A DUALITY RELATION FOR HARMONIC DIMENSIONS AND ITS APPLICATIONS

By Shigeo Segawa

Consider an end Ω in the sense of Heins [4]. Denote by $\mathscr{P}(\Omega)$ the class of nonnegative harmonic functions on Ω with vanishing boundary values on $\partial \Omega$. A nonzero function $h \in \mathscr{P}(\Omega)$ is said to be minımal if any $g \in \mathscr{P}(\Omega)$ dominated by h is a constant multiple of h. The cardinal number of normalized minimal functions is referred to as the harmonic dimension of Ω ([4]) which will be denoted by $\operatorname{dim} \mathscr{P}(\Omega)$.

In [4], Heins showed that there exists an end with any given integral harmonic dimension and asked whether there exist ends with infinite harmonic dimensions. Subsequently, the existence of ends Ω with $\operatorname{dim} \mathscr{P}(\Omega)=A$ (the countablly infinite cardinal number) and with $\operatorname{dim} \mathscr{P}(\Omega)=\mathcal{C}$ (the cardinal number of continuum) were shown by Kuramochi [6] and Constantinescu-Cornea [1], respectively.

We are particularly interested in the following criterion of Heins [4]: The harmonic dimension of Ω is one if and only of every bounded harmomic function on $\bar{\Omega}$ has a limit at the edeal boundary. Motivated by this criterion we consider the quotient space $\mathcal{B}(\Omega)=H B(\bar{\Omega}) / H B_{0}(\bar{\Omega})$ where $H B(\bar{\Omega})$ is the linear space of bounded harmonic functions on $\bar{\Omega}$ and $H B_{0}(\bar{\Omega})$ the subspace of $H B(\bar{\Omega})$ consisting of u such that u has the limit 0 at the ideal boundary. In terms of the dimension of the linear space $\mathscr{B}(\Omega), \operatorname{dim} \mathscr{B}(\Omega)$ in notation, the above criterion may be restated as follows: $\operatorname{dim} \mathscr{P}(\Omega)=1$ if and only if $\operatorname{dim} \mathscr{B}(\Omega)=1$. The Heins criterion in this formulation can be generalized as follows which is the main achievement of the present paper:

Theorem 1. If either $\operatorname{dim} \mathscr{P}(\Omega)$ or $\operatorname{dim} \mathscr{B}(\Omega)$ is finte, then $\operatorname{dim} \mathscr{P}(\Omega)=$ $\operatorname{dim} \mathscr{B}(\Omega)$.

The proof will be given in no. 1.3 in a more general settıng. Two applications, which may have their own interests, of Theorem 1 will be discussed in the rest. The first is concerned with a relation between harmonic dimensions and moduli conditions which, in a sense, generalizes a result in [4] p. 215. As the second application, an example of ends Ω with $\operatorname{dim} \mathscr{P}(\Omega)=\mathcal{A}$ will be given.

The last but not the least the author would like to express his sincere

[^0]thanks to Professor M. Nakai for his helpful suggestions.
1.1. A relatively noncompact subregion Ω of an open Riemann surface is referred to as an end ([4]) if Ω satisfies the following conditions: (i) the relative boundary $\partial \Omega$ consists of a finite number of analytic Jordan curves, (ii) there exist no nonconstant bounded harmonic functions on Ω with vanishing boundary values on $\partial \Omega$, (iii) Ω has a single ideal boundary component. In this section, let Ω be a relatively noncompact subregion satisfying the condition (i). Denote by β the ideal boundary of Ω. Without loss of generality, we may assume that there exists an open Riemann surface R with the exhaustion $\left\{R_{n}\right\}_{n=0}^{\infty}$ such that $\Omega=R-\bar{R}_{0}$. For $u \in H B(\bar{\Omega})$, let u_{n} be the harmonic function on $\Omega \cap R_{n}$ with boundary values $\left.u\right|_{\partial \Omega}$ on $\partial \Omega$ and 0 on ∂R_{n}. Observe that $\lim _{n \rightarrow \infty} u_{n}$ exists and belongs to $H B(\bar{\Omega})$. Set $H B(\bar{\Omega} ; \beta)=\left\{u \in H B(\bar{\Omega}) ; u=\lim _{n \rightarrow \infty} u_{n}\right\}$. For $v \equiv 1 \in H B(\bar{\Omega})$, set $e=\lim _{n \rightarrow \infty} v_{n}$. Consider the linear space $B(\Omega ; \beta)=\{u / e ; u \in H B(\bar{\Omega} ; \beta)\}$, its subspace $B_{0}(\Omega ; \beta)=\left\{w \in B(\Omega ; \beta) ; \lim _{p \rightarrow \beta} w(p)=0\right\}$, and the quotient space $\mathcal{B}(\Omega ; \beta)$ $=B(\Omega ; \beta) / B_{0}(\Omega ; \beta)$. Denote by $\operatorname{dim} \mathscr{B}(\Omega ; \beta)$ the dimension of the linear space $\mathcal{B}(\Omega ; \beta)$. Then we have the following duality relation (cf. [4], Hayashi [3], and Nakai [7]):

Theorem 2. If either $\operatorname{dim} \mathscr{Q}(\Omega)$ or $\operatorname{dim} \mathscr{C B}(\Omega ; \beta)$ is finite, then $\operatorname{dim} \mathscr{P}(\Omega)=$ $\operatorname{dim} \mathscr{B}(\Omega ; \beta)$.

The above theorem implies Theorem 1. In fact, if Ω satisfies the condition (ii) then $H B(\bar{\Omega} ; \beta)=H B(\bar{\Omega})$ and $e \equiv 1$. Hence $B(\Omega ; \beta)=H B(\bar{\Omega})$ and $B_{u}(\Omega ; \beta)=$ $H B_{0}(\bar{\Omega})$, and a fortiori $\mathscr{B}(\Omega ; \beta)=\mathscr{B}(\Omega)$.
1.2. Consider the linear space $\mathcal{E}(\Omega)=\left\{h_{1}-h_{2}: h_{1}, h_{2} \in \mathscr{P}(\Omega)\right\}$ and the bilinear functional $(w, h) \mapsto\langle w, h\rangle=-\int_{\partial \Omega} w^{*} d h=\int_{\partial \Omega \Omega} w(\partial h / \partial n) d s$ on $B(\Omega ; \beta) \times \mathcal{E}(\Omega)$ where $\partial / \partial n$ is the inner normal derivative. Set $Q_{\Omega}=\left\{\left\{h \in \mathscr{P}(\Omega) ;-\int_{\partial \Omega} * d h=1\right\}\right.$.

Lemma 1. Every $w \in B(\Omega ; \beta)$ satisfies the following equalities:

$$
\begin{equation*}
\underset{p \rightarrow \beta}{\limsup } w(p)=\sup \left\langle w, Q_{\Omega}\right\rangle, \quad \liminf _{p \rightarrow \beta} w(p)=\inf \left\langle w, Q_{\Omega}\right\rangle . \tag{1}
\end{equation*}
$$

Although the essence of the proof of this lemma is found in [3] and [4], we give the proof for the sake of completeness.

Given an arbitrary cluster value α of w at β and a sequence $\left\{p_{n}\right\}$ in Ω such that $\lim _{n \rightarrow \infty} p_{n}=\beta$ and $\lim _{n \rightarrow \infty} w\left(p_{n}\right)=\alpha$. Observe that

$$
\begin{equation*}
u\left(p_{n}\right)=-\frac{1}{2 \pi} \int_{\partial \Omega} u^{*} d g\left(\cdot, p_{n}\right) \tag{2}
\end{equation*}
$$

for $u \in H B(\bar{\Omega} ; \beta)$, where $g\left(\cdot, p_{n}\right)$ is the Green's function on Ω with pole p_{n}.

Applying (2) to $e w$ and e, we see that $w\left(p_{n}\right)=-\int_{\partial \Omega \Omega} w^{*} d\left(g\left(\cdot, p_{n}\right) / 2 \pi e\left(p_{n}\right)\right)$ and $1=-\int_{\partial \Omega} * d\left(g\left(\cdot, p_{n}\right) / 2 \pi e\left(p_{n}\right)\right)$. Therefore a subsequence of $\left\{g\left(\cdot, p_{n}\right) / 2 \pi e\left(p_{n}\right)\right\}$ has a limiting function g, which belongs to Q_{Ω}, and $\alpha=-\int_{\partial \Omega} w^{*} d g=\langle w, g\rangle$. Thus

$$
\inf \left\langle w, Q_{\Omega}\right\rangle \leqq \liminf _{p \rightarrow \beta} w(p), \quad \underset{p \rightarrow \beta}{\limsup } w(p) \leqq \sup \left\langle w, Q_{\Omega}\right\rangle .
$$

Next, given an arbitrary $h \in Q_{\Omega}$ and let $h_{m n}$ be the harmonic function on $R_{m}-\bar{R}_{n}(m>n)$ with boundary values $\left.h\right|_{\partial R_{n}}$ on R_{n} and 0 on ∂R_{m}. Set $h_{n}=$ $\lim _{m \rightarrow \infty} h_{m n}$. Observe that

$$
\begin{equation*}
\left\langle\frac{u}{e}, h\right\rangle=-\int_{\partial \Omega} u^{*} d h=\int_{\partial R_{n}} u^{*} d\left(h-h_{n}\right) \tag{3}
\end{equation*}
$$

for $u \in H B(\bar{\Omega} ; \beta)$. Applying (3) to $e w$ and e, we see that

$$
\langle w, h\rangle=\int_{\partial R_{n}} e w^{*} d\left(h-h_{n}\right) \quad \text { and } \quad 1=\int_{\partial R_{n}} e^{*} d\left(h-h_{n}\right) .
$$

Since $h-h_{n} \geqq 0$ on $R-R_{n}$, this implies that $\inf _{\partial{ }_{\partial R_{n}}} w \leqq\langle w, h\rangle \leqq \sup _{\partial R_{n}} w$ and a fortiori

$$
\underset{p \rightarrow \beta}{\liminf } w(p) \leqq \inf \left\langle w, Q_{\Omega}\right\rangle, \quad \sup \left\langle w, Q_{\Omega}\right\rangle \leqq \limsup _{p \rightarrow \beta} w(p)
$$

This completes the proof.
1.3. Proof of Theorem 2. We first remark that the dimension of the linear space $\mathcal{E}(\Omega), \operatorname{dim} \mathcal{E}(\Omega)$ in notation, coincides with $\operatorname{dim} \mathscr{P}(\Omega)$ if either $\operatorname{dim} \mathcal{E}(\Omega)$ or $\operatorname{dim} \mathscr{P}(\Omega)$ is finite (cf. e. g. [4]).

Consider the $\mathcal{E}(\Omega)$-kernel ($B(\Omega ; \beta)$-kernel resp.)

$$
\begin{aligned}
& K_{1}=\bigcap_{h \in \mathcal{C}(\Omega)}\{w \in B(\Omega ; \beta) ;\langle w, h\rangle=0\} \\
& \left(K_{2}={ }_{w \in B(\Omega ; \beta)}\{h \in \mathcal{E}(\Omega) ;\langle w, h\rangle=0\} \text { resp. }\right)
\end{aligned}
$$

of the bilinear functional $(w, h) \mapsto\langle w, h\rangle$. By means of (1), we have that $K_{1}=$ $B_{0}(\Omega ; \beta)$. Let h be in K_{2}. Then $\langle w, h\rangle=\int_{\partial \Omega} w(\partial h / \partial n) d s=0$ for any $w \in B(\Omega ; \beta)$ and hence $\partial h / \partial n \equiv 0$ on $\partial \Omega$. By the fact that $h \equiv 0$ on $\partial \Omega$, we conclude that $h \equiv 0$ on Ω and especially $K_{2}=\{0\}$. Therefore $\mathcal{B}(\Omega ; \beta)=B(\Omega ; \beta) / K_{1}$ and $\mathcal{E}(\Omega)$ $=\mathcal{E}(\Omega) / K_{2}$ can be considered to be subspaces of $\mathcal{E}(\Omega)^{*}$ and $\mathscr{B}(\Omega ; \beta)^{*}$ (conjugate spaces of $\mathcal{E}(\Omega)$ and $\mathcal{B}(\Omega ; \beta))$ respectively and in particular

$$
\operatorname{dim} \mathscr{B}(\Omega ; \beta) \leqq \operatorname{dim} \mathcal{E}(\Omega)^{*}, \quad \operatorname{dim} \mathcal{E}(\Omega) \leqq \operatorname{dim} \mathscr{B}(\Omega ; \beta)^{*}
$$

Since finite dimensional linear spaces are isomorphic to their conjugate spaces, it follows from the above inequalities that $\operatorname{dim} \mathscr{B}(\Omega ; \beta)=\operatorname{dim} \mathcal{E}(\Omega)=\operatorname{dim} \mathscr{P}(\Omega)$.
2.1. Let Ω be an end. As in no. 1.1, Ω can be considered to be a subregion of a null boundary Riemann surface R with a normal exhaustion $\left\{R_{n}\right\}_{n=0}^{\infty}$ (i. e. $R-\bar{R}_{n}$ has no relatively compact components) such that $\Omega=R-\bar{R}_{0}$. Denote by ω_{n} the harmonic measure of $\partial R_{2 n}$ with respect to $A_{n}=R_{2 n}-\bar{R}_{2 n-1}$. The modulus of $A_{n}, \bmod A_{n}$ in notation, is the quantity $2 \pi /\left(\int_{\partial \Omega_{2 n}} * d \omega_{n}\right)$. Consider
the following conditions: the following conditions:
(A.1) For every $n \in \boldsymbol{N}$, there exists a unique $N \in \boldsymbol{N}$ such that A_{n} consists of N disjoint annuli $A_{n 1}, A_{n 2}, \cdots, A_{n N}$;
(A.2) $\sum_{n=1}^{\infty} \bmod A_{n}=+\infty$.

Then we prove (cf. [4] and Kawamura [5])
Theorem 3. If $\left\{A_{n}\right\}$ satisfies (A.1) and (A.2), the harmonic dimension of Ω is at most N.
2.2. Set $\mu_{n}=\bmod A_{n}$. The function $z_{n}=x_{n}+i y_{n}=\mu_{n}\left(\omega_{n}+\imath \omega_{n}^{*}\right) \quad\left(\omega_{n}^{*}\right.$ is the conjugate harmonic function of ω_{n}) maps \bar{A}_{n}, less suitable slits on which ω_{n}^{*} is constant, conformally into the horizontally sliced rectangle $\left\{x_{n}+\imath y_{n} ; 0 \leqq x_{n} \leqq \mu_{n}\right.$, $\left.0 \leqq y_{n} \leqq 2 \pi\right\}$. Consider closed curves $l_{n 2}\left(x_{n}\right)=\left\{p \in A_{n \imath} ; \operatorname{Re} z_{n}(p)=x_{n}\right\} \quad(\imath=1, \cdots, N$; $\left.0 \leqq x_{n} \leqq \mu_{n}\right)$ and set $l_{n}\left(x_{n}\right)=\cup_{i=1}^{N} l_{n i}\left(x_{n}\right)$. Given arbitrary $N+1$ functions u_{1}, \cdots, u_{N+1} in $H B(\bar{\Omega})$. Denote by $\delta_{n i j}\left(x_{n}\right)$ the oscillation of u, on $l_{n i}\left(x_{n}\right)$ and set

$$
\delta_{n}\left(x_{n}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N+1} \delta_{n i j}\left(x_{n}\right) .
$$

We assume that $\delta_{n}\left(x_{n}\right)$ attains its minimum when $x_{n}=t_{n}$. Then we have

$$
\delta_{n}=\delta_{n}\left(t_{n}\right) \leqq \sum_{j=1}^{N+1} \int_{0}^{2 \pi}\left|\frac{\partial u_{j}}{\partial y_{n}}\right| d y_{n} \quad\left(0 \leqq x_{n} \leqq \mu_{n}\right)
$$

The Schwarz inequality yields

$$
\delta_{n}^{2} \leqq 2 \pi(N+1) \sum_{j=1}^{N+1} \int_{0}^{2 \pi}\left|\frac{\partial u_{j}}{\partial y_{n}}\right|^{2} d y_{n}
$$

Integrating both sides of the above from 0 to μ_{n} with respect to $d x_{n}$, we obtan

$$
\delta_{n}^{2} \mu_{n} \leqq 2 \pi(N+1) \sum_{j=1}^{N+1} \int_{0}^{\mu_{n}} \int_{0}^{2 \pi}\left|\frac{\partial u_{j}}{\partial y_{n}}\right|^{2} d x_{n} d y_{n} \leqq 2 \pi(N+1) \sum_{j=1}^{N+1} D_{A_{n}}\left(u_{j}\right),
$$

where $D_{A_{n}}\left(u_{j}\right)$ denotes the Dirichlet integral of u, on A_{n}. Since each u, has the finite Dirichlet integral on Ω, we see that $\sum_{n=1}^{\infty} \delta_{n}^{2} \mu_{n}$ converges. By means of (A.2), this yields

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \delta_{n}=0 . \tag{4}
\end{equation*}
$$

2.3. By virtue of Theorem 1 , we have only to show that there exists a nontrivial linear combination $\sum_{j=1}^{N+1} c_{\rho} u_{\jmath}\left(c_{j} \in \boldsymbol{R}\right)$ belonging to $H B_{0}(\bar{\Omega})$, i. e.
$\operatorname{dim} \mathscr{B}(\Omega) \leqq N$.
By (4), we can find a subsequence $\left\{A_{n_{k}}\right\}$ of $\left\{A_{n}\right\}$ and $c_{\imath \jmath} \in \boldsymbol{R}(i=1, \cdots, N$; $j=1, \cdots, N+1)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\max _{\left.p \in l_{n_{k} i} i t_{n_{k}}\right)}\left|u_{\rho}(p)-c_{2 j}\right|\right)=0 . \tag{5}
\end{equation*}
$$

For $\boldsymbol{u}_{j}=\left(c_{1}, \cdots, c_{N j}\right) \in \boldsymbol{R}^{N}(j=1, \cdots, N+1)$, choose $\left(\alpha_{1}, \cdots, \alpha_{N+1}\right)(\neq(0, \cdots, 0)) \in$ \boldsymbol{R}^{N+1} such that $\sum_{j=1}^{N+1} \alpha_{j} \boldsymbol{u}_{j}=(0, \cdots, 0)$. Then (5) yields

$$
\lim _{k \rightarrow \infty}\left(\max _{p \in I_{n_{k}}\left(n_{n_{k}}\right)}\left|\sum_{j=1}^{N+1} \alpha_{j} u_{j}(p)\right|\right)=0 .
$$

Since $l_{n}\left(t_{n}\right)$ separates $l_{m}\left(t_{m}\right)(m=1, \cdots, n-1)$ from the ideal boundary β, this implies that $\sum_{j=1}^{N+1} \alpha_{j} u_{j} \in H B_{0}(\bar{\Omega})$.
3.1. Consider the mapping $(m, n) \mapsto \mu=\mu(m, n)=2^{m-1}(2 n-1)$ of \boldsymbol{N}^{2} to \boldsymbol{N}. It is clear that $(m, n) \mapsto \mu(m, n)$ is bijective, $\mu(m, n) \leqq \mu\left(m^{\prime}, n^{\prime}\right)$ if $m \leqq m^{\prime}$ and $n \leqq n^{\prime}$, and that $\mu(m, n) \rightarrow \infty$ if $m \rightarrow \infty$ or $n \rightarrow \infty$.

Let $D_{\mu}(\mu=\mu(m, n) \in \boldsymbol{N})$ be the disk $\left\{\left|z-3 \cdot 2^{2 \mu-2}\right|<2^{2 \mu-2}\right\}$ and S_{μ} a slit in D_{μ}. Set

$$
R_{0}=\{1<|z|<\infty\}-\bigcup_{\mu=1}^{\infty} S_{\mu}, \quad F_{0}=R_{0}-\bigcup_{\mu=1}^{\infty} D_{\mu}
$$

and

$$
R_{n}=\{|z|<\infty\}-\bigcup_{m=1}^{\infty} S_{\mu(m, n)}, \quad F_{n}=R_{n}-\bigcup_{m=1}^{\infty} D_{\mu(m, n)} \quad(n \in \boldsymbol{N}) .
$$

Denote by g_{0} the Green's function on R_{0} and by ω the bounded harmonic function on R_{0} with boundary values 1 on $|z|=1$ and -1 on $\cup_{\mu=1}^{\infty} S_{\mu}$. By choosing S_{μ} sufficiently small we may assume that

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \sup \omega(z)>0 \tag{S.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{z \rightarrow \infty, z \in F_{0}} g_{0}(\cdot, z)>0 \tag{S.2}
\end{equation*}
$$

Join R_{0} and R_{n} crosswise along $S_{\mu(m, n)}$ for every $(m, n) \in N^{2}$. The resulting surface Ω is a covering surface of $\{|z|<\infty\}$ with the relative boundary $\partial \Omega=\left\{z \in R_{0} ;|z|=1\right\}$. It is easily checked that Ω is an end. We will prove that the harmonic dimension of Ω is \mathcal{A}.
3.2. Let π be the projection of Ω. For an arbitrarily given $N \in N$, set $\Omega_{N}=\Omega-\cup_{n=1}^{N}\left(R_{n} \cap \pi^{-1}(\{|z| \leqq 1\})\right)$ and $C_{n}=R_{n} \cap \pi^{-1}(\{|z|=1\}) \quad(n=1, \cdots, N)$. Then Ω_{v} is a subend of Ω with the relative boundary $\partial \Omega_{N}=\partial \Omega \cup\left(\cup_{n=1}^{N} C_{n}\right)$. Consider harmonic measures $w_{n}(n=1, \cdots, N)$ of C_{n} with respect to Ω_{N} and an arbitrary nontrivial linear combination $w=\sum_{n=1}^{N} a_{n} w_{n}$ of $\left\{w_{1}, \cdots, w_{N}\right\}$. Choose
a_{\imath} such that $\left|a_{\imath}\right|=\max \left\{\left|a_{1}\right|, \cdots,\left|a_{N}\right|\right\}(\neq 0)$. Observe that $w / a_{\imath}=1$ on C_{\imath} and $w / a_{\imath} \geqq-1$ on $R_{i} \cap \pi^{-1}(\{|z|<1\})$. By means of (S.1) this implies that limsup $_{p \rightarrow \beta} w(p) / a_{\imath}>0$, i. e. $w \notin H B_{0}\left(\bar{\Omega}_{N}\right)$. Hence, from Theorem 1 , it follows that $\operatorname{dim} \mathscr{P}\left(\Omega_{N}\right) \geqq N$. Since $\operatorname{dim} \mathscr{P}(\Omega)=\operatorname{dim} \mathscr{P}\left(\Omega_{N}\right)$ (cf. [4]) and N is arbitrary, we conclude that $\operatorname{dim} \mathscr{P}(\Omega) \geqq \mathcal{A}$.
3.3. Consider the Martin compactification $\Omega^{*}=\Gamma \cup \bar{\Omega}$ of $\bar{\Omega}$ where Γ is the Martin ideal boundary of $\bar{\Omega}$. Denote by Δ the set of minimal points in Γ. In the theory of Martin compactification, it is well-known that $\operatorname{dim} \mathscr{P}(\Omega)$ coincides with $\# \Delta$ (the cardinal number of Δ). Let $\left\{\zeta_{2}\right\}$ be a sequence in Ω such that $\left\{\zeta_{i}\right\}$ converges to $q \in \Delta$. Then $k_{q}=\lim _{\imath \rightarrow \infty} g\left(\cdot, \zeta_{2}\right)$ is in $\mathscr{C P}(\Omega)$ and mınimal, where g is the Green's function on Ω. For a closed set F in Ω, let

$$
\left(k_{q}\right)_{F}(\zeta)=\inf _{v \in \Phi\left(k_{q}, F\right)} v(\zeta),
$$

where $\Phi\left(k_{q}, F\right)$ is the class of nonnegative superharmonic functions v on Ω such that $v \geqq k_{q}$ on F except for a polar set.

Lemma 2. If U is a neighborhood of q, then $\left(k_{q}\right)_{\Omega_{-U}}$ is a potentıal and moreover there exists a unique relatively noncompact component G of $U \cap \Omega$ such that $\left(k_{q}\right)_{\Omega-U}<k_{q}$ on G.

For the proof we refer to e.g. Constantinescu-Cornea [2].
3.4. We are in the stage to show that $\operatorname{dim} \mathscr{P}(\Omega)$ does not exceed \mathcal{A}.

Consider two sequences $\left\{\zeta_{2}^{(j)}\right\} \quad(\jmath=1,2)$ in $F_{0}(\subset \Omega)$ such that $\lim _{\imath \rightarrow \infty} \zeta_{i}^{(j)}=\beta$ (i. e. $\lim _{\imath \rightarrow \infty} \zeta_{i}^{(j)}=\infty$ in $\{|z|<\infty\}$). Choosing subsequences, if necessary, we may assume that there exist limiting functions $k_{\jmath}=\lim _{\imath \rightarrow \infty} g\left(\cdot, \zeta_{2}^{(j)}\right)$ and $h_{\jmath}=$ $\lim _{\imath \rightarrow \infty} g_{0}\left(\cdot, \zeta_{\imath}^{(j)}\right)(j=1,2)$. From (S.2), it follows that h_{1} / h_{2} is constant (cf. e.g. [2]). Setting $h_{j} \equiv 0$ on $\Omega-R_{0}, h_{\jmath}$ are subharmonic and $0 \leqq h_{j} \leqq k_{j}$ on Ω. Hence there exist least harmonic majorants $\hat{h}_{\text {, of }} h_{\jmath}$. If $k_{\text {, }}$ are minimal, then k_{1} / k_{2} is constant since $0 \leqq \hat{h}_{J} \leqq k_{\text {, }}$ and $\hat{h}_{1} / \hat{h}_{2}$ is constant. This implies that $C l\left(F_{0}\right) \cap \Delta$ consists of at most a single point, where Cl denotes the closure in Ω^{*}. The similar argument yields that $\#\left(C l\left(F_{n}\right) \cap \Delta\right) \leqq 1$ for every $n \in \boldsymbol{N}$. Consequently we see that

$$
\begin{equation*}
\#\left(\bigcup_{n=0}^{\infty}\left(C l\left(F_{n}\right) \cap \Delta\right)\right) \leqq \mathcal{A} . \tag{6}
\end{equation*}
$$

Next, suppose that there exists a $q \in \Delta-\Delta_{1}$ where $\Delta_{1}=\cup_{n=0}^{\infty}\left(C l\left(F_{n}\right) \cap \Delta\right)$. Let $\left\{\zeta_{i}\right\}(\subset \Omega)$ be a sequence converging to q and $k_{q}=\lim _{\imath \rightarrow \infty} g\left(\cdot, \zeta_{2}\right)$. Since $\Omega *-F_{0}$ is a neighborhood of q, by Lemma 2, there exists a unique component G of $\Omega-F_{0}$ such that $\left(k_{q}\right)_{F_{0}}<k_{q}$ on G. Set

$$
G_{n}=\bar{R}_{n} \cup\left(R_{0} \cap \pi^{-1}\left(\bigcup_{m=1}^{\infty} D_{\mu(m, n)}\right)\right) \quad(n \in \boldsymbol{N})
$$

Observe that each G_{n} is a subregion of $\Omega-F_{0}, G_{n} \cap G_{n^{\prime}}=\phi$ if $n \neq n^{\prime}$, and that $\Omega-F_{0}=\cup_{n=1}^{\infty} G_{n}$. Hence $G=G_{n}$ for an $n \in N$. Since $\Omega^{*}-\left(F_{0} \cup F_{n}\right)$ is also a neighborhood of q, by Lemma 2, there exists a unique component G^{\prime} of Ω $\left(F_{0} \cup F_{n}\right)$ such that $\left(k_{q}\right)_{F_{0} \cup F_{n}}<k_{q}$ on G^{\prime}. From the fact that $\left(k_{q}\right)_{F_{0}} \leqq\left(k_{q}\right)_{F_{0} \cup F_{n}}$, it follows that G^{\prime} is a component of $G-F_{n}=G_{n}-F_{n}$. Observe that $G_{n}-F_{n}=$ $\left(\bar{R}_{n} \cup R_{0}\right) \cap \pi^{-1}\left(\cup_{m=1}^{\infty} D_{\mu(m, n)}\right)$ is a union of mutually disjoint relatively compact subregions. This contradicts the relative noncompactness of G^{\prime}. Thus $\Delta=\Delta_{1}$ and therefore, by virtue of (6), we conclude that $\operatorname{dim} \mathscr{P}(\Omega)=\# \Delta=\# \Delta_{1} \leqq \mathcal{A}$.

References

[1] C. Constantinescu and A. Cornea, Über eınıge Probleme von M. Heıns, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281.
[2] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963.
[3] K. Hayashi, Les solutions positives de l'équation $\Delta u=P u$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
[4] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317.
[5] M. Kawamura, Picard principle for finite densities on some end, Nagoya Math. J., 67 (1977), 35-40.
[6] Z. Kuramochi, An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91.
[7] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.

Department of Mathematics
Daido Institute of Technology
Daido, Minami, Nagoya 457
Japan

[^0]: Received June 30, 1980

