S. SEGAWA KODAI MATH. J. 4 (1981), 508-514

A DUALITY RELATION FOR HARMONIC DIMENSIONS AND ITS APPLICATIONS

BY SHIGEO SEGAWA

Consider an end Ω in the sense of Heins [4]. Denote by $\mathcal{P}(\Omega)$ the class of nonnegative harmonic functions on Ω with vanishing boundary values on $\partial\Omega$. A nonzero function $h \in \mathcal{P}(\Omega)$ is said to be minimal if any $g \in \mathcal{P}(\Omega)$ dominated by h is a constant multiple of h. The cardinal number of normalized minimal functions is referred to as the harmonic dimension of Ω ([4]) which will be denoted by dim $\mathcal{P}(\Omega)$.

In [4], Heins showed that there exists an end with any given integral harmonic dimension and asked whether there exist ends with infinite harmonic dimensions. Subsequently, the existence of ends \mathcal{Q} with dim $\mathcal{P}(\mathcal{Q})=\mathcal{A}$ (the countably infinite cardinal number) and with dim $\mathcal{P}(\mathcal{Q})=\mathcal{C}$ (the cardinal number of continuum) were shown by Kuramochi [6] and Constantinescu-Cornea [1], respectively.

We are particularly interested in the following criterion of Heins [4]: The harmonic dimension of Ω is one if and only if every bounded harmonic function on $\overline{\Omega}$ has a limit at the ideal boundary. Motivated by this criterion we consider the quotient space $\mathcal{B}(\Omega) = HB(\overline{\Omega})/HB_0(\overline{\Omega})$ where $HB(\overline{\Omega})$ is the linear space of bounded harmonic functions on $\overline{\Omega}$ and $HB_0(\overline{\Omega})$ the subspace of $HB(\overline{\Omega})$ consisting of u such that u has the limit 0 at the ideal boundary. In terms of the dimension of the linear space $\mathcal{B}(\Omega)$, dim $\mathcal{B}(\Omega)$ in notation, the above criterion may be restated as follows: dim $\mathcal{P}(\Omega)=1$ if and only if dim $\mathcal{B}(\Omega)=1$. The Heins criterion in this formulation can be generalized as follows which is the main achievement of the present paper:

THEOREM 1. If either dim $\mathscr{Q}(\Omega)$ or dim $\mathscr{B}(\Omega)$ is finite, then dim $\mathscr{Q}(\Omega) = \dim \mathscr{B}(\Omega)$.

The proof will be given in no. 1.3 in a more general setting. Two applications, which may have their own interests, of Theorem 1 will be discussed in the rest. The first is concerned with a relation between harmonic dimensions and moduli conditions which, in a sense, generalizes a result in [4] p. 215. As the second application, an example of ends Ω with dim $\mathcal{P}(\Omega) = \mathcal{A}$ will be given.

The last but not the least the author would like to express his sincere

Received June 30, 1980

thanks to Professor M. Nakai for his helpful suggestions.

1.1. A relatively noncompact subregion Ω of an open Riemann surface is referred to as an end ([4]) if Ω satisfies the following conditions: (i) the relative boundary $\partial \Omega$ consists of a finite number of analytic Jordan curves, (ii) there exist no nonconstant bounded harmonic functions on \mathcal{Q} with vanishing boundary values on $\partial \Omega$, (iii) Ω has a single ideal boundary component. In this section, let Ω be a relatively noncompact subregion satisfying the condition (i). Denote by β the ideal boundary of Ω . Without loss of generality, we may assume that there exists an open Riemann surface R with the exhaustion $\{R_n\}_{n=0}^{\infty}$ such that $\mathcal{Q}{=}R{-}\overline{R}_{0}.$ For $u{\,\in\,}HB(ec{\mathcal{Q}})$, let u_{n} be the harmonic function on $\mathcal{Q}{\,\cap\,}R_{n}$ with boundary values $u|_{\partial\Omega}$ on $\partial\Omega$ and 0 on ∂R_n . Observe that $\lim_{n\to\infty} u_n$ exists and belongs to $HB(\bar{\Omega})$. Set $HB(\bar{\Omega}; \beta) = \{u \in HB(\bar{\Omega}); u = \lim_{n \to \infty} u_n\}$. For $v \equiv 1 \in HB(\bar{\Omega})$, set $e = \lim_{n \to \infty} v_n$. Consider the linear space $B(\Omega; \beta) = \{u/e; u \in HB(\overline{\Omega}; \beta)\}$, its subspace $B_0(\Omega; \beta) = \{ w \in B(\Omega; \beta) ; \lim_{p \to \beta} w(p) = 0 \}$, and the quotient space $\mathcal{B}(\Omega; \beta)$ $=B(\Omega;\beta)/B_0(\Omega;\beta)$. Denote by dim $\mathscr{B}(\Omega;\beta)$ the dimension of the linear space $\mathcal{B}(\Omega; \beta)$. Then we have the following duality relation (cf. [4], Hayashi [3], and Nakai [7]):

THEOREM 2. If either dim $\mathcal{P}(\Omega)$ or dim $\mathcal{B}(\Omega; \beta)$ is finite, then dim $\mathcal{P}(\Omega) = \dim \mathcal{B}(\Omega; \beta)$.

The above theorem implies Theorem 1. In fact, if Ω satisfies the condition (ii) then $HB(\bar{\Omega}; \beta) = HB(\bar{\Omega})$ and $e \equiv 1$. Hence $B(\Omega; \beta) = HB(\bar{\Omega})$ and $B_0(\Omega; \beta) = HB_0(\bar{\Omega})$, and a fortiori $\mathcal{B}(\Omega; \beta) = \mathcal{B}(\Omega)$.

1.2. Consider the linear space $\mathcal{E}(\mathcal{Q}) = \{h_1 - h_2 : h_1, h_2 \in \mathcal{P}(\mathcal{Q})\}\$ and the bilinear functional $(w, h) \rightarrow \langle w, h \rangle = -\int_{\partial \mathcal{Q}} w^* dh = \int_{\partial \mathcal{Q}} w(\partial h/\partial n) ds$ on $B(\mathcal{Q}; \beta) \times \mathcal{E}(\mathcal{Q})$ where $\partial/\partial n$ is the inner normal derivative. Set $Q_{\mathcal{Q}} = \{\{h \in \mathcal{P}(\mathcal{Q}); -\int_{\partial \mathcal{Q}} *dh = 1\}$.

LEMMA 1. Every $w \in B(\Omega; \beta)$ satisfies the following equalities:

(1)
$$\limsup_{p \to \beta} w(p) = \sup \langle w, Q_{\Omega} \rangle, \qquad \liminf_{p \to \beta} w(p) = \inf \langle w, Q_{\Omega} \rangle.$$

Although the essence of the proof of this lemma is found in [3] and [4], we give the proof for the sake of completeness.

Given an arbitrary cluster value α of w at β and a sequence $\{p_n\}$ in Ω such that $\lim_{n\to\infty} p_n = \beta$ and $\lim_{n\to\infty} w(p_n) = \alpha$. Observe that

(2)
$$u(p_n) = -\frac{1}{2\pi} \int_{\partial \Omega} u^* dg(\cdot, p_n)$$

for $u \in HB(\overline{\Omega}; \beta)$, where $g(\cdot, p_n)$ is the Green's function on Ω with pole p_n .

SHIGEO SEGAWA

Applying (2) to ew and e, we see that $w(p_n) = -\int_{\partial\Omega} w^* d(g(\cdot, p_n)/2\pi e(p_n))$ and $1 = -\int_{\partial\Omega} *d(g(\cdot, p_n)/2\pi e(p_n))$. Therefore a subsequence of $\{g(\cdot, p_n)/2\pi e(p_n)\}$ has a limiting function g, which belongs to Q_{Ω} , and $\alpha = -\int_{\partial\Omega} w^* dg = \langle w, g \rangle$. Thus

$$\inf \langle w, Q_{\mathcal{Q}} \rangle \leq \liminf_{p \to \beta} w(p), \qquad \limsup_{p \to \beta} w(p) \leq \sup \langle w, Q_{\mathcal{Q}} \rangle.$$

Next, given an arbitrary $h \in Q_{\mathcal{Q}}$ and let h_{mn} be the harmonic function on $R_m - \overline{R}_n$ (m > n) with boundary values $h|_{\partial R_n}$ on R_n and 0 on ∂R_m . Set $h_n = \lim_{m \to \infty} h_{mn}$. Observe that

(3)
$$\left\langle \frac{u}{e}, h \right\rangle = -\int_{\partial \Omega} u^* dh = \int_{\partial R_n} u^* d(h-h_n)$$

for $u \in HB(\overline{\Omega}; \beta)$. Applying (3) to ew and e, we see that

$$\langle w, h \rangle = \int_{\partial R_n} e w^* d(h-h_n)$$
 and $1 = \int_{\partial R_n} e^* d(h-h_n)$.

Since $h-h_n \ge 0$ on $R-R_n$, this implies that $\inf_{\partial R_n} w \le \langle w, h \rangle \le \sup_{\partial R_n} w$ and a fortiori

 $\liminf_{p \to \beta} w(p) \leq \inf \langle w, Q_{\Omega} \rangle, \quad \sup \langle w, Q_{\Omega} \rangle \leq \limsup_{p \to \beta} w(p).$

This completes the proof.

1.3. Proof of Theorem 2. We first remark that the dimension of the linear space $\mathcal{C}(\Omega)$, dim $\mathcal{C}(\Omega)$ in notation, coincides with dim $\mathcal{P}(\Omega)$ if either dim $\mathcal{C}(\Omega)$ or dim $\mathcal{P}(\Omega)$ is finite (cf. e.g. [4]).

Consider the $\mathcal{E}(\Omega)$ -kernel ($B(\Omega; \beta)$ -kernel resp.)

$$\begin{split} K_1 &= \bigcap_{h \in \mathcal{E}(\mathcal{Q})} \{ w \in B(\mathcal{Q} ; \beta) ; \langle w, h \rangle = 0 \} , \\ (K_2 &= \bigcap_{w \in B(\mathcal{Q}; \beta)} \{ h \in \mathcal{E}(\mathcal{Q}) ; \langle w, h \rangle = 0 \} \text{ resp.} \end{split}$$

of the bilinear functional $(w, h) \mapsto \langle w, h \rangle$. By means of (1), we have that $K_1 = B_0(\Omega; \beta)$. Let h be in K_2 . Then $\langle w, h \rangle = \int_{\partial\Omega} w(\partial h/\partial n) ds = 0$ for any $w \in B(\Omega; \beta)$ and hence $\partial h/\partial n \equiv 0$ on $\partial\Omega$. By the fact that $h \equiv 0$ on $\partial\Omega$, we conclude that $h \equiv 0$ on Ω and especially $K_2 = \{0\}$. Therefore $\mathcal{B}(\Omega; \beta) = B(\Omega; \beta)/K_1$ and $\mathcal{E}(\Omega) = \mathcal{E}(\Omega)/K_2$ can be considered to be subspaces of $\mathcal{E}(\Omega)^*$ and $\mathcal{B}(\Omega; \beta)^*$ (conjugate spaces of $\mathcal{E}(\Omega)$ and $\mathcal{B}(\Omega; \beta)$) respectively and in particular

$$\dim \mathcal{B}(\mathcal{Q}; \beta) \leq \dim \mathcal{E}(\mathcal{Q})^*, \qquad \dim \mathcal{E}(\mathcal{Q}) \leq \dim \mathcal{B}(\mathcal{Q}; \beta)^*.$$

Since finite dimensional linear spaces are isomorphic to their conjugate spaces, it follows from the above inequalities that dim $\mathscr{B}(\Omega; \beta) = \dim \mathscr{E}(\Omega) = \dim \mathscr{P}(\Omega)$.

2.1. Let \mathcal{Q} be an end. As in no. 1.1, \mathcal{Q} can be considered to be a subregion of a null boundary Riemann surface R with a *normal* exhaustion $\{R_n\}_{n=0}^{\infty}$ (i. e. $R - \overline{R}_n$ has no relatively compact components) such that $\mathcal{Q} = R - \overline{R}_0$. Denote by ω_n the harmonic measure of ∂R_{2n} with respect to $A_n = R_{2n} - \overline{R}_{2n-1}$. The modulus of A_n , mod A_n in notation, is the quantity $2\pi/(\int_{\partial \mathcal{Q}_{2n}} {}^*d\omega_n)$. Consider the following conditions:

(A.1) For every $n \in N$, there exists a unique $N \in N$ such that A_n consists of N disjoint annuli $A_{n1}, A_{n2}, \dots, A_{nN}$;

(A.2)
$$\sum_{n=1}^{\infty} \mod A_n = +\infty.$$

Then we prove (cf. [4] and Kawamura [5])

THEOREM 3. If $\{A_n\}$ satisfies (A.1) and (A.2), the harmonic dimension of Ω is at most N.

2.2. Set $\mu_n = \mod A_n$. The function $z_n = x_n + iy_n = \mu_n(\omega_n + i\omega_n^*)$ (ω_n^* is the conjugate harmonic function of ω_n) maps \overline{A}_n , less suitable slits on which ω_n^* is constant, conformally into the horizontally sliced rectangle $\{x_n + iy_n; 0 \le x_n \le \mu_n, 0 \le y_n \le 2\pi\}$. Consider closed curves $l_{ni}(x_n) = \{p \in A_{ni}; \operatorname{Re} z_n(p) = x_n\}$ $(i=1, \dots, N; 0 \le x_n \le \mu_n)$ and set $l_n(x_n) = \bigcup_{i=1}^N l_{ni}(x_n)$. Given arbitrary N+1 functions u_1, \dots, u_{N+1} in $HB(\overline{\Omega})$. Denote by $\partial_{nij}(x_n)$ the oscillation of u_j on $l_{ni}(x_n)$ and set

$$\delta_n(x_n) = \sum_{i=1}^N \sum_{j=1}^{N+1} \delta_{nij}(x_n) \, .$$

We assume that $\delta_n(x_n)$ attains its minimum when $x_n = t_n$. Then we have

$$\delta_n = \delta_n(t_n) \leq \sum_{j=1}^{N+1} \int_0^{2\pi} \left| \frac{\partial u_j}{\partial y_n} \right| dy_n \qquad (0 \leq x_n \leq \mu_n) \,.$$

The Schwarz inequality yields

$$\delta_n^2 \leq 2\pi (N+1) \sum_{j=1}^{N+1} \int_0^{2\pi} \left| \frac{\partial u_j}{\partial y_n} \right|^2 dy_n.$$

Integrating both sides of the above from 0 to μ_n with respect to dx_n , we obtain

$$\delta_n^2 \mu_n \leq 2\pi (N+1) \sum_{j=1}^{N+1} \int_0^{\mu_n} \int_0^{2\pi} \left| \frac{\partial u_j}{\partial y_n} \right|^2 dx_n dy_n \leq 2\pi (N+1) \sum_{j=1}^{N+1} D_{A_n}(u_j),$$

where $D_{A_n}(u_j)$ denotes the Dirichlet integral of u_j on A_n . Since each u_j has the finite Dirichlet integral on Ω , we see that $\sum_{n=1}^{\infty} \tilde{\partial}_n^2 \mu_n$ converges. By means of (A.2), this yields

(4)
$$\liminf_{n \to \infty} \delta_n = 0.$$

2.3. By virtue of Theorem 1, we have only to show that there exists a nontrivial linear combination $\sum_{j=1}^{N+1} c_j u_j$ $(c_j \in \mathbf{R})$ belonging to $HB_0(\overline{\mathcal{Q}})$, i.e.

dim $\mathcal{B}(\Omega) \leq N$.

By (4), we can find a subsequence $\{A_{n_k}\}$ of $\{A_n\}$ and $c_{ij} \in \mathbf{R}$ $(i=1, \dots, N; j=1, \dots, N+1)$ such that

(5)
$$\lim_{k \to \infty} (\max_{p \in l_{n_k} i^{(l_{n_k})}} | u_j(p) - c_{ij} |) = 0.$$

For $\boldsymbol{u}_{j} = (c_{1j}, \dots, c_{Nj}) \in \boldsymbol{R}^{N}$ $(j=1, \dots, N+1)$, choose $(\alpha_{1}, \dots, \alpha_{N+1})$ $(\neq (0, \dots, 0)) \in \boldsymbol{R}^{N+1}$ such that $\sum_{j=1}^{N+1} \alpha_{j} \boldsymbol{u}_{j} = (0, \dots, 0)$. Then (5) yields

$$\lim_{k\to\infty}\left(\max_{p\in l_{n_k}(t_{n_k})}\left|\sum_{j=1}^{N+1}\alpha_j u_j(p)\right|\right)=0.$$

Since $l_n(t_n)$ separates $l_m(t_m)$ $(m=1, \dots, n-1)$ from the ideal boundary β , this implies that $\sum_{j=1}^{N+1} \alpha_j u_j \in HB_0(\overline{\Omega})$.

3.1. Consider the mapping $(m, n) \rightarrow \mu = \mu(m, n) = 2^{m-1}(2n-1)$ of N^2 to N. It is clear that $(m, n) \rightarrow \mu(m, n)$ is bijective, $\mu(m, n) \leq \mu(m', n')$ if $m \leq m'$ and $n \leq n'$, and that $\mu(m, n) \rightarrow \infty$ if $m \rightarrow \infty$ or $n \rightarrow \infty$.

Let D_{μ} $(\mu = \mu(m, n) \in \mathbb{N})$ be the disk $\{|z-3 \cdot 2^{2\mu-2}| < 2^{2\mu-2}\}$ and S_{μ} a slit in D_{μ} . Set

$$R_{0} = \{1 < |z| < \infty\} - \bigcup_{\mu=1}^{\infty} S_{\mu}, \qquad F_{0} = R_{0} - \bigcup_{\mu=1}^{\infty} D_{\mu}$$

and

$$R_n = \{ |z| < \infty \} - \bigcup_{m=1}^{\infty} S_{\mu(m,n)}, \qquad F_n = R_n - \bigcup_{m=1}^{\infty} D_{\mu(m,n)} \qquad (n \in \mathbb{N}).$$

Denote by g_0 the Green's function on R_0 and by ω the bounded harmonic function on R_0 with boundary values 1 on |z|=1 and -1 on $\bigcup_{\mu=1}^{\infty} S_{\mu}$. By choosing S_{μ} sufficiently small we may assume that

(S.1)
$$\limsup_{z \to \infty} \omega(z) > 0$$

(S.2)
$$\liminf_{z \to \infty, z \in F_0} g_0(\cdot, z) > 0.$$

Join R_0 and R_n crosswise along $S_{\mu(m,n)}$ for every $(m, n) \in N^2$. The resulting surface Ω is a covering surface of $\{|z| < \infty\}$ with the relative boundary $\partial \Omega = \{z \in R_0; |z| = 1\}$. It is easily checked that Ω is an end. We will prove that the harmonic dimension of Ω is \mathcal{A} .

3.2. Let π be the projection of Ω . For an arbitrarily given $N \in N$, set $\Omega_N = \Omega - \bigcup_{n=1}^N (R_n \cap \pi^{-1}(\{|z| \le 1\}))$ and $C_n = R_n \cap \pi^{-1}(\{|z| = 1\})$ $(n = 1, \dots, N)$. Then Ω_N is a subend of Ω with the relative boundary $\partial \Omega_N = \partial \Omega \cup (\bigcup_{n=1}^N C_n)$. Consider harmonic measures w_n $(n=1, \dots, N)$ of C_n with respect to Ω_N and an arbitrary nontrivial linear combination $w = \sum_{n=1}^N a_n w_n$ of $\{w_1, \dots, w_N\}$. Choose

512

 a_i such that $|a_i| = \max\{|a_1|, \dots, |a_N|\}(\neq 0)$. Observe that $w/a_i = 1$ on C_i and $w/a_i \ge -1$ on $R_i \cap \pi^{-1}(\{|z| < 1\})$. By means of (S.1) this implies that $\limsup_{p \to \beta} w(p)/a_i > 0$, i.e. $w \in HB_0(\overline{\mathcal{Q}}_N)$. Hence, from Theorem 1, it follows that $\dim \mathscr{Q}(\mathcal{Q}_N) \ge N$. Since $\dim \mathscr{Q}(\mathcal{Q}) = \dim \mathscr{Q}(\mathcal{Q}_N)$ (cf. [4]) and N is arbitrary, we conclude that $\dim \mathscr{Q}(\mathcal{Q}) \ge \mathcal{A}$.

3.3. Consider the Martin compactification $\Omega^* = \Gamma \cup \overline{\Omega}$ of $\overline{\Omega}$ where Γ is the *Martin ideal boundary* of $\overline{\Omega}$. Denote by Δ the set of minimal points in Γ . In the theory of Martin compactification, it is well-known that dim $\mathcal{P}(\Omega)$ coincides with $\sharp \Delta$ (the cardinal number of Δ). Let $\{\zeta_i\}$ be a sequence in Ω such that $\{\zeta_i\}$ converges to $q \in \Delta$. Then $k_q = \lim_{i \to \infty} g(\cdot, \zeta_i)$ is in $\mathcal{P}(\Omega)$ and minimal, where g is the Green's function on Ω . For a closed set F in Ω , let

$$(k_q)_F(\zeta) = \inf_{v \in \mathcal{O}(k_q, F)} v(\zeta)$$
,

where $\Phi(k_q, F)$ is the class of nonnegative superharmonic functions v on Ω such that $v \ge k_q$ on F except for a polar set.

LEMMA 2. If U is a neighborhood of q, then $(k_q)_{\Omega-U}$ is a potential and moreover there exists a unique relatively noncompact component G of $U \cap \Omega$ such that $(k_q)_{\Omega-U} < k_q$ on G.

For the proof we refer to e.g. Constantinescu-Cornea [2].

3.4. We are in the stage to show that dim $\mathscr{P}(\Omega)$ does not exceed \mathscr{A} .

Consider two sequences $\{\zeta_i^{(j)}\}$ (j=1,2) in F_0 $(\Box \Omega)$ such that $\lim_{i\to\infty}\zeta_i^{(j)}=\beta$ (i. e. $\lim_{i\to\infty}\zeta_i^{(j)}=\infty$ in $\{|z|<\infty\}$). Choosing subsequences, if necessary, we may assume that there exist limiting functions $k_j=\lim_{i\to\infty}g(\cdot,\zeta_i^{(j)})$ and $h_j=\lim_{i\to\infty}g_0(\cdot,\zeta_i^{(j)})$ (j=1,2). From (S.2), it follows that h_1/h_2 is constant (cf. e.g. [2]). Setting $h_j\equiv 0$ on $\Omega-R_0$, h_j are subharmonic and $0\leq h_j\leq k_j$ on Ω . Hence there exist least harmonic majorants \hat{h}_j of h_j . If k_j are minimal, then k_1/k_2 is constant since $0\leq \hat{h}_j\leq k_j$ and \hat{h}_1/\hat{h}_2 is constant. This implies that $Cl(F_0)\cap\Delta$ consists of at most a single point, where Cl denotes the closure in Ω^* . The similar argument yields that $\sharp(Cl(F_n)\cap\Delta)\leq 1$ for every $n\in N$. Consequently we see that

(6)
$$\# (\bigcup_{n=0}^{\infty} (Cl(F_n) \cap \varDelta)) \leq \mathcal{A}.$$

Next, suppose that there exists a $q \in \mathcal{I} - \mathcal{I}_1$ where $\mathcal{I}_1 = \bigcup_{n=0}^{\infty} (Cl(F_n) \cap \mathcal{I})$. Let $\{\zeta_i\}$ $(\Box \mathcal{Q})$ be a sequence converging to q and $k_q = \lim_{t \to \infty} g(\cdot, \zeta_t)$. Since $\mathcal{Q}^* - F_0$ is a neighborhood of q, by Lemma 2, there exists a unique component G of $\mathcal{Q} - F_0$ such that $(k_q)_{F_0} < k_q$ on G. Set

$$G_n = \overline{R}_n \cup (R_0 \cap \pi^{-1}(\bigcup_{m=1}^{\infty} D_{\mu(m,n)})) \qquad (n \in \mathbb{N}).$$

SHIGEO SEGAWA

Observe that each G_n is a subregion of $\Omega - F_0$, $G_n \cap G_{n'} = \phi$ if $n \neq n'$, and that $\Omega - F_0 = \bigcup_{n=1}^{\infty} G_n$. Hence $G = G_n$ for an $n \in \mathbb{N}$. Since $\Omega^* - (F_0 \cup F_n)$ is also a neighborhood of q, by Lemma 2, there exists a unique component G' of $\Omega - (F_0 \cup F_n)$ such that $(k_q)_{F_0 \cup F_n} < k_q$ on G'. From the fact that $(k_q)_{F_0} \leq (k_q)_{F_0 \cup F_n}$, it follows that G' is a component of $G - F_n = G_n - F_n$. Observe that $G_n - F_n = (\overline{R}_n \cup R_0) \cap \pi^{-1}(\bigcup_{m=1}^{\infty} D_{\mu(m,n)})$ is a union of mutually disjoint relatively compact subregions. This contradicts the relative noncompactness of G'. Thus $\Delta = \Delta_1$ and therefore, by virtue of (6), we conclude that dim $\mathcal{P}(\Omega) = \#\Delta = \#\Delta_1 \leq \mathcal{A}$.

References

- [1] C. CONSTANTINESCU AND A. CORNEA, Über einige Probleme von M. Heins, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281.
- [2] C. CONSTANTINESCU AND A. CORNEA, Ideale Ränder Riemannscher Flächen, Springer, 1963.
- [3] K. HAYASHI, Les solutions positives de l'équation $\Delta u = Pu$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
- [4] M. HEINS, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317.
- [5] M. KAWAMURA, Picard principle for finite densities on some end, Nagoya Math. J., 67 (1977), 35-40.
- [6] Z. KURAMOCHI, An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91.
- [7] M. NAKAI, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.

Department of Mathematics Daido Institute of Technology Daido, Minami, Nagoya 457 Japan