by S. M. Graff [5] in a similar situa-
tion to [A.I] and [A.2]. The proof of this lemma is done by defining the
desired canonical transformation by a generating function, which is determined
by comparison of coefficients. However this can be done by following the
argument in the Appendix of [5], and so we omit the proof of the lemma.

To state our result, we introduce an ( r + l ) X ( r + l ) matrix

(2.4) P=
(Qki)

tfi

σr

Or 0.

Further let us introduce rXr matrices

(2.5)

'qn -"

lqrl ••• σr
' qrV

whose determinant is equal to the cofactor of the element pr+i,k — ok in the
matix P. Then our result is stated as follows:

THEOREM A. Consider the Hamiltoman system (1.1) near the origin. Let the
eigenvalues of JS satisfy [A.I] and [A.2]. Assume in the normal form (2.1) that

(2.6) (σr\P\)-\Qk\<0

where \ | denotes the determinant of the matrix. Then, on each energy surface
H=σrε

2 with sufficiently small ε > 0 , there exist at least r periodic orbits for (1.1)
with primitive periods near 2τr/|<7i| in a O(ε)-neighborhood of the periodic orbit
belonging to the Liapunov's periodic family whose primitive period is close to
2π/\σr\.

3. Proof.

We will give the proof of the theorem in several steps.
i) The stretching transformation
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By Lemma 1, we may begin with the Hamiltonian system (2.3) with (2.1).
If we introduce a stretching transformation

(3.1) w—>εw, ζ — > ε 2 ζ ,

with a small positive parameter ε, then the Hamiltonian function (2.1) becomes

H(ew, ε%)=ε*H(w,ζ, ε),

(3.2)
εz * £*

k=i Z k,ι-i Z

and the Hamiltonian system (2.3) is transformed into

q dw _ T dH dζ __ _ dH
{ό'ό) ~dΓ~Jr~duT' ~dT~£ Js dζ '

The 2-form (2.2) is taken into

(3.4) ε2 Σ dukΛdvk + ε* Σ dζkΛdηk.
k=l k=l

We will observe the Liapunov's periodic family under this stretching transforma-
tion.

LEMMA 2. Consider the system (2.3) with (2.1) near the origin. Assume that
the eigenvalues of the coefficient matrix of the linear terms of the vector field of
(2.3) satisfy [A.I] and [A.2]. Then there exists a family of periodic solutions
depending on a small parameter ε>0, with ε=0 corresponding to the origin, and
whose primitive period is 2π/\ σr\ +O(ε2). Each periodic orbit belonging to this
periodic family intersects transversally a submanifold Σ of codimension 1 defined
by

(3.5) Σ : ^ r = 0 , ur>0,

and its intersection with Σ zs given by

(ur=VYε, vr=0,
(3.6)

U O( 2 ) O( ( l r - l ) , ζ - O ( ε 3 ) .

Remarks. ( i ) The periodic family whose existence is guaranteed in this
lemma is just the Liapunov's periodic family.

(ii) In (3.6), the relation u r =V!Γε is obtained by adjusting the ur such that
τΎ—ε in Σ> and then it is possible to choose the parameter ε so that ur—O(ε)
in general in place of Mr=V~2~ε.

(iii) By (3.6), the energy surface where exists each periodic orbit belonging
to this Liapunov's periodic family is given by the form

(3.7) H=σrε
2+O(ε').
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This shows that the energy surface H=σrh, with sufficiently small h>ϋ, con-
tains exactly one periodic orbit belonging to the Liapunov's periodic family.

(iv) The parameter ε can be considered as the stretching parameter in (3.1).

Then, after introducing the stretching transformation (3.1), we have

(3.8) {
[uk = O(ε) vk = O(e) (jfe = l, ••• , r - 1 ) , ζ = O ( e ) .

Proof. This lemma is interpreted as the Liapunov's theorem for the system
(2.3) with the Hamiltonian function of the special form (2.1), and then it is the
special relation (3.6) that we wish to show. The proof is done by using the
argument introduced by D. S. Schmidt [10].

Instead of (2.3), we consider the one-parameter system

Q. dw dH dζ dH
(3.9) = ( / + A l / ) = ( / + A £ / )dt ~KJr^±r) dw ' at - ^ " / " " 9ζ >

where μ is a real parameter. Since H(w, ζ) is an integral for (2.3), there exist
no periodic solution with μΦO for (3.9) such that the gradient vector of H(w, ζ)
does not vanish identically along it. For this, see [10] (or refer to Lemma 4
in [7]).

Introducing a stretching transformation (3.1) together with a stretching of
the parameter μ, μ—>εμ, the transformed system reads

— j~=L{μ, ε)wr+O(ε2), —jr- — i
dt dt

where

0 σr] \σr

L(μ, e) =
l-σr Oj LO

and z is the column vector obtained by excluding ur and vr from (u, v, ξ, η),
and M is the (2n—2)X(2n—2) constant matrix whose eigenvalues are not in-
teger multiples of tσr. In our search for periodic solutions with period T near
2π/1σrI, we are led to the periodicity condition

wr(T)-wM={exp(LT)-I}wr(0)+O(ε2)=0,

z(T)-zφ)= {exp(MT)-/}z(0) + O(ε) = 0.

Without loss of generality, we may assume σr>0 in the following. By setting
T=27Γί7r1(l+ε^) with a new parameter δ and restricting ourselves to the initial
condition wr(0)=V~2"> iv(0)=0, this periodicity condition leads to the following
so called "bifurcation equations"

~ •-[-'.]+ O(e)=0,
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This can be considered as the implicit system for μ, δ, z(0). For ε=0 this
system has a unique solution μ=δ=0 and z(0)—0. Since the determinant of the
Jacobian matrix d{Γlt Γ2)/d(μ, δ} z(0)) does not vanish at this point, the bifurca-
tion equations can be solved for μ, δ, z(0) as functions of sufficiently small ε.

Thus we have determined the initial values urφ), vr(0) and z(0) depending
on the parameter ε, which gives a family of periodic solutions for (3.10), i. e.,
for (3.9). Obviously each periodic orbit belonging to this family intersects Σ
transversally at a point satisfying (3.6), and its primitive period is 2π/σr-\-O(ε2).
Indeed, we have evidently dH/durφ0 at the intersection point of each periodic
orbit Λvith Σ This also implies that μ=0 along these periodic solutions. There-
fore this defines our desired periodic family. Q. E. D.

ii) The Poincare mappings associated to the Liapunov's periodic family.
We will investigate the Poincare mapping in the coordinates after introduc-

ing the stretching transformation (3.1). We note that each periodic orbit given
in Lemma 2 lies on a energy surface (3.7), which corresponds to //=0v+O(ε2) = /i
with ε fixed. We now define a (2n—2)-dimensional manifold Σε by Σε = Σ Π
{H=h}. The points in Σε are parametrized by the 2π—2 variables ulf ••• , ur-lf

Vι, -' , Vr-i and ζ, with vr=0 and ur being determined implicitly from the rela-
tion //=/i = σ r+O(ε2). Then, in the coordinates after introducing the stretching
transformation (3.1), we can define the Poincare mapping φε near each periodic
orbit given in Lemma 2 by following the solution of (3.3) from a point in Σε
with increasing t to its next intersection with Σε

In order to obtain this mapping, we first note that the system (3.3) can be
written in the form

duk

(3.11) - ^ * - (

^ , C=J,B.

Since dτk/dt=O(εs), by integrating this system we have

uk(f) = uk cos(/Φk)+υk s'm(tΦk

vk(t) = -uksin(fΦk)+vk

ζ(0={exp(fC)}C+O(ε),

where we used (u, v, ζ) and τL in place of (w(0), v(0), ζ(0)) and τ^O) respectively.
The time when this solution intersects Σε first again is regarded as a function
of these initial values u, v, ζ and ε. It is given by the form
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, p=(-2π/σ*)±Qriτι.
1=1σr 1=1

Furthermore, by the relation H—h — σr+O(ε2) we have

( / Σ Λ H O ( 2 ) l Σ(3.12) r r = ( Σ , H ( )

which eliminates ur with vr=0 in Σε Therefore the Poincare mapping φε: (u, v, ζ)
-+(u(1), vσ\ ζ c υ )=(n(T), v(T), ζ(T)) is given by the following form:

wΓ = w* cos ? ^ + ^ sin Ψ

(3.13) vίυ = -M* sin 2^+z;* cos

where

(3.14)

Here the intersection of each periodic orbit given in Lemma 2 with Σε cor-
responds to the fixed point for this mapping. By the remark (iv) to Lemma 2,
the transformation which takes each fixed point into the origin is of the form

uh—-+uk + O ( ε ) , vk—

We can easily see that the Poincare mapping φε does not change its form (3.13)
with (3.14) under this transformation. Hence the mapping (3.13) can be con-
sidered to be defined in a suitably large neighborhood of the origin with suffi-
ciently small ε>0, and to have the origin as a fixed point for any ε>0. In
what follows, we call this mapping φε.

iii) Reduction to the (r—1)-dimensional ton.
Now we will seek for periodic points for the mapping φε. If we consider

this mapping φε in the original coordinates, which is given by

(3.15) εuk—>εuί1\ εvk—> εvP (k = l, ••• , r - 1 ) , ε 2 ζ — > s2ζcl> ,

then it is well known that this mapping (3.15) is exact-canonical. This implies
that for any closed curve γ in Σ* the integral

(3.16) ε2f Σ (uhdvk-vkduk) + 6*[ Σ (ξkdηk-ηkdξk)
Jr k=i Jγ k=i

is invariant under the mapping φε.
We consider the p-th iterated φip^ of φε, where p—\σr/σ1\. Our aim is to

find fixed points for φ(

ε

p\ and it will be accomplished in two steps. The first
step is to restrict ourselves to seeking fixed points for φίp:> on an (r—l)-torus.
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To this end, we first introduce the new coordinates (τk, θ k) in place of {uk, vk)
by

with ζ=(?i, •••, ξs, Ύ]ι, •••, 7]s) unchanged. Then the p-th iterated φ^ of φε is
transformed into

τ, 0, ε) + O(ε3),(3.17)

We will solve the In—r— 1 relations θip) = θ*(mod 2π k = l, ••• ,
for ri, •••, τ r_i and ζ as an implicit system. Noting that

σr

it suffices to solve the following 2n—r— 1 equations:

r-1

1 = 1

(3.19) Γ=[exp{(2τr/σi)C} - / ] ζ + O ( ε ) = 0 .

For ε=0, (3.19) is satisfied with ζ = 0 and (3.18) leads to the linear equations for

If |j8*i| ^ 0 , by the Cramer's formula we have

— 1

\βk
= l, ••• , r—Y),

where βtk denotes the cofactor of the elements βίk in the (r—l)x(r—1) matrix
(βik). Here we obtain the identities

(3.20) \p\=-σ*\βkι

from equivalent relations

r-1

r 1=1

hi) 0 •

• 0 <7r

0
. Or OJ

0

^ 2 i ••• 0 ••• qZ7

qn" 0 qrΊ

G\ Or •• (7r

σ2

(^)
'βll-'CL^-βiy

•• α f ••• / 5 f f .

: 0 σr

0
. σr 0.

where r—r—l. Hence, it follows from (3.20) together with (3.12) that
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(3.21) τk = -σr^->0 (k = l, ••• , r)

under the assumption (2.6). Moreover, the Jacobian with respect to τ1} •••, τr-x

and ζ does not vanish on the (r—l)-torus given by (3.21) and ζ = 0 under the
assumption (2.6) with [A.2]. Therefore the implicit system of equations (3.18)
and (3.19) can be solved for τk>0 (k = l, •••, r—1) and ζ as functions of Θu ••• ,
θr-1 and ε with ε=0 corresponding to any point on this (r—l)-torus given by
(3.21) and ζ=0. For each ε>0, this solution defines an (r—l)-torus Λε in Σε
given by

(3.22) Λ8= {τk = τk(θ, ε), k = l, - , r - 1 , ζ=ζ(0, e) (0 = (0 l f - , θ^))

Thus the existence of fixed points for 0ε

(p) in Σε is reduced to the existence of
points θ on Λε where we have τ[v^—τk{k — \, ••• , r—1). Finally we note that
the fixed points define our desired periodic orbits with primitive periods near
2πl\σx\ since there exist no fixed point for φ(

ε

m} (in —I, ••• , p — ϊ) on the torus Λε.
iv) The existence of fixed points for φ(

ε

p^ on the torus Λε.
Finally we discuss the existence of fixed points for 0ε

(p) on the (r—l)-torus
Λε, namely that of points θ on Λε such that τ{

k

v')=τk (k = l, ••• , r—1). Since
not only the integral (3.16) but also the second integral of (3.16) is invariant
under the mapping φ(

ε

p:> restricted to Λε> it follows that for any closed curve γ
on Λε,

r r-i
= 2 \ ~Σ

Jrk=i
\ Σ

is invariant under the mapping φε

p\ In other words, we have

Jr k=i

for any closed curve γ on Λε. Here, noting that dθip:> = dθk on Λε since θip:> =
θk {k — 1, ••• , r—1), we have

r-l

J r jfe=

for any closed curve y on /lε. Hence the integral

is independent of the choice of the path and therefore defines a smooth func-
tion on the torus with period 2π in θlf ••• , θr-\> Further this function F(θ)~
F(θ, ε) satisfies

dF
ήv' (* 1 l)
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Thus the existence of our desired fixed points is reduced to the existence of
critical points of F(θ) on the torus Λε. As is well known, a smooth function
on an 7^-dimensional torus has at least 2m critical points, counting multiplicities,
of which at least m+1 are geometrically distinct (see e.g. [11]). Therefore the
function F(θ) has at least r geometrically distinct critical points on the torus
Λε. Hence we have proved that there exist at least r geometrically distinct
fixed points on this torus, which provides our desired periodic orbits. The proof
of the theorem is now completed. Q. E. D.

4. Remarks.

In the preceding proof, it was essential to obtain a one-parameter family of
canonical mappings of the form (3.13) with (3.14) near the Liapunov's periodic
family with primitive periods near 2π/\σr\. To this end, Lemma 2 is important.
However, if some eigenvalue lj—ισ3 0 = 2 , ••• , r—1) other than λr satisfies the
non-resonance condition, i.e., none of the quotients λk/λj (k — l, ,r,kφj)\$ an
integer, the same assertion as in Lemma 2 holds for the Liapunov's periodic
family corresponding to this eigenvalue λ}. Then we shall obtain a one-para-
meter family of Poincare mappings of the same form as (3.13) with (3.14), and
each of them can be considered to be defined in a neighborhood of the origin,
which is a fixed point corresponding to the Liapunov's periodic orbit with
primitive period near 2π/ \σ3\. In the same way as in the preceding proof, we
can discuss the existence of fixed points for the p-ίh iterated φi^ of these
mappings φε with ρ = σj/σlf which correspond to the periodic orbits whose
primitive periods are close to 2π/\σ1\. Hence we shall have the same assertion
as in theorem A, in other words, we shall have another sufficient condition for
the existence of periodic orbits with primitive periods near 2π/\σ1\ under [A.I]
and [A.2]. Indeed, we can have more general assertion as follows:

Let us impose the following conditions on the eigenvalues ±λk (k = l, ••• , n)
oίJS;

[B.I] ±.λu — ±ισk (k = l, ••• , r) are r pairs of eigenvalues all of which are
integer multiples of a purely imaginary number λo=ισo (σo>O) such that

, •••, | < 7 r / < 7 o | ) =

and

for all integer valued vectors (j1} •••, jr) with l ^ Σ L i U * ! =4. Here
{mu m2, ••• , mr) stands for the greatest common measure among the
r positive integers mk=\σk/cro\(k — l, ••• , r).

[B.2] no ±λk+r(k = l, •••, s) is an integer multiple of λ0, where s — n—r.

Then we have the Lemma 1 under [B.I] and [B.2] instead of [A.I] and [A.2],
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and we can prove

THEOREM B. Consider the Hamiltoman system (1.1) near the origin. Let the
eigenvalues of JS satisfy [B.I] and [B.2], and suppose that λj(X^j^r) satisfies
the non-resonance condition, i.e., none of the quotients λk/λj(k = l, ••• , r. kφj) is
an integer. Assume in the normal form (2.1) that

(4.1) (σj\P\)'\Qk\<0 (fc = l, . . . , r ) .

Then, on each energy surface H—σjS2 with sufficiently small ε>0, there exist at
least r periodic orbits for (1.1) with primitive periods near 2π/σ0 in a O(e)-
neighborhood of the periodic orbit belonging to the Liapunov's periodic family
whose primitive period is close to 2π/ \σj\.

The proof of this theorem is exactly the same as that of theorem A, and
then we omit the proof. We note here that theorem B includes theorem A as
a special case when λo=λ1 and λj—λr.

We finally remark the connection of the above result with that of [7],
The periodic orbits whose existence is guaranteed by theorems A and B are
near the equilibrium. We have already obtained a sufficient condition for the
existence of periodic orbits near the equilibrium whose primitive periods are
close to 2π/\σλ\ under [A.I] and [A.2] (see (3.2) in [7]). It is given in terms
of the normal form (2.1) by

(4.2) qkι —qnΦΰ (k=2, - , r ) .

If none of the r—1 relations in (4.2) is satisfied, i.e., qki—Gk/σi qn—ΰ (& =
2, •••, r), then we have \Qk\—§ (k=2, •••, r), that is, the condition (2.6) is not
satisfied. Therefore we see that the condition (2.6) includes (4.2) especially
when r=2. However, when r ^ 3 , the conditions (2.6) and (4.2) are independent.
In fact, for example, let us consider the case when n—r—3 in [A.I] and [A.2],
and take the Hamiltonian function H(u, v) of the normal form (2.1) such that

qn~q22=q3z — l, Qii=o%lθ\> qsi — p>0, #32=0

together with <7i>0, <?2<0 and σs>0. Here we note that qui—qik and take
p>0 suitably small. Then we have | P | > 0 a n d \Qk\<0 (k = l, 2, 3). There-
fore the condition (2.6) is satisfied, but (4.2) is not satisfied. Conversely, we can
also make examples where (4.2) is satisfied but (2.6) is not.
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