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AN EXTREMAL PROBLEM ASSOCIATED WITH

THE SPREAD RELATION

BY HIDEHARU UEDA

0. Introduction. The notion of spread was introduced and investigated by
Edrei [6], [7], who also conjectured the spread relation. This relation has now
been proved by Baernstein [2] whose remarkable analysis rests on the intro-
duction of a new function T*(z) (z=reιθ), closely related to Nevanlinna charac-
teristic T(r, / ) .

Let / be meromorphic and nonconstant. Suppose δ(oo, /)>0. Then it is
suggested by Nevanlinna's theory that \f(z)\ must be "large" on a substantial
portion of each circle \z\=r when r is large. The spread relation provides a
quantitative form of this statement.

To state this relation we require some notations. Let / be a meromorphic
function of finite lower order μ. Fix a sequence {rm} of Pόlya peaks of order
μ of f(z). Let Λ(r) be a positive function with Λ(r)=o(T(r, /)) (r-+oo). Define
the set of argument

EA(r)={θ:log\f(retθ)\>Λ(r)},

and let

α i4(oo)=liin meas EΛ(rm).

Then the spread of oo is defined by

(j(oo)== inf CTΛ(OO) ,

where the "inf" is taken over all functions A satisfying A(r) = o(T(r, /)).
Spread relation:

4
(1) σ(oo)^min{2τr, — si

(This inequality is best possible.) This makes it possible to solve the deficiency
problem for functions with l / 2 < μ ^ l . (See [8].)

Baernstein's proof of the spread relation (1) is based on the properties of
the function

(2) T*(reιθ)=m*(reιθ)+N(r, f) (r>0, 0£θ£π),
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where

ft 1 r

m*(reι)~ sup TΓ—\ log |/(re

the "sup" is taken over all measurable sets E of measure \E\=2Θ. Baernstein
[2] showed that T*(reιθ) is a subharmonic function in 0<r<oo, 0<θ<π.

In [9], Edrei and Fuchs introduced the notions of the hypotheses ES and
the extremal spread.

Hypotheses ES. Let f{z) be a meromorphic function of lower order μ
(0<μ<oo), and let {rm} be a sequence of Pόlya peaks of order μ of T(r, / ) .
Assume that

(i) δ(co} / ) > 0 and, if 0<//^l/2, assume in addition that δ(oo, /)<1—cos πμ
holds

(ii) the sequence {rm} satisfies for some A

lim meas EA(rm)= — sm'\l^^-^ =2β .
m-oo μ \ 2

Extremal spread. If f(z) satisfies the hypotheses ES, we say that it has
extremal spread (of co).

Edrei and Fuchs [9], [10] considered all the meromorphic functions charac-
terized by the hypotheses ES. One of their results is the following Theorem A.

THEOREM A. Let f(z) be meromorphic of lower order μ (0<μ<co) and let
f(z) have extremal spread of oo. Consider the intervals

m} (s>0, m = l , 2,

Then, for every s>0,

T(r f)/rfi Mr f)

Further, there exists a sequence {rjm}, 57m—̂ 0, independent of r and θ, such that

I T\rexθ)-T(r, f) cos μ(β-θ)\<ηmT(r, f) (O^θ^β),

provided r^Im{s).

Also they have satisfactorily determined the asymptotic behavior of log|/(z)|
and of the arguments of almost all the zeros and poles in the annuli | z | e / m ( s )
(m=l, 2, •••).

On the other hand, Baernstein [4] also considered extremal problems asso-
ciated with the spread relation. To describe his result we introduce some nota-
tions and terminology. Let M be a ^-subharmonic function which can be repre-
sented as
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(2) M(Z)

where ux and w2 are subharmonic in the plane. For a d-subharmonic function
(2) we put

N(r, u)= -2π

and the Nevanlinna characteristic of w is defined by

T(r, u)=~\+πu+(reίθ)dθ+N(r, u).
Zπ J-7Γ

Further the Baernstein characteristic of u is defined by

u\reιθ)= sup ~— \ u{reιv)dφ+N(r, u2) (0<r<oo, O^θ^π),

where the "sup" is taken over all the measurable sets E of measure \E\=2Θ.
Suppose next that Gc(0, oo) is a set which is unbounded above, and that

L(r) is a positive function. We say that L varies slowly on G (in the sense
of Karamata) if

(3) hm •—-—— = 1
r-co L(r)
r&G κ J

holds uniformly for k in any interval A~1^k^A, A>1. Further, we say that
the set G is very long if

(a) G has logarithmic density one, i.e.

log r Jσnci.r] t

and

(b) G = n O [ α n , fcn]

where an-»co and bn/an-*co as n—>oo.
One of Baernstein's results in [4] is the following Theorem B.

THEOREM B. Suppose u = uλ—u2 be δ-subharmonic and suppose u has order
jθe(0, oo). Let Λ(r) be a nonnegative function satisfying Λ(r)=o(T(r, u)) (r—»oo).
Then, if

and

4
limmeastό1: u(reιθ)>Λ{r)} ^ — sin"1

there exist a very long set G and a function L(r) varying slowly on G such that
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T{r, u)=r<>L{r).

Moreover, if δ(oo, u)<l, then

N{r, u2) ~ (l-δ(oo, u))T(r, u) (r—αo,

In Theorem B, the exceptional set F=(0, oo)—G on which (3) may fail can
actually occur. Baernstein [4] showed this fact by applying Corollary 1 of [13
to the function constructed by Hayman [11, Theorem 3]. In order to see this
fact more directly, we can use the notion of the flexible proximate order which
was introduced by Drasin [5].

Let p and pi be any positive numbers such that

Take for γ (^1) a positive number satisfying

pi=

and with this γ we set

p'=pr
Then it is clear that

Let λ{r) (r>0) be a continuous, nonnegative function which is continuously
differentiable off a discrete set D, such that

rλ\r) — > 0 (r-*o

Let E and E1 be sets of the form

E= 0 [flu, 6n] , ^1= 0 [fen^fln, * n W ,
W = l 71 = 1

where

[ t-1dt=o(logr) (r—oo).
J^nci.r]

Now, suppose that Λ(r) satisfies

and let ^(r) be extended to E1—E so that it is continuous and
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n tζΞ(kn-
λan, a n ) ,

tλ\t)=\
{ n, knbn).

Then it is clear that

{XogrY^m^dt—> pf (r-oo).

Let f(z) be a canonical product with negative zeros with counting function

Then f(z) is of order io
/ (<1) and so, for a suitable branch of log/(z)

Using the reasoning of the proof of Proposition in [5, p. 133], we have

where the o(l) tends to zero uniformly as z—>oo in any sector: \θ\^π— η.
Here, we define u{z) as follows:

max {log I/(21") 1,0}

0 (β^lt

It is easily verified that u is subharmonic in the plane, has order pf/γ—p, and
satisfies

ίiϊnmeas{#: u(re%θ)>0}=π/ρ=2β«2π),

However, since rλ'(r)-*0 (r—>oo, r^.D) implies ^(^r)=^(r)+o(l) (r—>co) for fixed
k (>0), we have n(kr)~kHΌn(r). Hence

^ J ^ r"r (r-oo).

This illustrates the existence of the exceptional set F.
Now, comparing Theorem B with Theorem A, the following problem is

naturally raised.

Problem. Do the assumptions of Theorem B imply the existence of some
very long set G and slowly varying function L(r) on G such that
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T{r,u)=rPL(r) (0<r<oo), -jψ^ >cosp(β-θ) (r->oo,

uniformly for 0e[O, /5]?

For example, M(^) constructed above satisfies the conclusion of Problem with
G={r:r1/Ϊ^E1

C} and

L(r)= (1+0(1)) Ύ r

 / y T (Γ6G).
p sin (TΓO/TO

However, I have been unable to solve this problem. In this note, I prove
the following result.

THEOREM. Let the assumptions and notations of Theorem B be unchanged.
Further, suppose that T(r, u) satisfies the following growth condition'.

4
r, u)

{uniformly for k in any interval Λ~1^k^Λ, ^4>1). Then, there exist a very
long set G and a function L(r) varying slowly on (0, oo) such that

u*(rριθ)
T(r, u)=r?L(r) (0<r<σo), ^ / . ; >cosp(β-θ) (r->co,reG)

T(r, u) r r

uniformly for #e[0, /3].

1. Preliminaries of the proof of Theorem. In order to prove our theorem
we need some facts. The fact that we need about very long set is contained
in Lemma 1 below.

LEMMA 1. Let G1} •••, Gn (2^n<oo) be distinct very long sets. Then, there
n

exists a very long set G such that Gd Γ\Gk.

Proof. We may prove Lemma 1 in case of n—2. First, an easy computa-
tion shows that

(4) log dens (G1ΓΛG2)=1 .

Next, we put Gx= 0 ίan, bn~], G2= 0 ίcn, d n ] . Then

(5) an—> oo, bn/an—> oo, Cn—> oo, dn/cn—> oo (n->oo).

It is clear that for every n (=1, 2, •••) there exist at most finitely many ra's
s u c h t h a t [_cm, dm~]r\[.Q<n, bn~]φφ. W e d e n o t e s u c h ra's b y mn, ••• , mn+jn Un- &

nonnegative integer) (if any). Then
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Now, starting from Gλr\G2, we construct a subset G of G1r\G2 as follows:
Firstly, let /(/) be a subset {n} of positive integers satisfying an>cmn (bn<
dmn+jn)> Secondly, we take

CL n —Λ-nCLji , On — O n / An t

where

λn=mm(an

δn, Φn/an)
δn)

and {δn} is a positive sequence satisfying

δn >0, an

δn >CO, {bjanfn > C X 3 .

And thirdly, making use of {an'} and {bn'}y we define two subsets Γ, /{of
positive integers:

/ ' = { n ; n e / , dmn<an'},

J'={n;

Here we put

{ U

= 0 [en, /»] .
71 = 1

Then it follows from (5) and the definitions of /', J' that

en—
>co, fn/en—>°° (n-*oo).

Finally we prove log dens G = l . Noting (4), it is sufficient to prove log G=0,
where

For each r^fli, we can uniquely determine n = n(r) such that α n ^ r < α n + i , and
it is clear that n(r)—^oo as r->oo. By the definitions of /' and / , we have

n<n(r) n<n(.r)

(6)
1 lOg f " " " ί-^7ur;> ' J \ , i Λ _+/ x x l i n L^n(r)j ^J
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However, since δn-^0 as n—>oo and

T M Σ log (-bn-)+ log (

the right hand side of (β)-»0 as r^co. Hence log dens G=0. This completes
the proof of Lemma 1.

Our second lemma is concerned with the estimate of u*(reιθ) (O^θ^β)
from above under the assumptions of Theorem. For the proof, the following
two propositions are essential.

PROPOSITION 1. ([3, Theorem A', pp. 144-148]) Suppose u = u1—u2 be δ-
subharmonic. Then u* is subharmonic in {rexθ 0<r<oo, 0<θ<π} and is con-
tinuous on {reιθ 0 < r < c o ; O^θ^π}.

PROPOSITION 2. (cf. [2, p. 430]) Suppose that a function h is harmonic in the
half-disk ΌR—{z =rexθ\ 0<r<R, 0<θ<π} and continuous on the closure. Then,
for ZΪΞDR

h(reιθ)^R

Rh(t)Λ(t, r, θ, R)dt+^h{Reιv)B(φ, r, θ, R)dφ,

where

.. . „, 1 r sin θ 1 R2r sin θ
A(t, r, θ, Λ) = - r - a Ί — e — s r — - Γ - -π f+r2-2trcosθ π R4-2rtR2 cos θ+rΨ '

r ft m _ ZRrήnθ (^-r^sinĵ
, r, σ, KJ ^ ^RV^ cosθ+r2\2 *

Now we prove

LEMMA 2. Let the assumptions and notations of Theorem be unchanged.
Then there exists a slowly varying function L(r) on (0, oo) satisfying the follow-
ing conditions:

(i) T{r,u)=rPL{r) (0<r<oo),

(ii) For any η>0, there exists ro=ro(η)>O such that r^r0 implies

u*(reιθ)<tco$(β-θ)p+ηypL(r) (O^θ^β).

Proof. First, we consult [4, § 5, pp. 98-100]. Then it is easy to see under
our assumptions that

(7) u*(reιP)~T(r, u)=rPL(r) (r-»oo),

where L(r) is a slowly varying function on (0, oo).
Choose a positive number e=ε(^) satisfying

(8)



AN EXTREMAL PROBLEM

Further, let A (Ξ>2) be a number such that

(9) ε + (2ε-i-ε2)jε+ —-'~χ^τψ + "~AT~To

where y—βlπ (γp^l/2). By the definition of δ(^, u), we have

(10) u*(r)=N(r, M2)<(1—δ(oo, u)+ε)T(r, u)=(co$ βp+ε)rpL(r)

Since L(r) is a slowly varying function on (0, oo), we have

L(kr)

79

(11)
Ur)

>e (-jjr^k^Ar, r ^ ^ U=U(A, ε,

Here we put

(12) L!(r)=L(rO.

Then we can rewrite (7), (10) and (11) as follows:

(7)'

(10)' u*(rη<(cosπ

-1

Now, we define

(13) v(z)=u*(z7) ( 0 < | z | < o o , O^c

Then it follows from Propositions 1 and 2 that for z—reιθ^DR

t, r, π-θ, R)dt

+ [Rv(t)A(t, r, θ} R)dt+\πv{Reτv)B(φ, r, θ, R)dψ.
Jo Jo

Some elementary computations show that for 0<r<R/2, 0<θ<π

t2+r2jr2tr cos θ
(14)

32r

Fix r>To=max(Ato

1/r, Atx

llr, t2

lίr) and put R=Ar. From (12), (7)r and (11/ it
follows that
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r sin Θ
f«+ r +2fr cos 0 a t ~ \ ) o +)ΠA

(15)

cos

In the same way, we have from (12), (10)', (11)'

[Λr[Λr

v(t)

 r_imA dt

Jo { ) f+r*-2tr cos θ
(16)

Further, from (7) and (11)' it follows that

Ύ)r Ύ?
T( /1?W 77Ϊ— — -

Ar { T ' ]~ A
(17)

Substituting (15), (16) and (17) into (14) with R=Ar, we deduce

v(r€xθ)<q\c)*lSinθrp 1 slΏ^-β^P'CQSπrp _ sin (π-θ)rp
I sin TΓ^/) sin πγp sin TΓΓ/?

, lA1-^ , 32

^ π(A-l)2 ^ A1-

(18)
S2+

Using (9) into (18) we have

v(reιθ)<lcos {π-θ)γp + y~]rrpLx{r) {r>TQ, O^θ^π)

Therefore, in view of (13)

u*(rreirθ)<Zcos (πγ-θγ)pΛ->η~]rrPLλ{r) (r>T0, O^θ^
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Hence it follows from (12) that

u%reiθ)<lcos (β-θ)p-\-η']rPL{r) (r>To

r=ro).

This completes the proof of Lemma 2.

Combining Lemma 2 with Baernstein's method in [4, §5, pp. 98-110], we
can prove the following Lemma 3.

LEMMA 3. Let the assumptions and notations of Theorem be unchanged. Let
a (0<a<β) be given. Then, there exists a very long set Ga and a slowly vary-
ing function L{r) on (0, oo) such that

T(r, u)=r?L(r) (0<r<oo), u*(reιa)~co$ p(β-a)-rpL(r) (Γ->CXD, r e G α ) .

To see this, we may follow Baernstein's procedure in [4, §5] with γx =
(β—a)/π, u*(z^e%a), w # (r^^>, u*(rTιexa) in place of his γ, v(z), Tx(r), N^r),
respectively. In fact, by virtue of Lemma 2 his argument there does work in
this case.

The following proposition will play an important role in the proof of
Theorem.

PROPOSITION 3. ([9, Lemma 6.1.] Let tx and t2 satisfy all the following con-
ditions :

0<R0=Ro(u)<tJ^R/4 0 = 1, 2),

(1 + σ)-1^ —

Then

where Λo is an absolute constant (>0).

2. Proof of Theorem. Let rj ( 0 < ^ < l ) be given. Choose σ (0<σ< 1)
such that

where Ao is the absolute constant (>0) which appears in Proposition 3. Further,
take ε>0 so that

(19)
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By Theorem B and Lemma 3, for each a (O^a^β) there exist a very long set
Ga and a function L(r) varying slowly on (0, oo) such that

(20) T(r, u)=rPL(r) (0<r<oo),

(21) \u*(re™)-cosP(β-a) r0L(r)\<(V/2)rPL(r)

Since L is a slowly varying function on (0, oo), we have

(22)
L(kr)

- 1 <ε j ^ £ ^ 4 , r ^ ( 4 , e)) .
L(r)

It follows from Proposition 3 that

\u\reid)-u\reιa)\<A«σ(l+\og— )τ(4r, u)

<23)
{\θ-a\<σ, θ^ίθf β],r>RQ).

Now, we put Ra~mdiX{ra, tίf Ro}. Then from (23), (20), (21), (22) and (19)
it follows that

\u*(re%θ)-cos p(β-θ)T(r, u)\

^ I u*(reιθ)-u*(reιa)\ + | u\reιa)-cos p{β-a)-rPL{r)\

(24) + I cos p(β-a)-zos p(β-θ) \ rPL(r)

r, u)

(rtΞGa, r^Ra, \θ-a\<σ, θt=[O, βj).

Since {(a—σ, a+σ)} aeio,βi is a covering of [0, /3], there exist {α;}JLi ( ^ ^ [ 0 , /3],
m<oo) such that

m

(25) [0, ^ C L / C α k-σ, α * + σ ) .

Hence, if we put

R=max(Rai, - , Ram)=R(y), G=Γ\Gak9

we deduce from (24) and (25) that

(26) \u*(reiθ)-cos p(β-θ)T(r, u)\<η>T(r, u)

Combining (26) with Lemma 1, we have the desired result.
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