AN EXTREMAL PROBLEM ASSOCIATED WITH THE SPREAD RELATION

By Hideharu Ueda

0. Introduction. The notion of spread was introduced and investigated by Edrei [6], [7], who also conjectured the spread relation. This relation has now been proved by Baernstein [2] whose remarkable analysis rests on the introduction of a new function $T^{*}(z)\left(z=r e^{2 \theta}\right)$, closely related to Nevanlinna characteristic $T(r, f)$.

Let f be meromorphic and nonconstant. Suppose $\delta(\infty, f)>0$. Then it is suggested by Nevanlinna's theory that $|f(z)|$ must be "large" on a substantial portion of each circle $|z|=r$ when r is large. The spread relation provides a quantitative form of this statement.

To state this relation we require some notations. Let f be a meromorphic function of finite lower order μ. Fix a sequence $\left\{r_{m}\right\}$ of Pólya peaks of order μ of $f(z)$. Let $\Lambda(r)$ be a positive function with $\Lambda(r)=o(T(r, f))(r \rightarrow \infty)$. Define the set of argument

$$
E_{\Lambda}(r)=\left\{\theta: \log \left|f\left(r e^{\imath \theta}\right)\right|>\Lambda(r)\right\},
$$

and let

$$
\sigma_{A}(\infty)=\frac{\lim _{m \rightarrow \infty}}{\operatorname{meas}} E_{\Lambda}\left(r_{m}\right) .
$$

Then the spread of ∞ is defined by

$$
\sigma(\infty)=\inf _{A} \sigma_{A}(\infty),
$$

where the "inf" is taken over all functions Λ satisfying $\Lambda(r)=o(T(r, f))$.
Spread relation:

$$
\begin{equation*}
\sigma(\infty) \geqq \min \left\{2 \pi, \frac{4}{\mu} \sin ^{-1} \sqrt{\frac{\delta(\infty, f)}{2}}\right\} . \tag{1}
\end{equation*}
$$

(This inequality is best possible.) This makes it possible to solve the deficiency problem for functions with $1 / 2<\mu \leqq 1$. (See [8].)

Baernstein's proof of the spread relation (1) is based on the properties of the function

$$
\begin{equation*}
T^{*}\left(r e^{2 \theta}\right)=m^{*}\left(r e^{2 \theta}\right)+N(r, f) \quad(r>0,0 \leqq \theta \leqq \pi), \tag{2}
\end{equation*}
$$

Received September 5, 1980
where

$$
m^{*}\left(r e^{\imath \theta}\right)=\sup _{E} \frac{1}{2 \pi} \int_{E} \log \left|f\left(r e^{\imath \varphi}\right)\right| d \varphi ;
$$

the "sup" is taken over all measurable sets E of measure $|E|=2 \theta$. Baernstein [2] showed that $T^{*}\left(r e^{2 \theta}\right)$ is a subharmonic function in $0<r<\infty, 0<\theta<\pi$.

In [9], Edrei and Fuchs introduced the notions of the hypotheses ES and the extremal spread.

Hypotheses ES. Let $f(z)$ be a meromorphic function of lower order μ $(0<\mu<\infty)$, and let $\left\{r_{m}\right\}$ be a sequence of Pólya peaks of order μ of $T(r, f)$. Assume that
(i) $\delta(\infty, f)>0$ and, if $0<\mu \leqq 1 / 2$, assume in addition that $\delta(\infty, f)<1-\cos \pi \mu$ holds;
(ii) the sequence $\left\{r_{m}\right\}$ satisfies for some Λ

$$
\lim _{m \rightarrow \infty} \operatorname{meas} E_{A}\left(r_{m}\right)=\frac{4}{\mu} \sin ^{-1} \sqrt{\frac{\delta(\infty, f)}{2}} \equiv 2 \beta .
$$

Extremal spread. If $f(z)$ satisfies the hypotheses ES, we say that it has extremal spread (of ∞).

Edrei and Fuchs [9], [10] considered all the meromorphic functions characterized by the hypotheses ES. One of their results is the following Theorem A.

Theorem A. Let $f(z)$ be meromorphic of lower order $\mu(0<\mu<\infty)$ and let $f(z)$ have extremal spread of ∞. Consider the intervals

$$
I_{m}(s)=\left\{r ; e^{-s} r_{m}<r \leqq e^{s} r_{m}\right\} \quad(s>0, m=1,2, \cdots)
$$

Then, for every $s>0$,

$$
\frac{T(r, f) / r^{\mu}}{T\left(r_{m}, f\right) / r_{m}^{\mu}} \rightarrow 1 \quad\left(r \in I_{m}(s)\right), \quad \frac{N(r, f)}{T(r, f)} \rightarrow \cos \beta \mu \quad\left(r \in \bigcup_{m=1}^{\infty} I_{m}(s)\right) .
$$

Further, there exists a sequence $\left\{\eta_{m}\right\}, \eta_{m} \rightarrow 0$, independent of r and θ, such that

$$
\left|T^{*}\left(r e^{2 \theta}\right)-T(r, f) \cos \mu(\beta-\theta)\right|<\eta_{m} T(r, f) \quad(0 \leqq \theta \leqq \beta),
$$

provided $r \in I_{m}(s)$.
Also they have satisfactorily determined the asymptotic behavior of $\log |f(z)|$ and of the arguments of almost all the zeros and poles in the annuli $|z| \in I_{m}(s)$ ($m=1,2, \cdots$).

On the other hand, Baernstein [4] also considered extremal problems associated with the spread relation. To describe his result we introduce some notations and terminology. Let u be a δ-subharmonic function which can be represented as
(2)

$$
u(z)=u_{1}(z)-u_{2}(z)
$$

where u_{1} and u_{2} are subharmonic in the plane. For a δ-subharmonic function (2) we put

$$
N(r, u)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} u\left(r e^{2 \theta}\right) d \theta
$$

and the Nevanlinna characteristic of u is defined by

$$
T(r, u)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} u^{+}\left(r e^{i \theta}\right) d \theta+N(r, u)
$$

Further the Baernstein characteristic of u is defined by

$$
u^{\#}\left(r e^{2 \theta}\right)=\sup _{E} \frac{1}{2 \pi} \int_{E} u\left(r e^{2 \varphi}\right) d \varphi+N\left(r, u_{2}\right) \quad(0<r<\infty, 0 \leqq \theta \leqq \pi),
$$

where the "sup" is taken over all the measurable sets E of measure $|E|=2 \theta$.
Suppose next that $G \subset(0, \infty)$ is a set which is unbounded above, and that $L(r)$ is a positive function. We say that L varies slowly on G (in the sense of Karamata) if

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ r \in G}} \frac{L(k r)}{L(r)}=1 \tag{3}
\end{equation*}
$$

holds uniformly for k in any interval $A^{-1} \leqq k \leqq A, A>1$. Further, we say that the set G is very long if
(a) G has logarithmic density one, i.e.

$$
\frac{1}{\log r} \int_{G \cap[1, r]} \frac{d t}{t} \longrightarrow 1 \quad(r \rightarrow \infty)
$$

and
(b)

$$
G=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]
$$

where $a_{n} \rightarrow \infty$ and $b_{n} / a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
One of Baernstein's results in [4] is the following Theorem B.
Theorem B. Suppose $u=u_{1}-u_{2}$ be δ-subharmonic and suppose u has order $\rho \in(0, \infty)$. Let $\Lambda(r)$ be a nonnegative functıon satisfyıng $\Lambda(r)=o(T(r, u))(r \rightarrow \infty)$. Then, if

$$
\delta(\infty, u)=1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, u_{2}\right)}{T(r, u)}>0
$$

and

$$
\varlimsup_{r \rightarrow \infty} \operatorname{meas}\left\{\theta: u\left(r e^{2 \theta}\right)>\Lambda(r)\right\} \leqq \frac{4}{\rho} \sin ^{-1} \sqrt{\frac{\delta(\infty, u)}{2}} \equiv 2 \beta<2 \pi,
$$

there exist a very long set G and a functoon $L(r)$ varying slowly on G such that

$$
T(r, u)=r^{\rho} L(r) .
$$

Moreover, if $\delta(\infty, u)<1$, then

$$
N\left(r, u_{2}\right) \sim(1-\delta(\infty, u)) T(r, u) \quad(r \rightarrow \infty, r \in G)
$$

In Theorem B , the exceptional set $F \equiv(0, \infty)-G$ on which (3) may fail can actually occur. Baernstein [4] showed this fact by applying Corollary 1 of [1] to the function constructed by Hayman [11, Theorem 3]. In order to see this fact more directly, we can use the notion of the flexible proximate order which was introduced by Drasin [5].

Let ρ and ρ_{1} be any positive numbers such that

$$
1 / 2<\rho<\rho_{1}<\infty .
$$

Take for $\gamma(\leqq 1)$ a positive number satisfying

$$
\rho_{1}^{\prime} \equiv \rho_{1} \gamma<1,
$$

and with this γ we set

$$
\rho^{\prime}=\rho \gamma .
$$

Then it is clear that

$$
0<\rho^{\prime}<\rho_{1}^{\prime}<1
$$

Let $\lambda(r)(r>0)$ be a continuous, nonnegative function which is continuously differentiable off a discrete set D, such that

$$
r \lambda^{\prime}(r) \longrightarrow 0 \quad(r \rightarrow \infty, r \in D) .
$$

Let E and E_{1} be sets of the form

$$
E=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], \quad E_{1}=\bigcup_{n=1}^{\infty}\left[k_{n}^{-1} a_{n}, k_{n} b_{n}\right],
$$

where

$$
\begin{gathered}
(1<) k_{n} \uparrow \infty \quad(n \rightarrow \infty), \quad\left[k_{n}^{-1} a_{n}, k_{n} b_{n}\right] \cap\left[k_{m}^{-1} a_{m}, k_{m} b_{m}\right]=\phi \quad(m \neq n), \\
\int_{E_{1} \cap(1, r]} t^{-1} d t=o(\log r) \quad(r \rightarrow \infty) .
\end{gathered}
$$

Now, suppose that $\lambda(r)$ satisfies

$$
\begin{gathered}
0<\rho^{\prime} \leqq \lambda(r) \leqq \rho_{1}^{\prime}<1, \\
\lambda(r)= \begin{cases}\rho^{\prime} & \left(r \in E_{1}{ }^{c}\right), \\
\rho_{1}^{\prime} & (r \in E),\end{cases}
\end{gathered}
$$

and let $\lambda(r)$ be extended to $E_{1}-E$ so that it is continuous and

$$
t \lambda^{\prime}(t)= \begin{cases}-\left(\rho_{1}^{\prime}-\rho\right) / \log k_{n} & t \in\left(k_{n}^{-1} a_{n}, a_{n}\right), \\ \left(\rho_{1}^{\prime}-\rho\right) / \log k_{n} & t \in\left(b_{n}, k_{n} b_{n}\right) .\end{cases}
$$

Then it is clear that

$$
(\log r)^{-1} \int_{1}^{r} \lambda(t) t^{-1} d t \longrightarrow \rho^{\prime} \quad(r \rightarrow \infty)
$$

Let $f(z)$ be a canonical product with negative zeros with counting function

$$
n(r)=\left[\exp \left(\int_{1}^{r} \lambda(t) t^{-1} d t\right)\right] .
$$

Then $f(z)$ is of order $\rho^{\prime}(<1)$ and so, for a suitable branch of $\log f(z)$

$$
\log f(z)=z \int_{0}^{\infty} \frac{n(t)}{t(t+z)} d t \quad(|\arg z|<\pi)
$$

Using the reasoning of the proof of Proposition in [5, p. 133], we have

$$
\log f(z)=\left\{\frac{\pi}{\sin \pi \lambda(r)} e^{2 \lambda(r) \theta}+o(1)\right\} n(r),
$$

where the $o(1)$ tends to zero uniformly as $z \rightarrow \infty$ in any sector: $|\theta| \leqq \pi-\eta$.
Here, we define $u(z)$ as follows:

$$
u(z)=\left\{\begin{array}{l}
\max \left\{\log \left|f\left(z^{1 / r}\right)\right|, 0\right\} \\
0 \quad(\beta \leqq|\theta| \leqq \pi) .
\end{array} \quad\left(|\theta|<\beta \equiv \frac{\pi}{2 \rho}\right),\right.
$$

It is easily verified that u is subharmonic in the plane, has order $\rho^{\prime} / \gamma=\rho$, and satisfies

$$
\begin{aligned}
& \overline{\lim _{r \rightarrow \infty}} \text { meas }\left\{\theta: u\left(r e^{2 \theta}\right)>0\right\}=\pi / \rho=2 \beta(<2 \pi), \\
& T(r, u)=(1+o(1)) \frac{r n\left(r^{1 / r}\right)}{\lambda\left(r^{1 / r}\right) \sin \pi \lambda\left(r^{1 / r}\right)} \quad(r \rightarrow \infty) .
\end{aligned}
$$

However, since $r \lambda^{\prime}(r) \rightarrow 0(r \rightarrow \infty, r \notin D)$ implies $\lambda(k r)=\lambda(r)+o(1)(r \rightarrow \infty)$ for fixed $k(>0)$, we have $n(k r) \sim k^{\lambda(r)} n(r)$. Hence

$$
\frac{T(k r, u)}{T(r, u)}=(1+o(1)) k^{2(r) / r} \quad(r \rightarrow \infty)
$$

This illustrates the existence of the exceptional set F.
Now, comparing Theorem B with Theorem A, the following problem is naturally raised.

Problem. Do the assumptions of Theorem B imply the existence of some very long set G and slowly varying function $L(r)$ on G such that

$$
T(r, u)=r^{\rho} L(r) \quad(0<r<\infty), \quad \frac{u^{\#}\left(r e^{2 \theta}\right)}{T(r, u)} \longrightarrow \cos \rho(\beta-\theta) \quad(r \rightarrow \infty, r \in G)
$$

uniformly for $\theta \in[0, \beta]$?
For example, $u(z)$ constructed above satisfies the conclusion of Problem with $G=\left\{r: r^{1 / \gamma} \in E_{1}{ }^{c}\right\}$ and

$$
L(r)=(1+o(1)) \frac{n\left(r^{1 / r}\right) r^{-\rho}}{\rho \sin (\pi \rho / r)} \quad(r \in G)
$$

However, I have been unable to solve this problem. In this note, I prove the following result.

Theorem. Let the assumptions and notations of Theorem B be unchanged. Further, suppose that $T(r, u)$ satisfies the following growth condition:

$$
\lim _{r \rightarrow \infty} \frac{T(k r, u)}{T(r, u)}=k^{\rho}
$$

(unnformly for k in any interval $A^{-1} \leqq k \leqq A, A>1$). Then, there exist a very long set G and a functıon $L(r)$ varying slowly on $(0, \infty)$ such that

$$
T(r, u)=r^{\rho} L(r) \quad(0<r<\infty), \quad \frac{u^{\#}\left(r e^{\imath \theta}\right)}{T(r, u)} \longrightarrow \cos \rho(\beta-\theta) \quad(r \rightarrow \infty, r \in G)
$$

uniformly for $\theta \in[0, \beta]$.

1. Preliminaries of the proof of Theorem. In order to prove our theorem we need some facts. The fact that we need about very long set is contained in Lemma 1 below.

Lemma 1. Let $G_{1}, \cdots, G_{n}(2 \leqq n<\infty)$ be distınct very long sets. Then, there exists a very long set G such that $G \subset \bigcap_{k=1}^{n} G_{k}$.

Proof. We may prove Lemma 1 in case of $n=2$. First, an easy computation shows that

$$
\begin{equation*}
\log \operatorname{dens}\left(G_{1} \cap G_{2}\right)=1 \tag{4}
\end{equation*}
$$

Next, we put $G_{1}=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], G_{2}=\bigcup_{n=1}^{\infty}\left[c_{n}, d_{n}\right]$. Then

$$
\begin{equation*}
a_{n} \longrightarrow \infty, \quad b_{n} / a_{n} \longrightarrow \infty, \quad c_{n} \longrightarrow \infty, \quad d_{n} / c_{n} \longrightarrow \infty \quad(n \rightarrow \infty) \tag{5}
\end{equation*}
$$

It is clear that for every $n(=1,2, \cdots)$ there exist at most finitely many m 's such that $\left[c_{m}, d_{m}\right] \cap\left[a_{n}, b_{n}\right] \neq \phi$. We denote such m 's by $m_{n}, \cdots, m_{n}+j_{n}\left(j_{n}:\right.$ a nonnegative integer) (if any). Then

$$
\begin{gathered}
G_{1} \cap G_{2}=\bigcup_{n=1}^{\infty}\left\{\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}}, d_{m_{n}}\right]\right) \cup\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}+1}, d_{m_{n}+1}\right]\right) \cup \ldots\right. \\
\left.\cup\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}+\jmath_{n}}, d_{m_{n}+\jmath_{n}}\right]\right)\right\} .
\end{gathered}
$$

Now, starting from $G_{1} \cap G_{2}$, we construct a subset G of $G_{1} \cap G_{2}$ as follows: Firstly, let $I(J)$ be a subset $\{n\}$ of positive integers satisfying $a_{n}>c_{m_{n}}\left(b_{n}<\right.$ $d_{m_{n}+J_{n}}$). Secondly, we take

$$
a_{n}^{\prime}=\lambda_{n} a_{n}, \quad b_{n}^{\prime}=b_{n} / \lambda_{n}
$$

where

$$
\lambda_{n}=\min \left(a_{n}{ }^{\delta_{n}},\left(b_{n} / a_{n}\right)^{\delta_{n}}\right)
$$

and $\left\{\delta_{n}\right\}$ is a positive sequence satisfying

$$
\delta_{n} \longrightarrow 0, \quad a_{n}{ }^{\delta_{n}} \longrightarrow \infty, \quad\left(b_{n} / a_{n}\right)^{\delta_{n}} \longrightarrow \infty .
$$

And thirdly, making use of $\left\{a_{n}{ }^{\prime}\right\}$ and $\left\{b_{n}{ }^{\prime}\right\}$, we define two subsets I^{\prime}, J^{\prime} of positive integers:

$$
\begin{aligned}
& I^{\prime}=\left\{n ; n \in I, d_{m_{n}}<a_{n}{ }^{\prime}\right\}, \\
& J^{\prime}=\left\{n ; n \in J, c_{m_{n}+J_{n}}>b_{n}{ }^{\prime}\right\} .
\end{aligned}
$$

Here we put

$$
\begin{aligned}
G & =\left(G_{1} \cap G_{2}\right) \backslash\left\{\bigcup_{n \in I^{\prime}}\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}}, d_{m_{n}}\right]\right)\right\} \\
& \cup\left\{\bigcup_{n \in J^{\prime}}\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}+\jmath_{n}}, d_{m_{n}+\jmath_{n}}\right]\right)\right\} \\
\equiv & \equiv \bigcup_{n=1}^{\infty}\left[e_{n}, f_{n}\right] .
\end{aligned}
$$

Then it follows from (5) and the definitions of I^{\prime}, J^{\prime} that

$$
e_{n} \longrightarrow \infty, \quad f_{n} / e_{n} \longrightarrow \infty \quad(n \rightarrow \infty)
$$

Finally we prove \log dens $G=1$. Noting (4), it is sufficient to prove $\log \tilde{G}=0$, where

$$
\tilde{G}=\left\{\bigcup_{n \in I^{\prime}}\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}}, d_{m_{n}}\right]\right)\right\} \cup\left\{\bigcup_{n \in J^{\prime}}\left(\left[a_{n}, b_{n}\right] \cap\left[c_{m_{n}+\jmath_{n}}, d_{m_{n}+\jmath_{n}}\right]\right)\right\} .
$$

For each $r \geqq a_{1}$, we can uniquely determine $n=n(r)$ such that $a_{n} \leqq r<a_{n+1}$, and it is clear that $n(r) \rightarrow \infty$ as $r \rightarrow \infty$. By the definitions of I^{\prime} and J^{\prime}, we have

$$
\begin{equation*}
\frac{1}{\log r} \int_{\tilde{G} \cap[1, r]} \frac{d t}{t} \leqq \frac{1}{\log r}\left\{\left(\sum_{\substack{n \in \in^{\prime} \\ n<n(r)}}+\sum_{\substack{n<J^{\prime} \\ n<n(r)}}\right) \delta_{n} \log \left(\frac{b_{n}}{a_{n}}\right)\right. \tag{6}
\end{equation*}
$$

$$
\left.+\log \left(\frac{\min \left[a_{n}^{\prime}(r), r\right]}{a_{n(r)}}\right)+\log ^{+}\left(\frac{\min \left[b_{n(r)}, r\right]}{b_{n(r)}^{\prime}}\right)\right\} .
$$

However, since $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\frac{1}{\log r}\left\{\sum_{n<n(r)} \log \left(\frac{b_{n}}{a_{n}}\right)+\log \left(\frac{\min \left[b_{n(r)}, r\right]}{a_{n(r)}}\right)\right\} \longrightarrow 1 \quad(r \rightarrow \infty)
$$

the right hand side of $(6) \rightarrow 0$ as $r \rightarrow \infty$. Hence \log dens $\tilde{G}=0$. This completes the proof of Lemma 1 .

Our second lemma is concerned with the estimate of $u^{\#}\left(r e^{2 \theta}\right)(0 \leqq \theta \leqq \beta)$ from above under the assumptions of Theorem. For the proof, the following two propositions are essential.

Proposition 1. ([3, Theorem A', pp. 144-148]) Suppose $u=u_{1}-u_{2}$ be δ subharmonic. Then $u^{\#}$ is subharmonic in $\left\{r e^{\imath \theta} ; 0<r<\infty, 0<\theta<\pi\right\}$ and is continuous on $\left\{r e^{2 \theta} ; 0<r<\infty ; 0 \leqq \theta \leqq \pi\right\}$.

Proposition 2. (cf. [2, p. 430]) Suppose that a function h is harmonic in the half-disk $D_{R}=\left\{z=r e^{2 \theta} ; 0<r<R, 0<\theta<\pi\right\}$ and continuous on the closure. Then, for $z \in D_{R}$

$$
h\left(r e^{2 \theta}\right)=\int_{-R}^{R} h(t) A(t, r, \theta, R) d t+\int_{0}^{\pi} h\left(R e^{2 \varphi}\right) B(\varphi, r, \theta, R) d \varphi
$$

where

$$
\begin{gathered}
A(t, r, \theta, R)=\frac{1}{\pi} \frac{r \sin \theta}{t^{2}+r^{2}-2 \operatorname{tr} \cos \theta}-\frac{1}{\pi} \frac{R^{2} r \sin \theta}{R^{4}-2 r t R^{2} \cos \theta+r^{2} t^{2}}, \\
B(\varphi, r, \theta, R)=\frac{2 R r \sin \theta}{\pi}-\frac{\left(R^{2}-r^{2}\right) \sin \varphi}{\left|R^{2} e^{2 i \varphi}-2 r R e^{2 \varphi} \cos \theta+r^{2}\right|^{2}} .
\end{gathered}
$$

Now we prove
Lemma 2. Let the assumptions and notations of Theorem be unchanged. Then there exists a slowly varying functıon $L(r)$ on $(0, \infty)$ satisfying the following conditions:
(i) $T(r, u)=r^{\rho} L(r) \quad(0<r<\infty)$,
(ii) For any $\eta>0$, there exists $r_{0}=r_{0}(\eta)>0$ such that $r \geqq r_{0}$ implies

$$
u^{\#}\left(r e^{2 \theta}\right)<[\cos (\beta-\theta) \rho+\eta] r^{\rho} L(r) \quad(0 \leqq \theta \leqq \beta) .
$$

Proof. First, we consult [4, $\S 5, \mathrm{pp} .98-100]$. Then it is easy to see under our assumptions that

$$
\begin{equation*}
u^{\#}\left(r e^{\imath \beta}\right) \sim T(r, u)=r^{\rho} L(r) \quad(r \rightarrow \infty), \tag{7}
\end{equation*}
$$

where $L(r)$ is a slowly varying function on $(0, \infty)$.
Choose a positive number $\varepsilon=\varepsilon(\eta)$ satisfying

$$
\begin{equation*}
\varepsilon+\left(2 \varepsilon+\varepsilon^{2}\right) \varepsilon<\eta \text {. } \tag{8}
\end{equation*}
$$

Further, let $A(\geqq 2)$ be a number such that

$$
\begin{equation*}
\varepsilon+\left(2 \varepsilon+\varepsilon^{2}\right)\left\{\varepsilon+\frac{2 \cdot A^{1-\gamma \rho}}{\pi(A-1)^{2}}+\frac{32}{A^{1-\gamma} \rho}\right\}<\eta, \tag{9}
\end{equation*}
$$

where $\gamma=\beta / \pi(\gamma \rho \leqq 1 / 2)$. By the definition of $\delta(\infty, u)$, we have

$$
\begin{equation*}
u^{\#}(r)=N\left(r, u_{2}\right)<(1-\delta(\infty, u)+\varepsilon) T(r, u)=(\cos \beta \rho+\varepsilon) r^{\rho} L(r) \quad\left(r>t_{1}=t_{1}(\varepsilon)\right) . \tag{10}
\end{equation*}
$$

Since $L(r)$ is a slowly varying function on $(0, \infty)$, we have

$$
\begin{equation*}
\left|\frac{L(k r)}{L(r)}-1\right|>\varepsilon \quad\left(\frac{1}{A^{r}} \leqq k \leqq A^{r}, r \geqq t_{2}, t_{2}=t_{2}(A, \varepsilon, \gamma)\right) . \tag{11}
\end{equation*}
$$

Here we put

$$
\begin{equation*}
L_{1}(r)=L\left(r^{r}\right) . \tag{12}
\end{equation*}
$$

Then we can rewrite (7), (10) and (11) as follows:

$$
\begin{equation*}
\left|u^{\#}\left(r^{r} e^{2, \beta}\right)-r^{r \rho} L_{1}(r)\right|<\varepsilon r^{r o} L_{1}(r) \quad\left(r \geqq t_{0}^{1 / r}, t_{0}=t_{0}(\varepsilon)\right), \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& u^{\#}\left(r^{r}\right)<(\cos \pi \gamma \rho+\varepsilon) r^{r \rho} L_{1}(r) \quad\left(r \geqq t_{1}^{1 / r}\right), \tag{10}\\
& \left|\frac{L_{1}(k r)}{L_{1}(r)}-1\right|<\varepsilon \quad\left(\frac{1}{A} \leqq k \leqq A, r \geqq t_{2}{ }^{1 / \gamma}\right) . \tag{11}
\end{align*}
$$

Now, we define

$$
\begin{equation*}
v(z)=u^{\#}\left(z^{r}\right) \quad(0<|z|<\infty, 0 \leqq \arg z \leqq \pi) . \tag{13}
\end{equation*}
$$

Then it follows from Propositions 1 and 2 that for $z=r e^{2 \theta} \in D_{R}$

$$
\begin{aligned}
v\left(r e^{2 \theta}\right) \leqq & \int_{0}^{R} v\left(t e^{\imath \pi}\right) A(t, r, \pi-\theta, R) d t \\
& +\int_{0}^{R} v(t) A(t, r, \theta, R) d t+\int_{0}^{\pi} v\left(R e^{\imath \varphi}\right) B(\varphi, r, \theta, R) d \varphi .
\end{aligned}
$$

Some elementary computations show that for $0<r<R / 2,0<\theta<\pi$

$$
v\left(r e^{2 \theta}\right) \leqq \frac{1}{\pi} \int_{0}^{R} v\left(t e^{2 \pi}\right) \frac{r \sin \theta}{t^{2}+r^{2}+2 \operatorname{tr} \cos \theta} d t
$$

$$
\begin{equation*}
+\frac{1}{\pi} \int_{0}^{R} v(t) \frac{r \sin \theta}{t^{2}+r^{2}-2 \operatorname{tr} \cos \theta} d t+\frac{32 r}{R} T\left(R^{r}, u\right) . \tag{14}
\end{equation*}
$$

Fix $r>T_{0} \equiv \max \left(A t_{0}{ }^{1 / r}, A t_{1}{ }^{1 / r}, t_{2}{ }^{1 / r}\right)$ and put $R=A r$. From (12), (7) ${ }^{\prime}$ and (11) ${ }^{\prime}$ it follows that

$$
\begin{aligned}
& \int_{0}^{A r} v(-t) \frac{r \sin \theta}{t^{2}+r^{2}+2 t r \cos \theta} d t=\left(\int_{0}^{r / A}+\int_{r / A}^{A r}\right) \\
& <v\left(-\frac{r}{A}\right) \frac{r}{A} \frac{r}{(r-r / A)^{2}}+\int_{r / A}^{A r}(1+\varepsilon) t^{r \rho} L_{1}(t) \frac{r \sin \theta}{t^{2}+r^{2}+2 t r \cos \theta} d t
\end{aligned}
$$

$$
\begin{align*}
& <(1+\varepsilon)^{2} \frac{r^{\gamma \rho}}{A^{\gamma \rho}} L_{1}(r) \frac{r}{A} \frac{r}{(r-r / A)^{2}}+(1+\varepsilon)^{2} r^{\gamma \rho} L_{1}(r) \int_{1 / A}^{A} u^{\gamma \rho} \frac{\sin \theta}{u^{2}+1+2 u \cos \theta} d u \tag{15}\\
& <(1+\varepsilon)^{2}\left\{\frac{A^{1-r \rho}}{(A-1)^{2}}+\frac{\pi \sin \theta r \rho}{\sin \pi \gamma \rho}\right\} r^{\gamma \rho} L_{1}(r) .
\end{align*}
$$

In the same way, we have from (12), (10)', (11)'

$$
\int_{0}^{A r} v(t) \frac{r \sin \theta}{t^{2}+r^{2}-2 \operatorname{tr} \cos \theta} d t
$$

$$
\begin{equation*}
<(1+\varepsilon)^{2}\left\{\frac{A^{1-\gamma \rho}}{(A-1)^{2}}+(\cos \pi \gamma \rho+\varepsilon) \frac{\pi \sin (\pi-\theta) \gamma \rho}{\sin \pi \gamma \rho}\right\}_{r^{\gamma \rho}} L_{1}(r) . \tag{16}
\end{equation*}
$$

Further, from (7) and (11)' it follows that

$$
\frac{32 r}{A r} T\left(A^{r} r^{r}, u\right)=\frac{32}{A} A^{r \rho} r^{r \rho} L_{1}(A r)
$$

$$
\begin{equation*}
<\frac{32}{A} \cdot A^{r \rho} r^{r \rho}(1+\varepsilon) L_{1}(r)=\frac{32}{A^{1-r \rho}}(1+\varepsilon) r^{r \rho} L_{1}(r) . \tag{17}
\end{equation*}
$$

Substituting (15), (16) and (17) into (14) with $R=A r$, we deduce

$$
\begin{align*}
v\left(r e^{2 \theta}\right)< & (1+\varepsilon)^{2}\left\{\frac{\sin \theta \gamma \rho}{\sin \pi \gamma \rho}+\frac{\sin (\pi-\theta) \gamma \rho \cdot \cos \pi \gamma \rho}{\sin \pi \gamma \rho}+\varepsilon \frac{\sin (\pi-\theta) r \rho}{\sin \pi \gamma \rho}\right. \\
& \left.+\frac{2 A^{1-\gamma \rho}}{\pi(A-1)^{2}}+\frac{32}{A^{1-\gamma \rho}}\right\} r^{\gamma \rho} L_{1}(r) \\
< & (1+\varepsilon)^{2}\left\{\cos (\pi-\theta) \gamma \rho+\varepsilon+\frac{2 A^{1-\gamma \rho}}{\pi(A-1)^{2}}+\frac{32}{A^{1-\gamma \rho}}\right\} r^{\gamma \rho} L_{1}(r) \tag{18}\\
< & \left\{\cos (\pi-\theta) \gamma \rho+\varepsilon+\left(\varepsilon^{2}+2 \varepsilon\right)\left(\varepsilon+\frac{2 A^{1-\gamma \rho}}{\pi(A-1)^{2}}+\frac{32}{A^{1-\gamma \rho}}\right)\right\} r^{\gamma \rho} L_{1}(r) .
\end{align*}
$$

Using (9) into (18) we have

$$
v\left(r e^{2 \theta}\right)<[\cos (\pi-\theta) \gamma \rho+\eta] r^{\gamma \rho} L_{1}(r) \quad\left(r>T_{0}, 0 \leqq \theta \leqq \pi\right) .
$$

Therefore, in view of (13)

$$
u^{\#}\left(r^{r} e^{i \gamma \theta}\right)<[\cos (\pi \gamma-\theta \gamma) \rho+\eta] r^{r \rho} L_{1}(r) \quad\left(r>T_{0}, 0 \leqq \theta \leqq \pi\right) .
$$

Hence it follows from (12) that

$$
u^{\#}\left(r e^{i \theta}\right)<[\cos (\beta-\theta) \rho+\eta] r^{\rho} L(r) \quad\left(r>T_{0}{ }^{r} \equiv r_{0}\right) .
$$

This completes the proof of Lemma 2.
Combining Lemma 2 with Baernstein's method in [4, §5, pp. 98-110], we can prove the following Lemma 3.

Lemma 3. Let the assumptions and notations of Theorem be unchanged. Let $\alpha(0<\alpha<\beta)$ be given. Then, there exists a very long set G_{α} and a slowly varying function $L(r)$ on $(0, \infty)$ such that

$$
T(r, u)=r^{\rho} L(r) \quad(0<r<\infty), \quad u^{\#}\left(r e^{2 \alpha}\right) \sim \cos \rho(\beta-\alpha) \cdot r^{\rho} L(r) \quad\left(r \rightarrow \infty, r \in G_{\alpha}\right) .
$$

To see this, we may follow Baernstein's procedure in [4, §5] with $\gamma_{1} \equiv$ $(\beta-\alpha) / \pi, u^{\#}\left(z^{\gamma_{1}} e^{\imath \alpha}\right), u^{\#}\left(r^{r_{1}} e^{\imath \beta}\right), u^{\#}\left(r^{\gamma_{1}} e^{\imath \alpha}\right)$ in place of his $\gamma, v(z), T_{1}(r), N_{1}(r)$, respectively. In fact, by virtue of Lemma 2 his argument there does work in this case.

The following proposition will play an important role in the proof of Theorem.

Proposition 3. ([9, Lemma 6.1.] Let t_{1} and t_{2} satisfy all the following conditions:

$$
\begin{gathered}
0<R_{0}=R_{0}(u)<t_{j} \leqq R / 4 \quad(\jmath=1,2), \\
(1+\sigma)^{-1} \leqq \frac{t_{1}}{t_{2}} \leqq 1+\sigma \quad(\sigma \leqq 0) .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \left|u^{\#}\left(t_{1} e^{\imath \theta_{1}}\right)-u^{\#}\left(t_{2} e^{\imath \theta_{2}}\right)\right| \\
& \leqq A_{0} T(R, u)\left\{\sigma\left(1+\log ^{+} \frac{1}{\sigma}\right)+\left|\theta_{2}-\theta_{1}\right|\left(1+\log ^{+} \frac{1}{\left|\theta_{2}-\theta_{1}\right|}\right)\right\} \\
& \quad\left(0 \leqq \theta_{1} \leqq \pi, 0 \leqq \theta_{2} \leqq \pi\right)
\end{aligned}
$$

where A_{0} is an absolute constant (>0).
2. Proof of Theorem. Let $\eta(0<\eta<1)$ be given. Choose $\sigma(0<\sigma<1)$ such that

$$
A_{0} 4^{\rho}\left(1+\log \frac{1}{\sigma}\right) \sigma+\sigma \rho<\eta / 2
$$

where A_{0} is the absolute constant (>0) which appears in Proposition 3. Further, take $\varepsilon>0$ so that

$$
\begin{equation*}
(1+\varepsilon) A_{0} 4^{\rho}\left(1+\log \frac{1}{\sigma}\right) \sigma+\sigma \rho<\gamma / 2 \tag{19}
\end{equation*}
$$

By Theorem B and Lemma 3, for each $\alpha(0 \leqq \alpha \leqq \beta)$ there exist a very long set G_{α} and a function $L(r)$ varying slowly on $(0, \infty)$ such that

$$
\begin{equation*}
T(r, u)=r^{\rho} L(r) \quad(0<r<\infty), \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\left|u^{\#}\left(r e^{2 \alpha}\right)-\cos \rho(\beta-\alpha) \cdot r^{\rho} L(r)\right|<(\eta / 2) r^{\rho} L(r) \quad\left(r \in G_{\alpha}, r \geqq r_{\alpha}(\eta)\right) . \tag{21}
\end{equation*}
$$

Since L is a slowly varying function on $(0, \infty)$, we have

$$
\begin{equation*}
\left|\frac{L(k r)}{L(r)}-1\right|<\varepsilon \quad\left(\frac{1}{4} \leqq k \leqq 4, r \geqq t_{1}(4, \varepsilon)\right) . \tag{22}
\end{equation*}
$$

It follows from Proposition 3 that

$$
\left|u^{\#}\left(r e^{i \theta}\right)-u^{\#}\left(r e^{2 \alpha}\right)\right|<A_{0} \sigma\left(1+\log \frac{1}{\sigma}\right) T(4 r, u)
$$

$$
\begin{equation*}
\left(|\theta-\alpha|<\sigma, \theta \in[0, \beta], r>R_{0}\right) \tag{23}
\end{equation*}
$$

Now, we put $R_{\alpha} \equiv \max \left\{r_{\alpha}, t_{1}, R_{0}\right\}$. Then from (23), (20), (21), (22) and (19) it follows that

$$
\begin{align*}
& \left|u^{\#}\left(r e^{\imath \theta}\right)-\cos \rho(\beta-\theta) T(r, u)\right| \\
& \qquad \begin{array}{l}
\leqq\left|u^{\#}\left(r e^{2 \theta}\right)-u^{\#}\left(r e^{2 \alpha}\right)\right| \\
+\left|u^{\#}\left(r e^{\imath \alpha}\right)-\cos \rho(\beta-\alpha) \cdot r^{\rho} L(r)\right| \\
\quad+|\cos \rho(\beta-\alpha)-\cos \rho(\beta-\theta)| r^{\rho} L(r)
\end{array} \\
& <\left\{A_{0} \sigma\left(1+\log \frac{1}{\sigma}\right)(1+\varepsilon) 4^{\rho}+\eta / 2+\sigma \rho\right\} r^{\rho} L(r)<\eta T(r, u) \tag{24}\\
& \quad\left(r \in G_{\alpha}, r \geqq R_{\alpha},|\theta-\alpha|<\sigma, \theta \in[0, \beta]\right) .
\end{align*}
$$

Since $\{(\alpha-\sigma, \alpha+\sigma)\}_{\alpha \in[0, \beta]}$ is a covering of $[0, \beta]$, there exist $\left\{\alpha_{\jmath}\right\}_{j=1}^{m}\left(\alpha_{\jmath} \in[0, \beta]\right.$, $m<\infty)$ such that

$$
\begin{equation*}
[0, \beta] \subset \bigcup_{k=1}^{m}\left(\alpha_{k}-\sigma, \alpha_{k}+\sigma\right) \tag{25}
\end{equation*}
$$

Hence, if we put

$$
R \equiv \max \left(R_{\alpha_{1}}, \cdots, R_{\alpha_{m}}\right)=R(\eta), \quad \tilde{G} \equiv \bigcap_{k=1}^{m} G_{\alpha_{k}}
$$

we deduce from (24) and (25) that

$$
\begin{array}{r}
\left|u^{\#}\left(r e^{i \theta}\right)-\cos \rho(\beta-\theta) T(r, u)\right|<\eta \cdot T(r, u) \tag{26}\\
(r \in \tilde{G}, r \geqq R(\eta), 0 \leqq \theta \leqq \beta) .
\end{array}
$$

Combining (26) with Lemma 1, we have the desired result.

References

[1] A. Baernstein II; A nonlinear tauberian theorem in function theory, Trans. Amer. Math. Soc. Vol. 146 (1969) 87-105.
[2] A. Baernstein II; Proof of Edrei's spread conjecture, Proc. London Math. Soc. (3) 26 (1973) 418-43.
[3] A. Baernstein II; Integral means, univalent functions and circular symmetrization, Acta Math. 33 (1975) 139-169.
[4] A. Baernstein II; Regularity theorems associated with the spread relation, J. D'Analyse Math. Vol. 31 (1977) 76-111.
[5] D. Drasin; A flexible proximate order, Bull. London Math. Soc. 6 (1974) 124135.
[6] A. Edrei; Sums of deficiences of meromorphic functions II, J. D'Analyse Math. 19 (1967) 53-74.
[7] A. EDREI; Locally tauberian theorems for meromorphic functions of lower order less than one, Trans. Amer. Math. Soc. 140 (1969) 309-332.
[8] A. Edrei; Solution of the deficiency problem for functions of small lower order, Proc. London Math. Soc. (3) 26 (1973) 435-445.
[9] A. Edrei and W.H.J. Fuchs; Asymptotic behavior of meromorphic functions with extremal spread I, Ann. Acad. Sci. Fenn. Ser. A.I., 2, (1976) 67-111.
[10] A. Edrei and W.H.J. Fuchs; Asymptotic behavior of meromorphic functions with extremal spread II, ibid., 3, (1977) 141-168.
[11] W.K. Hayman; Some examples related to the $\cos \pi \rho$ theorem, Mathematical essays dedicated to A.J. Macintyre, Ohio Univ. Press (1970) 149-170.

Department of Mathematics
Daido Institute of Technology
Daido-cho, Minami-ku, Nagoya, Japan

