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AN EXTREMAL PROBLEM ASSOCIATED WITH
THE SPREAD RELATION

By HipEHARU UEDA

0. Introduction. The notion of spread was introduced and investigated by
Edrei [6], [7], who also conjectured the spread relation. This relation has now
been proved by Baernstein [2] whose remarkable analysis rests on the intro-
duction of a new function T*(z) (z=re*?), closely related to Nevanlinna charac-
teristic T'(r, f).

Let f be meromorphic and nonconstant. Suppose d(co, £)>0. Then it is
suggested by Nevanlinna’s theory that |f(z)| must be “large” on a substantial
portion of each circle |z]=r when r is large. The spread relation provides a
quantitative form of this statement.

To state this relation we require some notations. Let f be a meromorphic
function of finite lower order g Fix a sequence {r,} of Pdlya peaks of order
¢ of f(z). Let A(r) be a positive function with A(»)=o(T(», f)) (r—c0). Define
the set of argument

E(r)=10 : log|f(re*®)| > A(r}},
and let
0,1(00)-——71_ni_r_n&meas EAra).

Then the spread of oo is defined by
g(00)= h}lf 0 4(00),

where the “inf” is taken over all functions A satisfying A(#)=o(T(r, f)).
Spread relation :

D o(c0)zmin {2z, %mnf(—ff)} .

(This inequality is best possible.) This makes it possible to solve the deficiency
problem for functions with 1/2<p=<1. (See [8].)

Baernstein’s proof of the spread relation (1) is based on the properties of
the function

2 T*(re®)y=m*@re*®)+ N, f)  (¢>0,0=60=n),
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where
1
X 10\ — . L .
m*(rer9)= Sup 5 SE log|f(re*¥)|de;

the “sup” is taken over all measurable sets E of measure |E|=26. Baernstein
[2] showed that T*(re*?) is a subharmonic function in 0<r<co, 0< < x.

In [9], Edrei and Fuchs introduced the notions of the hypotheses ES and
the extremal spread.

Hypotheses ES. Let f(z) be a meromorphic function of lower order g
(0<pu<co), and let {rm} be a sequence of Pélya peaks of order p of T(r, f).

Assume that
(i) d(co, f)>0 and, if 0<p=1/2, assume in addition that d(co, f)<1—cos wy

holds ;
(ii) the sequence {r,} satisfies for some A
. 4 . Jo(eo, f)
3}210 meas EA(rm)—;sm 1\/—27—7 =28.

Extremal spread. If f(z) satisfies the hypotheses ES, we say that it has
extremal spread (of co).

Edrei and Fuchs [9], [10] considered all the meromorphic functions charac-
terized by the hypotheses ES. One of their results is the following Theorem A.

THEOREM A. Let f(z) be meromorphic of lower order p (0<pu<co) and let
f(2) have extremal spread of oco. Consider the intervals

In(8)={r; e ra<r=e‘rn} (s>0, m=1, 2, --+).

Then, for every s>0,

AT DN (relus)), MDD cos B (re Qllm(s))'

T(rm, f)/1m" T, f)
Further, there exists a sequence {nn}, nm—0, independent of r and 6, such that
| T*(re*")—=T(r, f)cos p(B—0)| <npnT(r, ) (0=0=P),
provided re< I,(s).

Also they have satisfactorily determined the asymptotic behavior of log|f(z)|
and of the arguments of almost all the zeros and poles in the annuli |z| € I.(s)
(m=1, 2, --+).

On the other hand, Baernstein [4] also considered extremal problems asso-
ciated with the spread relation. To describe his result we introduce some nota-
tions and terminology. Let u be a §-subharmonic function which can be repre-
sented as
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(2) w(z)=u,(2)—u(2),

where u; and u, are subharmonic in the plane. For a J-subharmonic function
(2) we put

N, u)= 'fLS”u(re”)d(? ,
277.' -7
and the Nevanlinna characteristic of u is defined by
T(r, u):—ZI?S”u*(rew)dﬁ—l—N(r, u).
Further the Baernstein characteristic of u is defined by

u*(ret?)= sup Z—}T‘SEu(re“")dgp—}—N(r, Us) 0<r<oo, 0=0=n),
where the “sup” is taken over all the measurable sets E of measure |E|=20.

Suppose next that GC(0, oo) is a set which is unbounded above, and that
L(r) is a positive function. We say that L varies slowly on G (in the sense
of Karamata) if
i 402~

reEG

holds uniformly for 2 in any interval A'<k<A, A>1. Further, we say that
the set G is very long if

(a) G has logarithmic density one, i.e.

1 dt
log» SGnu,r]T —1 (r=c0)
and
(b) G=Ulan ba]

where a,—o0 and b,/a,—co as n—oo,
One of Baernstein’s results in [4] is the following Theorem B.

THEOREM B. Suppose u=u,—u, be d-subharmonic and suppose u has order
p<, ). Let A(r) be a nonnegative function satisfying Ar)=o(T(r, u)) (r—o0).
Then, if

= N, us)

0(co, u)=1—Iim

im o 0

and

limmeas {6 : u(re*®)>AG)} < % sin‘l\/aﬁ.sz’—u) =2p8<2r,

-0

there exist a very long set G and a function L(r) varying slowly on G such that
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T(r, wy=r°L{r).
Movreover, 1f 0(c0, u)<1, then
N(r, ug) ~ (1—=0d(0, u)T(r, u)  (r—oo, reG).

In Theorem B, the exceptional set F=(0, co)—G on which (3) may fail can
actually occur. Baernstein [4] showed this fact by applying Corollary 1 of [1]
to the function constructed by Hayman [11, Theorem 3]. In order to see this
fact more directly, we can use the notion of the flexible proximate order which

was introduced by Drasin [5].
Let p and p: be any positive numbers such that
1/2<p<p1<0.

Take for y (£1) a positive number satisfying

p/=pr<l1,
and with this y we set
p'=pr.
Then it is clear that
0<p’<p/<1.

Let A(») (r>0) be a continuous, nonnegative function which is continuously
differentiable off a discrete set D, such that

rA(r) —>0 (r—oco, r&D).
Let E and E, be sets of the form
E=Ulan b,  E=\Ckaan, kabal,

where
1<)k 10 (n—00),  [kalan, kubyl\[kn'an, knbnl=¢ (m+n),

S t~'dt=o(log r) (r—o0).
EjNC, 7]

Now, suppose that A(r) satisfies

0<p’'=2(=p/<1,
o'  (reE\,
z(r)z{ '
pi/  (reE),

and let A(») be extended to E;—F so that it is continuous and
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—(px'*‘p)/log ka te(kran, az),

tl’(t):{
(o' —p)/log kx tE(bn, knbn) .

Then it is clear that
(log r)‘lgrl(t)t‘ldt —> o' (r—o0).
1

Let f(z) be a canonical product with negative zeros with counting function

n(r) = [exp (S:](r)t“dtﬂ .
Then f(z) is of order p’ (<1) and so, for a suitable branch of log f(z)

©  n(t)

2 H+2) dt (larg z| <x).

log f(2)=2|
Using the reasoning of the proof of Proposition in [5, p. 133], we have

]og f(z): {ﬁ(ﬁetl(f)0+o(l>}n(7’) ,

where the o(l) tends to zero uniformly as z—oco in any sector: |[§|=7—7.
Here, we define u(z) as follows:

1 =_T_
u(z:{ max {log| /11, 0 (101<=5 ),
0 (p=101=n).

It is easily verified that u is subharmonic in the plane, has order p’/r=p, and
satisfies
lim meas {0 : u(re*?)>0} =n/p=2p(<2x),

T-00

ra(r)
ATy sin 2 ()

However, since 72’(r)—0 (r—co, r& D) implies A(kr)=A()+o(1l) (r—oo) for fixed
k (>0), we have n(kr)~k*™n(r). Hence

(r—o0).

T(r, w)=(1+o(1))

Tlbr, u) _ xenir
T, 1) =(1+o(1))k (r—o0).
This illustrates the existence of the exceptional set F.
Now, comparing Theorem B with Theorem A, the following problem is
naturally raised.

Problem. Do the assumptions of Theorem B imply the existence of some
very long set G and slowly varying function L(r) on G such that
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u#(rer?)

T, w)=r°L(r) 0<r<co), T W

—>cos p(f—0) (r—oo,reG)
uniformly for &[0, gJ?

For example, u(z) constructed above satisfies the conclusion of Problem with
G={r:r'"eE,?} and
n(iny-°
psin(zp/7)
However, I have been unable to solve this problem. In this note, I prove
the following result.

L(r)= (1+0(1) (read).

THEOREM. Let the assumptions and notations of Theorem B be unchanged.
Further, suppose that T(r, u) satisfies the following growth condition:

. T(kr, u)

i TR S

(uniformly for k wn any interval A7'=k<A, A>1). Then, there exist a very
long set G and a function L(r) varying slowly on (0, o) such that

ke

u#*(rev?)

T(]/’ u):}"DL(7/> (0<7<OO); T(?’ u)—

—>cos p(f—0) (r—oo,7€G)

uniformly for 0<[0, B

1. Preliminaries of the proof of Theorem. In order to prove our theorem
we need some facts. The fact that we need about very long set is contained
in Lemma 1 below.

LEMMA 1. Let Gy, -+, G, 2=n<o0) be distinct very long sets. Then, there

exists a very long set G such that Gc:krn\ Gr.
=1

Proof. We may prove Lemma 1 in case of n=2. First, an easy computa-
tion shows that
“) log dens (G;N\Go)=1.

Next, we put G,= Ol[a,,, bo], Go= U [cn, dn]. Then

n= n=1

(5) Ap —> 0, bp/@, —> 0, ¢ —> 00, dn/cp—> 0 (n—c0).
It is clear that for every n (=1, 2, ---) there exist at most finitely many m’s

such that [¢m, dnlN\La@n, bal#9. We denote such m’s by my, =, Ma+Ja (Jn: @
nonnegative integer) (if any). Then
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GIF\GZZnOC:Jl {Can, bn]f\[Cm,,, dmn:I)U([an’ bn]ﬂ[cmnﬂy dmn+1]>u

U([an; bn]m[cmn+]n, dmn"‘]n])} .

Now, starting from G;N\G.,, we construct a subset G of G;N\G, as follows:
Firstly, let I(J) be a subset {n} of positive integers satisfying a,>cm, (02<
dma+sy)- Secondly, we take

(anzlnan , bn/:bn/ln )
where
An=min (a,’, (bp/a,)’»)

and {0,} is a positive sequence satisfying
57;__)0; an’;n-—-—>oo’ (bn/an)‘sn—%oo,

And thirdly, making use of {a,’} and {b,’}, we define two subsets I’, J'{of
positive integers :
I'={n;nel, dn,<a.’},

J={n;n<], cmy+;,>0a"}.
Here we put
G=(GlﬂGz)\ {ng’ ([an; bn]ml:cmn, dmn])}

v {né‘)], (Can, bn]f\[cmnﬂnr d’"n“n])}

Enk=j1 [eny fn] .
Then it follows from (5) and the definitions of I’, J’ that
en —> 00, frn/en —> 00 (n—o0).

Finally we prove log dens G=1. Noting (4), it is sufficient to prove log GNZO,
where

G={ U (Can bINIemyy dmy PV A U Can buINLemyssns dmpes D}

For each r=a,, we can uniquely determine n=n(») such that a,<r<a,.;, and
it is clear that n(r)—oo as r—oo. By the definitions of I’ and J’, we have

1 dt 1 ba
< .
log » Sﬁnm,»g t = logr {(HQ%;)—l_ng%;))an lOg(\ an )

(©)

+log (Lin@ﬁ;wﬁ’fl% log+<£in Ein(:»,fj,)} _
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However, since 0,—0 as n—co and

10; 308 <‘5 =)+ log (&n[ab*ff_ﬂ‘)} —>1  (r—c0),

the right hand side of (6)—0 as »—co. Hence log dens G=0. This completes
the proof of Lemma 1.

Our second lemma is concerned with the estimate of u*(re*?) (0S60<p)
from above under the assumptions of Theorem. For the proof, the following
two propositions are essential.

ProrosITION 1. ([3, Theorem A’, pp. 144-1487]) Suppose u=u,—u, be 0-
subharmonic. Then u* is subharmonic in {re*?; 0<r<oo, 0<0<=z} and 1s con-
tinuous on {re*?; 0<r<oco; 0Z0<r}.

PROPOSITION 2. (cf. [2, p. 430]) Suppose that a function h is harmonic in the
half-disk Dp={z=re*?; 0<r< R, 0<0<=x} and continuous on the closure. Then,
for zeDp

h(re“"):Slh(t)A(t, v 0, R)dt+S:h(Re”’)B(gp, r, 0, R)do,

where
1 rsin 6 1 R?r sin 0
AT 0 = e oty cos 0 7 R—2rt R cos 07
_ 2Rrsing  (RP—r’)sing
By, v, 0, R)= T | R2e*¢—2r Re' cos 0+ 2% °

Now we prove

LEMMA 2. Let the assumptions and notations of Theorem be unchanged.
Then there exists a slowly varying function L(r) on (0, co) satisfying the follow-
ing conditions:

(i) TG, w)=r°Lr) (0<r<oo),

(i) For any 5>0, there exists ro=ry(n)>0 such that r=r, implies

u*(re*?®)<[cos (B— ) p+yIr°L(r)  (0=0=p).

Proof. First, we consult [4, §5, pp. 98-100]. Then it is easy to see under
our assumptions that

7 w¥ret)~T(r, u)=r°Llr) (r—oo),

where L(r) is a slowly varying function on (0, oo).
Choose a positive number e=e(y) satisfying

@8) et (2e+eDe<y .



AN EXTREMAL PROBLEM 79
Further, let A (=2) be a number such that

Lenyley 2ATTP 32
) e+(2e+e ){s—l— P(A—1) + Ai-re }<77 )

where y=8/% (yp=1/2). By the definition of d(co, u), we have
10)  u*()=N(r, u)<(1—0o(co, u)+e)T(r, u)y=(cos Bo+e?*L(r) (r>t,=t.(e)).
Since L(r) is a slowly varying function on (0, o), we have

L(kr)

i L)

—1 ’ >e (%{ SR=AT, r=ty, ta=1,(4, ¢, 7))

Here we put
(12) Lyr)=L({").

Then we can rewrite (7), (10) and (11) as follows:

7y |u#(rre®)—r e Li(r)| <er™ Li(r)  (r=tM7, ty=to(e)),
(10) u*(r")<(cos my p-+e)r"? Ly(r) (rzt,7),

, Likr) 1 /
an o 1{<e <A§k§A,r§t2”>.

Now, we define
(13) v(z)=u*(z") 0< ]zl <o, 0Zarg z=nm).

Then it follows from Propositions 1 and 2 that for z=re*?<= Dy

v(re”’)§$fv(te”)ﬁl(t, v, 1—0, R)dt

+va<t>A(t, r, 0, Rdt+ | w(Re)Blp, 7, 0, Ridg.

Some elementary computations show that for 0<»<R/2, 0<0<x

7 sin @ At
t24r2+4-2tr cos 0

v(rer?)< iSR v(te™)
7 Jo

(14)

rsin @ 327
i, 7
12++72—2tr cos 0 di+ R TR, w).

A

Fix »>T,=max (At,'7, At,V7, £,¥/7) and put R=Ar. From (12), (7)’ and (11) it
follows that
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Ar ¥ sin @ T/ A Ar
0 e =0 )
rsin @

N r . rsmy
<o(-7)x =7 Ay +S A+ L) o e o cos 6 9!

(15)
sin @

<(4erT— L= —l—(l—i—s)erPLl(r)S ure

Are A (r— /A)2

Ar-re msinOrp ) .,
(A=1¢ " “sinzrp }r Lir).

<(1+e)2{

In the same way, we have from (12), (10)/, (11)

¥ sin 6
b0 g o
(16)
Al-re
<(1—|—a)2{ (A—1y +(cos ny p+e) T Sl:liﬂmz)rp }ﬂle(r).

Further, from (7) and (11)" it follows that

ﬁT(Ar rou)= %—ATPrTPLl(Ar)
a7

32

< —A-A’Prr"(l+e)L;(r)— (I4e)y"e Ly(r).

Al 70
Substituting (15), (16) and (17) into (14) with R=Ar, we deduce

sin 0y p n sin (x—@)yp-cos z7p te sin (x—0)rp
sin 7y p sin zyp sin zyp

v(re”’)<(1+e)2{

24T 32
Ay T )

eLy(r)
(18)
2A-Te 32

2(AZTE T AT

<(1+ecos (x—O)yp+et brre L)

2410 32

r(A—1y T AT )}”*’le,

{cos (r—0)rp+e+(e +2e)(e+
Using (9) into (18) we have
vrer?)<[cos (z—0)rp+nIr'tLy(r)  (r>To 0=Z0=x).
Therefore, in view of (13)

u*(rretrfy<[cos (my—07) p+1r'e Li(r) (r>T, 0<6=<n).

u’+142u cos @ du
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Hence it follows from (12) that
u*(re*®)<[cos (B—Dp+ylr°L(r)  (r>TJ=r,).
This completes the proof of Lemma 2.

Combining Lemma 2 with Baernstein’s method in [4, §5, pp. 98-110], we
can prove the following Lemma 3.

LEMMA 3. Let the assumptions and notations of Theorem be unchanged. Let
a 0<a<p) be given. Then, there exists a very long set G, and a slowly vary-
ing function L(r) on (0, o) such that

T(r, u)=r°L{r) 0<r<oo), u¥(re**)~cos p(B—a) rfL(r) (r—oo, reG,).

To see this, we may follow Baernstein’s procedure in [4, §5] with 7,=
(B—a)/x, u#(zle*®), u*(r1ef), u*(r'1e*?) in place of his 7, v(z), T.(r), Ni(r),
respectively. In fact, by virtue of Lemma 2 his argument there does work in
this case.

The following proposition will play an important role in the proof of
Theorem.

PrOPOSITION 3. ([9, Lemma 6.1.] Let ¢, and t, satisfy all the following con-
ditions:
O0<Ry=R(u)<t,=R/4 (=1, 2),
(+ori=-<lte (520,
2

Then
[u#(tet 1) —u#(f,e0%) |

< ATR, ) {o(1+ log* %)+|02-01|<1+10g*l~ﬁji8—1[>}
0=0,=x, 0=0,=n),

where A, is an absolute constant (>0).

2. Proof of Theorem. Let 7 (0<y<1) be given. Choose ¢ (0<o<1)
such that
1
0
A <1—Hog 0>a—l—op<7)/2,

where A, is the absolute constant (>0) which appears in Proposition 3. Further,
take ¢>0 so that

1
(19) (1) A#(1+10g =)o+ ap<7/2.
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By Theorem B and Lemma 3, for each a (0=a=p) there exist a very long set
G, and a function L(r) varying slowly on (0, c0) such that

(20) T(r, u)=r°L(r) 0<r<o0),
@1 u*(re**)—cos p(B—a)-r* L(r)| <(n/2)r* L(r) (reGa, r=ra(y)).
Since L is a slowly varying function on (0, co), we have

L(kr)
L)

It follows from Proposition 3 that

1< (—i—gkg, rzid, o).

(22) \
00 1
lu¥(re’®)—u*(re)| <A00(1—|—10g U)T(4r, u)

(23)
(|0—al<a, 6<[0, f1, r>Ry).

Now, we put R,=max{r,, t;, Ro}. Then from (23), (20), (21), (22) and (19)
it follows that

|u*(re*?)—cos p(B—)T(r, u)|
Zut(red)—ut@re')|+ | u*(re**)—cos p(f—a)-r° L(r)|

(24) +]cos p(B—a)—cos p(f—6)|7* L(r)
<{As (1-+10g —(17—)(1—1—5)4"+1]/2+ap}rPL(r)<7]T(r, u)

(reGa, ¥=ZR,y, |0—al <o, €[00, B]).

Since {(@—0, a+0)}aen, s1 is a covering of [0, BJ, there exist {a,} T, (a,€[0, B,
m<co) such that

(25) [0, 1 U (as—0, arto).
Hence, if we put

REmaX (Ral’ trty, Ram):R(n)) 55 ;n\ Gak »

k=1
we deduce from (24) and (25) that
(26) |u#(ret®)—cos p(B—0)T(r, w)| <n-T(r, u)
(reG, r=R(), 0S0<p).

Combining (26) with Lemma 1, we have the desired result.
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