ON THE ALGEBRAIC STRUCTURES OF GRADED LIE ALGEBRAS OF SECOND ORDER

By Kenji Atsuyama

§0. Introduction.

In 1973, by using of generalized Jordan triple systems of second order (=Kantor systems), I.L. Kantor [4] has given the models of graded Lie algebras of second order with involutive automorphism τ . In this note, we shall prove the converse, that is, if τ is an automorphism of a Lie triple system in a graded Lie algebra of second order such that $\tau^2=1$ (resp. -1), it characterizes the Kantor (resp. Freudenthal) system. We also give a simple connection between the two kinds of triple systems.

§1. A characterization of Kantor and Freudenthal systems.

We consider a graded Lie algebra of second order

(1.1)
$$\begin{split} & \mathfrak{G} = \mathfrak{G}_{-2} \oplus \mathfrak{G}_{-1} \oplus \mathfrak{G}_0 \oplus \mathfrak{G}_1 \oplus \mathfrak{G}_2 \quad (\text{direct sum}) \\ & [\mathfrak{G}_i, \mathfrak{G}_j] \subset \mathfrak{G}_{i+j} \end{split}$$

over a field k of characteristic zero. Then the vector space $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ becomes a Lie triple system (L.t.s.) with a triple product [[X, Y], Z] where [,] is the Lie product of \mathfrak{G} and elements X, Y, Z are in $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ (cf. [7]). Let τ be an automorphism of the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ with respect to the triple product. Then τ is called an ε -structure on $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ ($\varepsilon = \pm 1$) if $\tau^2 = \varepsilon i d$ and $\tau(\mathfrak{G}_{\pm 1}) = \mathfrak{G}_{\pm 1}$.

Let V be a finite dimensional vector space over the field k. Then V is called a *Kantor* (resp. *Freudenthal*) system (cf. [4], [2], [8]) if V has a trilinear operation $\phi: V \times V \times V \rightarrow V$ such that

- 1) $[L(a, b), L(c, d)] = L(L(a, b)c, d) \varepsilon L(c, L(b, a)d),$
- 2) $K(K(a, b)c, d) = L(d, c)K(a, b) + \varepsilon K(a, b)L(c, d)$

for a, b, c, $d \in V$, where $L(a, b)c = \phi(a, b, c)$, K(a, b)c = L(a, c)b - L(b, c)a and $\varepsilon = 1$ (resp. -1).

This research was partially supported by the Scientific Research Grant of the Ministry of Education, 1979-D-464031.

Received November 20, 1980

KENJI ATSUYAMA

Now let \mathfrak{G} be a graded Lie algebra of second order which form is of (1.1) and let τ be an ε -structure on the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$. We denote by $\tau_{\pm 1}$ the ε -structure τ restricted to $\mathfrak{G}_{\pm 1}$, but, for simplicity, we sometimes use the same notation τ instead of $\tau_{\pm 1}$ unless the confusion does not occur. When we write an element $a + \tau(x)$ in $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ as the column vector, the Lie triple product $[[a + \tau(x), b + \tau(y)], c + \tau(z)]$ in $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ can be denoted by

(1.2)
$$\begin{bmatrix} \binom{a}{\tau(x)} \binom{b}{\tau(y)} \binom{c}{\tau(z)} \end{bmatrix} = \binom{K(a, b)z + L(a, y)c - L(b, x)c}{\varepsilon\tau(K(x, y)c + L(x, b)z - L(y, a)z)}$$

for a, b, c, x, y, $z \in \mathfrak{G}_{-1}$ where $L(a, b)c = [[a, \tau(b)], c]$ and $K(a, b)c = [[a, b], \tau(c)]$. Moreover, by using of 2×2 matrix forms and column vectors, the right side of (1.2) can be rewritten as the following form:

(1.3)
$$\begin{pmatrix} L(a, y) - L(b, x) & K(a, b)\tau^{-1} \\ \varepsilon\tau K(x, y) & -\varepsilon\tau (L(y, a) - L(x, b))\tau^{-1} \end{pmatrix} \begin{pmatrix} c \\ \tau(z) \end{pmatrix}$$

for a, b, c, x, y, $z \in \mathfrak{G}_{-1}$.

If the Lie algebra \mathfrak{G} is semi-simple, it is isomorphic to the standard imbedding (Lie algebra) of the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ (see [6], [7]).

Now, let V be any Kantor (resp. Freudenthal) system. Then the direct sum $\mathfrak{T}(V) = V \oplus V$ becomes a L.t.s. with an ε -structure τ by the trilinear multiplication of (1.2) where $\tau_{-1}=1$ and $\tau_1=\varepsilon$ with $\varepsilon=1$ (resp. -1). And, the standard imbedding (Lie algebra) $\mathfrak{L}(V)$ of the L.t.s. $\mathfrak{T}(V)$ has a structure of graded Lie algebra of second order (see [4], [8]). Then, we have the following.

THEOREM 1. Let \mathfrak{G} be a graded Lie algebra of second order which form is of (1.1). If the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ has a 1-structure (resp. -1-structure) τ , \mathfrak{G}_{-1} is a Kantor (resp. Freudenthal) system with respect to the trilinear operation $\phi(a, b, c)$ =[[$a, \tau(b)$], c] for $a, b, c \in \mathfrak{G}_{-1}$. Moreover, if \mathfrak{G} is semi-simple, it is isomorphic to the standard imbedding (Lie algebra) $\mathfrak{L}(\mathfrak{G}_{-1})$ of the L.t.s. $\mathfrak{T}(\mathfrak{G}_{-1})$.

Proof. Assume that the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ in \mathfrak{G} has an ε -structure τ . Then we show that \mathfrak{G}_{-1} is a Kantor or Freudenthal system with respect to the trilinear operation $\phi(a, b, c) (=L(a, b)c) = [[a, \tau(b)], c]$ corresponding to $\varepsilon = 1$ or -1 respectively. The adjoint representation ad of the Lie algebra \mathfrak{G} is defined usually by $\operatorname{ad}(x)y = [x, y]$ for $x, y \in \mathfrak{G}$.

First, for a, b, c, d, $e \in \mathfrak{G}_{-1}$, we have

$$[L(a, b), L(c, d)] = [ad[a, \tau(b)], ad[c, \tau(d)]]$$
$$= ad[[a, \tau(b)], [c, \tau(d)]]$$
$$= ad[[[a, \tau(b)], c], \tau(d)] + ad[c, [[a, \tau(b)], \tau(d)]]$$

by the Jacobi's identity. Since $[[a, \tau(b)], c] = L(a, b)c$ and $[[a, \tau(b)], \tau(d)] =$

226

 $-\varepsilon\tau L(b, a)d$, the operation ϕ satisfies the axiom 1) of the triple system. Secondly, again by the Jacobi's identity, it holds that $[[a, b], \tau(c)] = L(a, c)b - L(b, c)a$, i.e., the definition of K(a, b) in the Kantor or Freudenthal system coincides with the definition in the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ of (1.2). Then we can prove the axiom 2):

$$K(K(a, b)c, d)e = [[[[a, b], \tau(c)], d], \tau(e)]$$

$$= -[[[\tau(c), d], [a, b]], \tau(e)]$$

$$= -ad[[\tau(c), d], [a, b]]\tau(e)$$

$$= -[ad[\tau(c), d], ad[a, b]]\tau(e)$$

$$= -ad[\tau(c), d]ad[a, b]\tau(e) + ad[a, b]ad[\tau(c), d]\tau(e)$$

$$= L(d, c)K(a, b)e + \varepsilon K(a, b)L(c, d)e$$

where the second equality is proved by the Jacobi's identity and the relation $[[a, b], d] \in \mathfrak{G}_{-3} = \{0\}.$

Now, let \mathfrak{G}_{-1} be the Kantor (resp. Freudenthal) system with the product L(a, b)c which is obtained from \mathfrak{G} by the above method. Then the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ in \mathfrak{G} with the ε -structure τ is isomorphic to $\mathfrak{T}(\mathfrak{G}_{-1})$ by the mapping $a + \tau_{-1}(x) \rightarrow a + x$. Therefore, if we assume the semi-simplicity of \mathfrak{G} , the two Lie algebras \mathfrak{G} and $\mathfrak{L}(\mathfrak{G}_{-1})$ are isomorphic.

EXAMPLES. For the graded simple Lie algebra of second order with a 1-structure in $\mathfrak{G}_{-1} \oplus \mathfrak{G}_{1}$, we know the models constructed by Tits-Koecher [5] and I. L. Kantor [4]. However, the Tits-Koecher's models are of $\mathfrak{G}_{\pm 2} = \{0\}$. For -1-structure, there are the models by H. Freudenthal [2] and B. N. Allison [1].

Remark. Any automorphism τ of the L.t.s. $\mathfrak{G}_{-1} \oplus \mathfrak{G}_1$ can be canonically extended to an automorphism τ of the Lie algebra \mathfrak{G} . In fact, under the notation of (1.3), we can define the automorphism $\tau: \mathfrak{G} \to \mathfrak{G}$ by $\tau(D+E) = \tau D \tau^{-1}$ $+\tau(E)$ for $D+E \in (\mathfrak{G}_{-2} \oplus \mathfrak{G}_0 \oplus \mathfrak{G}_2) \oplus (\mathfrak{G}_{-1} \oplus \mathfrak{G}_1)$. Hence, any 1-structure τ can be extended to an involutive automorphism of \mathfrak{G} and -1-structure τ becomes an automorphism with $\tau^4=1$ where $\tau^2=1$ in $\mathfrak{G}_{-2} \oplus \mathfrak{G}_0 \oplus \mathfrak{G}_2$.

§ 2. Simplicity of $\mathfrak{L}(V)$.

Let V be a Kantor (resp. Freudenthal) system with a triple product L(a, b)csuch that $L(V, V)V \neq \{0\}$ and let $\mathfrak{L}(V)$ be the standard imbedding (Lie algebra) of the L.t.s. $\mathfrak{T}(V)$. Usually, V is said to be simple if V has no subspaces $\{W\}$ except $\{0\}$ and V such that $L(W, V)V \subset W$, $L(V, W)V \subset W$ and $L(V, V)W \subset W$.

PROPOSITION 2. If $\mathfrak{L}(V)$ is simple, V is simple. Conversely, if V is simple, $\mathfrak{L}(V)$ is semi-simple.

KENJI ATSUYAMA

Proof. Put $V = \mathfrak{G}_{-1}$. We assume that \mathfrak{A} is any ideal of \mathfrak{G}_{-1} . Then $\mathfrak{A} \oplus \tau(\mathfrak{A})$ is an ideal of the L.t.s. $\mathfrak{T}(\mathfrak{G}_{-1})$ where $\tau_{-1}=1$ and $\tau_1=\varepsilon$ with $\varepsilon=1$ (resp. -1). Since $\mathfrak{T}(\mathfrak{G}_{-1})$ is simple by the simplicity of $\mathfrak{L}(\mathfrak{G}_{-1})$, we have $\mathfrak{A} = \{0\}$ or \mathfrak{G}_{-1} . This means that \mathfrak{G}_{-1} is simple.

Conversely, we assume that \mathfrak{G}_{-1} is simple. For the L.t.s. $\mathfrak{T}=\mathfrak{T}(\mathfrak{G}_{-1})$ of $\mathfrak{L}(\mathfrak{G}_{-1})$, it always holds $\mathfrak{N}(\mathfrak{L}(\mathfrak{G}_{-1}))=\mathfrak{N}(\mathfrak{T})\oplus[\mathfrak{N}(\mathfrak{T}),\mathfrak{T}]$ where $\mathfrak{N}(\mathfrak{L}(\mathfrak{G}_{-1}))$ and $\mathfrak{N}(\mathfrak{T})$ are the radicals of $\mathfrak{L}(\mathfrak{G}_{-1})$ and $\mathfrak{T}(\mathfrak{G}_{-1})$ respectively (cf. [6]). Under the notation of (1.3), since the mapping $\theta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ of \mathfrak{T} makes the radical $\mathfrak{N}(\mathfrak{T})$ invariant and τ is an automorphism of \mathfrak{T} , there is an ideal \mathfrak{A} of \mathfrak{G}_{-1} such that $\mathfrak{N}(\mathfrak{T})=\mathfrak{A}\oplus\tau(\mathfrak{A})\subset\mathfrak{T}$. Because \mathfrak{G}_{-1} is simple, if we assume $\mathfrak{A}=\mathfrak{G}_{-1}$, we have $\mathfrak{L}(\mathfrak{G}_{-1},\mathfrak{G}_{-1})\mathfrak{G}_{-1}=\mathfrak{G}_{-1}$ and $\mathfrak{T}\subset\mathfrak{N}(\mathfrak{T})^{(n)}$ (=[$\mathfrak{T},\mathfrak{N}(\mathfrak{T})^{(n-1)},\mathfrak{N}(\mathfrak{T})^{(n-1)}$] where [,,] is the triple product of the L.t.s. \mathfrak{T} for any natural number n. But this contradicts $\mathfrak{G}_{-1} \neq \{0\}$.

§ 3. Isomorphisms of $\mathfrak{L}(V)$.

Two triple systems V_1 , V_2 , having triple products $L_1(a, b)c$, $L_2(x, y)z$ respectively, are weakly isomorphic if there are two one-to-one onto mappings $P, Q: V_1 \rightarrow V_2$ such that $PL_1(a, b)c = L_2(Pa, Qb)Pc$ and $QL_1(a, b)c = L_2(Qa, Pb)Qc$ for $a, b, c \in V_1$ where we use the notation Pa instead of P(a). Then we have $PK_1(a, b)c = K_2(Pa, Pb)Qc$ and $QK_1(a, b)c = K_2(Qa, Qb)Pc$ where $K_i(a, b)c =$ $L_i(a, c)b - L_i(b, c)a$ (i=1, 2).

PROPOSITION 3. Two standard imbedding (Lie algebra) $\mathfrak{L}(\mathfrak{G}_{-1})$ and $\mathfrak{L}(\mathfrak{G}'_{-1})$ are isomorphic (by an isomorphism preserving the grading) if and only if two triple systems \mathfrak{G}_{-1} and \mathfrak{G}'_{-1} are weakly isomorphic. If σ is a grade-preserving isomorphism of $\mathfrak{L}(\mathfrak{G}_{-1})$ to $\mathfrak{L}(\mathfrak{G}'_{-1})$, we can have $P = \sigma | \mathfrak{G}_{-1}$ (the restriction of σ to \mathfrak{G}_{-1}) and $Q = \tau'^{-1} \sigma \tau | \mathfrak{G}_{-1}$ where τ and τ' are ε -structures in $\mathfrak{T}(\mathfrak{G}_{-1})$ and $\mathfrak{T}(\mathfrak{G}'_{-1})$ respectively.

Proof. If \mathfrak{G}_{-1} and \mathfrak{G}'_{-1} are weakly isomorphic, there is an isomorphism $\sigma: \mathfrak{T}(\mathfrak{G}_{-1}) \to \mathfrak{T}(\mathfrak{G}'_{-1})$ with respect to the triple product of the L.t.s. which is defined by $\sigma(a+\tau(b))=Pa+\tau'(Qb)$ for $a, b\in\mathfrak{G}_{-1}$. And, this σ can be canonically extended to an isomorphism of the standard imbedding (Lie algebra) by the same method as the Remark of Theorem 1.

Conversely, let σ be a grade-preserving isomorphism of $\mathfrak{L}(\mathfrak{G}_{-1})$ to $\mathfrak{L}(\mathfrak{G}'_{-1})$. When we put $P = \sigma | \mathfrak{G}_{-1}$ and $Q = \tau'^{-1} \sigma \tau | \mathfrak{G}_{-1}$, we have $PL_1(a, b)c = \sigma[[a, \tau(b)], c] = [[\sigma(a), \sigma\tau(b)], \sigma(c)] = [[\sigma(a), \tau'\tau'^{-1}\sigma\tau(b)], \sigma(c)] = L_2(Pa, Qb)Pc$ for $a, b, c \in \mathfrak{G}_{-1}$. The other relation $QL_1(a, b)c = L_2(Qa, Pb)Qc$ can be proved similarly.

§4. A duality.

There is a simple connection between the Kantor systems and the Freudenthal systems.

THEOREM 4. Let V be a Kantor (resp. Freudenthal) system with a triple product L(a, b)c. If there exist an automorphism Φ of V, i.e., $\Phi(L(a, b)c) = L(\Phi(a), \Phi(b))\Phi(c)$ for a, b, $c \in V$, such that $\Phi^2 = -1$, V becomes a Freudenthal (resp. Kantor) system with respect to the new triple product $L(a, \Phi(b))c$ (resp. $-L(a, \Phi(b))c)$. This mapping Φ is also an automorphism for the new product.

EXAMPLE. Let $V (=\mathfrak{C})$ be the Cayley algebra over the complex numbers C. Then V is a Kantor system by the triple product $L(a, b)c = a(\bar{b}c) + c(\bar{b}a) - b(\bar{a}c)$ for $a, b, c \in V$, where - is the usual conjugation of V, and $\mathfrak{L}(V)$ is a simple Lie algebra of type F_4 . In this case, the right multiplication Φ is an automorphism for the triple product $a(\bar{b}c)$ in V where $\Phi(x)=xv$ for any $x \in V$ and some fixed $v \in V$ with tr(v)=0 and vv=-1. Therefore Φ is also an automorphism with respect to the product L(a, b)c and V becomes a Freudenthal system by the product $L(a, bv)c=a((\overline{bv})c)+c((\overline{bv})a)-(bv)(\bar{a}c)$ for $a, b, c \in V$ (cf. [3]).

References

- B. N. ALLISON, A construction of Lie algebras from J-ternary algebras, Amer. J. Math., 98 (1976), 285-294.
- [2] H. FREUDENTHAL, Beziehungen der E_7 und E_8 zur Oktavenebene. II, Indag. Math., 16 (1954), 363-368.
- [3] W. HEIN, A connection between Lie algebras of type F_4 and Cayley algebras, Indag. Math., 38 (1976), 419-425.
- [4] I.L. KANTOR, Models of exceptional Lie algebras, Soviet Math. Dokl., 14 (1973), 254-258.
- [5] M. KOECHER, Imbedding of Jordan algebras into Lie algebras. I, Amer. J. Math., 89 (1967), 787-816.
- [6] W.G. LISTER, A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72 (1952), 217-242.
- [7] O. Loos, Symmetric spaces I, Benjamin, New York, 1969.
- [8] K. YAMAGUTI, Remarks on characterizations of the points and symplecta in the metasympletic geometry, Mem. Gen. Ed., Kumamoto Univ., Ser. Nat. Sci., 11 (1976), 1-8.

Kumamoto Institute of Technology Ikeda, Kumamoto 860 Japan