A CHARACTERIZATION OF A COMPLEX PROJECTIVE SPACE BY THE SPECTRUM

By Shukichi Tanno

0 . Introduction

Let (M, g) be a compact m-dimensional Riemannian manifold and (S^{m}, g_{0}) be an m-sphere of constant curvature 1 . We denote the spectrum of the Laplacian acting on functions on (M, g) by $\operatorname{Spec}(M, g)$. If $m \leqq 6, \operatorname{Spec}(M, g)=\operatorname{Spec}\left(S^{m}, g_{0}\right)$ implies that (M, g) is isometric to (S^{m}, g_{0}) (Berger [1], Tanno [8]). For $m \geqq 7$ it is an open question if $\left(S^{m}, g_{0}\right)$ is characterized by the spectrum. In [9] we proved the following.

Theorem A (Tanno [9]). Assume that $\operatorname{Spec}(M, g)=\operatorname{Spec}\left(S^{m}, g_{0}\right)$. If g is sufficiently close to constant curvature metric, then (M, g) is isometric to (S^{m}, g_{0}).

In this paper we give the Kähler version of Theorem A. Let (M, J, g) be a compact Kählerian manifold of dimension $m=2 n$, and ($C P^{n}, J_{0}, g_{0}$) be a complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 4. Then, we get the following. (Cf. Proposition 2.1.)

Theorem B. Assume that $\operatorname{Spec}(M, J, g)=\operatorname{Spec}\left(C P^{n}, J_{0}, g_{0}\right)$. If g is sufficiently close to constant holomorphic sectional curvature metric, then (M, J, g) is holomorphically isometric to ($C P^{n}, J_{0}, g_{0}$).

As for isospectral deformations of flat metrics, see [4], [5], and for inverse spectral results for negatively curved manifolds, see [2], [3].

1. Preliminaries

Let $\left(M, J, g\right.$) be a Kählerian manifold, where $J=\left(J_{j}^{i}\right)$ denotes the complex structure tensor and $g=\left(g_{\imath j}\right)$ a Kähler metric. By $R=\left(R_{j k l}^{2}\right), \rho=\left(R_{j l}\right)$ and S we denote the Riemannian curvature tensor, the Ricci curvature tensor and the scalar curvature of (M, J, g), respectively. We put

$$
R_{\imath \jmath}^{*}=R_{\imath r} J_{\jmath}^{r} .
$$

Received December 5, 1980

Then we have the following classical relations:

$$
\begin{array}{ll}
2 R_{\imath \jmath}^{*}=R_{\imath \jmath r s} J^{r s}=2 R_{\imath r \jmath s} J^{r s}, \\
R_{\imath \jmath k l}=J_{\imath}^{r} J_{\jmath}^{s} R_{r s k l}, & J_{r}^{i} R_{\jmath k l}^{r}=J_{j}^{r} R_{r k l}^{\imath}, \\
R_{r s} J_{\imath}^{r} J_{\jmath}^{s}=R_{\imath \jmath}, & R_{r s}^{*} J_{\imath}^{r} J_{\jmath}^{s}=R_{\imath \jmath}^{*}, \\
R_{\imath \jmath}^{*} J^{i \jmath}=S, & R_{\imath \jmath}^{*} R^{* \imath \jmath}=R_{\imath j} R^{\imath \jmath} .
\end{array}
$$

The Bochner curvature tensor $B=\left(B_{j k l}^{2}\right)$ is by definition

$$
\begin{aligned}
B_{\imath j k l}= & R_{2 j k l}-\left(g_{i k} R_{\jmath l}-g_{i l} R_{j k}+R_{\imath k} g_{j l}-R_{i l} g_{\jmath k}+J_{\imath k} R_{j l}^{*}-J_{i l} R_{j k}^{*}\right. \\
& \left.+R_{i k}^{*} J_{j l}-R_{i l}^{*} J_{j k}+2 R_{\imath \jmath}^{*} J_{k l}+2 J_{\imath j} R_{k l}^{*}\right) /(m+4) \\
& +S\left(g_{\imath k} g_{j l}-g_{i l} g_{j k}+J_{\imath k} J_{j l}-J_{i l} J_{j k}+2 J_{\imath \jmath} J_{k l}\right) /(m+2)(m+4),
\end{aligned}
$$

where $m=2 n=\operatorname{dim} M$. Easily we get

$$
\begin{aligned}
& g^{\imath k} B_{\imath j k l}=0, \quad J^{k l} B_{\imath j k l}=0, \\
& J^{i k} B_{\imath j k l}=0 .
\end{aligned}
$$

We use the following notations:

$$
\begin{aligned}
& (P, Q)=P_{\imath \jmath k l} Q^{\imath j k l}, \quad|P|^{2}=(P, P), \\
& (P, Q, T)=P^{\imath \jmath}{ }_{k l} Q^{k l}{ }_{r s} T^{r s}{ }_{\imath \jmath}, \\
& (U ; Q, T)=U^{r s} Q_{r j k l} T_{s}{ }^{j k l}, \\
& (U ; V ; T)=U^{i k} V^{j l} T_{\imath j k l}, \\
& (U V W)=U_{j}^{i} V^{\jmath}{ }_{k} W^{k}{ }_{\imath},
\end{aligned}
$$

where P, Q, and T are tensor fields of type $(1,3)$; and U, V, and W are tensor fields of type (1,1).

In the following calculations the methods are similar to ones in [9]. We obtain
(1.1) $\quad(R, R, R)=(R, B, B)+8(\rho ; R, B) /(n+2)+8(\rho ; \rho ; B) /(n+2)$

$$
\begin{aligned}
& -2 S(R, B) /(n+1)(n+2)+24(\rho \rho \rho) /(n+2)^{2} \\
& +4(n+6)(\rho ; \rho ; R) /(n+2)^{2}+2(n-9) S(\rho, \rho) /(n+1)(n+2)^{2} \\
& -(n-1) S^{3} /(n+1)^{2}(n+2)^{2},
\end{aligned}
$$

$$
\begin{equation*}
(\rho ; R, B)=(\rho ; B, B)+4(\rho ; \rho ; B) /(n+2), \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
(\rho ; R, R)= & (\rho ; R, B)+4[(\rho \rho \rho)+(\rho ; \rho ; R)] /(n+2) \tag{1.3}\\
& -2 S(\rho, \rho) /(n+1)(n+2), \\
& (R, B)=(B, B), \tag{1.4}\\
(\rho ; \rho ; R)= & (\rho ; \rho ; B)+(2 n+1) S(\rho, \rho) / 2(n+1)(n+2) \tag{1.5}\\
& +2(\rho \rho \rho) /(n+2)-S^{3} / 4(n+1)(n+2),
\end{align*}
$$

where we have used the following

$$
B_{\imath j k l} R^{* \imath \jmath} R^{* k l}=2(\rho ; \rho ; B)
$$

etc.
Next we assume that M is compact. Let λ_{2} be the \imath-th eigenvalue of the Laplacian acting on functions on (M, g) and let $\operatorname{Spec}(M, g)$ denote the spectrum of (M, g). Then the asymptotic expansion by Minakshisundaram-Pleijel is

$$
\sum e^{-\lambda_{i} t} \sim(4 \pi t)^{-n} \sum_{\beta=0} a_{\beta} t^{\beta} \quad(t \downarrow 0),
$$

where $a_{\beta}=a_{\beta}(M, g)$ and

$$
\begin{equation*}
a_{3}=(1 / 6!) \int_{M}\left[-Z+2 S|R|^{2} / 3-2 S|\rho|^{2} / 3+5 S^{3} / 9+A\right], \tag{1.8}
\end{equation*}
$$

where we have put

$$
\begin{aligned}
& Z=|\nabla R|^{2} / 9+26|\nabla \rho|^{2} / 63+142|\nabla S|^{2} / 63, \\
& A=8(R, R, R) / 21-8(\rho ; R, R) / 63+20(\rho ; \rho ; R) / 63-4(\rho \rho \rho) / 7 .
\end{aligned}
$$

We put

$$
G_{j l}=R_{j l}-S g_{j l} / 2 n .
$$

Then, $(g, G)=0$ and

$$
\begin{gather*}
|G|^{2}=|\rho|^{2}-S^{2} / 2 n, \tag{1.10}\\
(\rho ; \rho ; B)=(G ; G ; B), \tag{1.11}\\
(\rho \rho \rho)=(\rho G G)+S|G|^{2} / n+S^{3} / 4 n^{2} . \tag{1.12}
\end{gather*}
$$

Since

$$
|B|^{2}=|R|^{2}-8|\rho|^{2} /(n+2)+2 S^{2} /(n+1)(n+2),
$$

we obtain (cf. [8])

$$
\begin{align*}
2|R|^{2}-2|\rho|^{2}+5 S^{2}= & 2|B|^{2}+2(6-n)|G|^{2} /(n+2) \tag{1.13}\\
& +\left(5 n^{2}+4 n+3\right) S^{2} / n(n+1) .
\end{align*}
$$

By (1.1)~(1.5), we obtain

$$
\begin{align*}
A= & 8(R, B, B) / 21+8(22-n)(\rho ; B, B) / 63(n+2) \tag{1.14}\\
& -16 S|B|^{2} / 21(n+1)(n+2)+p \cdot(\rho ; \rho ; B) \\
& +q \cdot(\rho \rho \rho)+u S|\rho|^{2}+v S^{3},
\end{align*}
$$

where

$$
\begin{equation*}
p=4\left(5 n^{2}+76 n+420\right) / 63(n+2)^{2}, \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
u=2\left(10 n^{3}+109 n^{2}+196 n-252\right) / 63(n+1)(n+2)^{3} \tag{1.17}
\end{equation*}
$$

$$
\begin{align*}
q & =8\left(n^{2}+92 n+276\right) / 63(n+2)^{3}-4 / 7 \tag{1.16}\\
& =-4\left(9 n^{3}+52 n^{2}-76 n-480\right) / 63(n+2)^{3},
\end{align*}
$$

Lemma 1.1. a_{3} and A are expressed as follows:

$$
\begin{align*}
a_{3}= & (1 / 6!) \int_{M}\left[-Z+2 S|B|^{2} / 3+2(6-n) S|G|^{2} / 3(n+2)\right. \tag{1.19}\\
& \left.+(5 / 9-(n-3) / 3 n(n+1)) S^{3}+A\right], \\
A= & 8(R, B, B) / 21+8(22-n)(\rho ; B, B) / 63(n+2) \tag{1.20}\\
& -16 S|B|^{2} / 21(n+1)(n+2)+p \cdot(G ; G ; B) \\
& +q \cdot(\rho G G)+(q / n+u) S|G|^{2}+\left(q / 4 n^{2}+u / 2 n+v\right) S^{3} .
\end{align*}
$$

Proof. Eliminating $S\left(|R|^{2}-|\rho|^{2}\right)$ from (1.9) by (1.13) we get (1.19). By (1.10)~(1.12) and (1.14) we obtain (1.20).
Q.E.D.

A Kählerian manifold (M, J, g) is of constant holomorphic sectional curvature 4 , if and only if

$$
\begin{equation*}
R_{\imath j k l}=g_{\imath k} g_{j l}-g_{i l} g_{j k}+J_{\imath k} J_{j l}-J_{i l} J_{j k}+2 J_{\imath \jmath} J_{k l} . \tag{1.21}
\end{equation*}
$$

We define E as the space of all (0,4)-tensor fields T satisfying the following conditions;

$$
\begin{array}{ll}
T_{\imath j k l}=T_{k l \imath \jmath}, & T_{\imath j k l}=-T_{j i k l}, \\
T_{\imath j k l} J_{r}^{i} J_{s}^{j}=T_{r s k l}, & J^{i j} T_{\imath j k l}=0 .
\end{array}
$$

The Bochner curvature tensor B belongs to E.

If (M, J, g) is of constant holomorphic sectional curvature 4, then we obtain

$$
(R, T, T)=4(T, T)
$$

for any T in E. This follows from (1.21) and the definition of E.
A Kählerian manifold (M, J, g) is of constant holomorphic sectional curvature, if and only if $B=G=0$.

2. Kähler metrics close to constant holomorphic sectional curvature metric

Let $\left(C P^{n}, J_{0}, g_{0}\right)$ be a complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 4 . Then the scalar curvature S_{0} is equal to $4 n(n+1)$. We put $a_{\beta}^{0}=a_{\beta}\left(C P^{n}, J_{0}, g_{0}\right)$

Proposition 2.1. There exists a positive number $\delta=\delta(n)<1$ with the following property: Assume that a compact Kählerıan manıfold (M, J, g), $\operatorname{dim} M=2 n$, satisfies the following conditions;
(i) $(R, T, T) \leqq 4(1+\delta)(T, T) \quad$ for $T \in E$,
(ii) $2(n+1)(1-\delta)<$ Riccı curvature $<2(n+1)(1+\delta)$,
(iii) $|B|<\delta$,
(iv) $a_{\beta}=a_{\beta}^{0}, \quad \beta=0,1,2,3$.

Then (M, J, g) is holomorphically isometric to ($C P^{n}, J_{0}, g_{0}$).
If $n \leqq 6, \operatorname{Spec}(M, J, g)=\operatorname{Spec}\left(C P^{n}, J_{0}, g_{0}\right)$ implies that (M, J, g) is holomorphically isometric to ($C P^{n}, J_{0}, g_{0}$) (cf. [8]). Therefore in the proof of the Proposition 2.1 we can assume that $n \geqq 7$. We assume that (M, J, g) satisfies (i) \sim (iv) and show that δ can be determined so that (M, J, g) is holomorphically isometric to $\left(C P^{n}, J_{0}, g_{0}\right) . a_{0}=a_{0}^{0}$ means that $\operatorname{Vol}(M, J, g)=\operatorname{Vol}\left(C P^{n}, J_{0}, g_{0}\right)$. $a_{1}=a_{1}^{0}$ implies that $\int S=4 n(n+1) \operatorname{Vol}\left(C P^{n}, J_{0}, g_{0}\right)$.

Lemma 2.2. We have $S>0$ and

$$
\begin{equation*}
|S-4 n(n+1)|<4 n(n+1) \delta, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{M}\left[S^{2}-S_{0}^{2}\right] \geqq 0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
0 \leqq \int_{M}\left[S^{3}-S_{0}^{3}\right] \leqq(3+\delta) 4 n(n+1) \int_{M}\left[S^{2}-S_{0}^{2}\right] \tag{2.3}
\end{equation*}
$$

Proof. $S>0$ and (2.1) follow from (ii). As for (2.2) and (2.3) see Lemma 3 and Lemma 6 in [9].
Q.E.D.

By (1.13) and $a_{2}=a_{2}^{0}$ we get

$$
\begin{align*}
2(n-6) \int_{M}|G|^{2}= & 2(n+2) \int_{M}|B|^{2} \tag{2.4}\\
& +\left[(n+2)\left(5 n^{2}+4 n+3\right) / n(n+1)\right] \int_{M}\left[S^{2}-S_{0}^{2}\right] .
\end{align*}
$$

By Lemma 1.1 and $a_{3}=a_{3}^{0}$ we obtain

$$
\begin{aligned}
D:=\int_{M} & {[} \\
& -Z+8(R, B, B) / 21+8(22-n)(\rho ; B, B) / 63(n+2) \\
& +[2 / 3-16 / 21(n+1)(n+2)] S|B|^{2}+p \cdot(G ; G ; B) \\
& +q \cdot(\rho G G)+[q / n+u-2(n-6) / 3(n+2)] S|G|^{2} \\
& +\left[q / 4 n^{2}+u / 2 n+v+5 / 9-(n-3) / 3 n(n+1)\right]\left(S^{3}-S_{0}^{3}\right) \\
=0 . &
\end{aligned}
$$

Lemma 2.3. We put $\mu=1$ if $22>n$ and $\mu=-1$ if $22<n$. Then

$$
\begin{equation*}
(22-n)(\rho ; B, B) \leqq(22-n) 2(n+1)(1+\mu \delta)|B|^{2}, \tag{2.5}
\end{equation*}
$$

$$
\begin{gather*}
2 / 3-16 / 21(n+1)(n+2)>0, \quad p>0, \quad v<0, \tag{2.6}\\
q / n+u-2(n-6) / 3(n+2)<0, \tag{2.7}
\end{gather*}
$$

$$
\begin{gather*}
q / 4 n^{2}+u / 2 n+v+5 / 9-(n-3) / 3 n(n+1)>0 \tag{2.8}\\
q \cdot(\rho G G) \leqq 2 q(n+1)(1-\delta)|G|^{2} \tag{2.9}
\end{gather*}
$$

$$
\begin{equation*}
(G ; G ; B) \leqq \delta|G|^{2} . \tag{2.10}
\end{equation*}
$$

Proof. (2.5) follows from (ii). (2.6) is trivial. To prove (2.8) first we get

$$
\begin{equation*}
q / 4 n^{2}+u / 2 n+v=-4\left(n^{2}-2 n-15\right) / 63 n^{2}(n+1)^{2} \tag{2.11}
\end{equation*}
$$

Then (2.8) is clear. (2.9) follows from (ii). (2.10) follows from (iii) (cf. Lemma 7 in [9]).
Q.E.D.

Applying (i), (ii), Lemma 2.2 and Lemma 2.3 to D we get

$$
\begin{align*}
D \leqq \int_{M}[& -Z+32(1+\delta)|B|^{2} / 21 \tag{2.12}\\
& +16(22-n)(n+1)(1+\mu \delta)|B|^{2} / 63(n+2) \\
& +[2 / 3-16 / 21(n+1)(n+2)] 4 n(n+1)(1+\delta)|B|^{2} \\
& +p \delta|G|^{2}+2(n+1)(1-\delta) q|G|^{2} \\
& +[q / n+u-2(n-6) / 3(n+2)] 4 n(n+1)(1-\delta)|G|^{2} \\
& \left.+\left[q / 4 n^{2}+u / 2 n+v+5 / 9-(n-3) / 3 n(n+1)\right](3+\delta) 4 n(n+1)\left(S^{2}-S_{0}^{2}\right)\right] .
\end{align*}
$$

Next applying (2.4) to $|G|^{2}$ in (2.12) we obtain

$$
\begin{equation*}
D \leqq \int_{M}\left[-Z-(U-P \delta)|B|^{2}-(V-Q \delta)\left(S^{2}-S_{0}^{2}\right)\right], \tag{2.13}
\end{equation*}
$$

where we have put

$$
\begin{aligned}
U= & -32 / 21-16(22-n)(n+1) / 63(n+2)+64 n / 21(n+2) \\
& -2(n+1)(n+2)(3 q+2 n u) /(n-6), \\
P= & 32 / 21+16(22-n)(n+1) \mu / 63(n+2) \\
& +[4 / 3-16 / 21(n+1)(n+2)] 4 n(n+1) \\
& +(n+1)(n+2)(p /(n+1)-6 q-4 n u) /(n-6), \\
V= & -12 n(n+1)\left[q / 4 n^{2}+u / 2 n+v+5 / 9-(n-3) / 3 n(n+1)\right] \\
& -(n+2)\left(5 n^{2}+4 n+3\right)[3 q+2 n u-4 n(n-6) / 3(n+2)] / n(n-6), \\
Q= & 4 n(n+1)\left[q / 4 n^{2}+u / 2 n+v+5 / 9-(n-3) / 3 n(n+1)\right] \\
& +(n+2)\left(5 n^{2}+4 n+3\right)[p /(n+1)-6 q-4 n u+8 n(n-6) / 3(n+2)] / 2 n(n-6) .
\end{aligned}
$$

By calculations we get

$$
\begin{gather*}
3 q+2 n u=-\left(68 n^{2}+24 n-1440\right) / 63(n+1)(n+2) \tag{2.14}\\
U=2\left(76 n^{4}+144 n^{3}-960 n^{2}-3136 n-2496\right) / 63(n+2)^{2}(n-6) . \tag{2.15}
\end{gather*}
$$

Therefore we see that U is positive. Since $q / 4 n^{2}+u / 2 n+v$ is negative by (2.11) and $3 q+2 n u$ is negative by (2.14), we get

$$
\begin{aligned}
V & >-12 n(n+1)[5 / 9-(n-3) / 3 n(n+1)]+4\left(5 n^{2}+4 n+3\right) / 3 \\
& =8(n-3) / 3 .
\end{aligned}
$$

Therefore V is also positive. Since P and Q are positive, we can define δ by

$$
\begin{equation*}
\delta=\min (U / P, V / Q, 99 / 100) . \tag{2.16}
\end{equation*}
$$

Proof of Proposition 2.1. By the definition of δ, (2.13) shows that $Z=B=0$ and $S=S_{0}$. Furthermore (2.4) shows that $G=0$, and hence (M, J, g) is of constant holomorphic sectional curvature 4. So (M, J, g) is holomorphically isometric to ($\left.C P^{n}, J_{0}, g_{0}\right)$.
Q.E.D.

References

[1] M. Berger, Le spectre des variétés riemanniennes, Rev. Roum. Math. Pure Appl., 13 (1969), 915-931.
[2] V. Guillemin and D. Kazhdan, Some inverse spectraI results for negatively curved 2-manifolds, Topology, 19 (1980), 301-312.
[3] V. Guillemin and D. Kazhdan, Some inverse spectral results for negatıvely curved n-manifolds, Proc. Symp. Pure Math. 36 (1980), 135-180.
[4] R. Kuwabara, On isospectral deformations of Riemannian metrics, Compositio Math., 40 (1980), 319-324.
[5] R. Kuwabara, On the characterization of flat metrics by the spectrum, to appear.
[6] H. F. Mckean and I. M. Singer, Curvature and the eigenvalues of the Laplacian, Journ. Diff. Geom., 1 (1967), 43-69.
[7] T. SAKAI, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. Journ., 23 (1971), 589-603.
[8] S. Tanno, Eigenvalues of the Laplacıan of Riemannian manıfolds, Tôhoku Math. Journ., 25 (1973), 391-403.
[9] S. Tanno, A characterization of the canonical spheres by the spectrum, Math. Zeit., 175 (1980), 267-274.

Department of Mathematics
Tokyo Institute of Technology

