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A DUALITY RELATION FOR HARMONIC DIMENSIONS

AND ITS APPLICATIONS

BY SHIGEO SEGAWA

Consider an end Ω in the sense of Heins [4]. Denote by £B(Ω) the class of
nonnegative harmonic functions on Ω with vanishing boundary values on dΩ.
A nonzero function h^£B(Ω) is said to be minimal if any g^£B(Ω) dominated
by h is a constant multiple of h. The cardinal number of normalized minimal
functions is referred to as the harmonic dimension of Ω ([4]) which will be
denoted by dim5>(β).

In [4], Heins showed that there exists an end with any given integral har-
monic dimension and asked whether there exist ends with infinite harmonic
dimensions. Subsequently, the existence of ends Ω with άim<£(Ω)=Jl (the
countablly infinite cardinal number) and with dim £B(Ω)=C (the cardinal number
of continuum) were shown by Kuramochi [6] and Constantinescu-Cornea [1],
respectively.

We are particularly interested in the following criterion of Heins [4] : The
harmonic dimension of Ω is one if and only if every bounded harmonic function
on Ω has a limit at the ideal boundary. Motivated by this criterion we consider
the quotient space &(Ω)=HB(Ω)/HB0(Ω) where HB(Ω) is the linear space of
bounded harmonic functions on Ω and HBQ{Ω) the subspace of HB(Ω) consist-
ing of u such that u has the limit 0 at the ideal boundary. In terms of the
dimension of the linear space &(Ω)y dim &(Ω) in notation, the above criterion
may be restated as follows: d i m S ^ β ^ l if and only if dim $(Ω)=1. The
Heins criterion in this formulation can be generalized as follows which is the
main achievement of the present paper:

THEOREM 1. // either 6im£B{Ω) or dim &(Ω) is finite, then dim£P(β) —
dim

The proof will be given in no. 1.3 in a more general setting. Two applica-
tions, which may have their own interests, of Theorem 1 will be discussed in
the rest. The first is concerned with a relation between harmonic dimensions
and moduli conditions which, in a sense, generalizes a result in [4] p. 215. As
the second application, an example of ends Ω with dimίP(42)=<J will be given.
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1.1. A relatively noncompact subregion Ω of an open Riemann surface is
referred to as an end ([4]) if Ω satisfies the following conditions: (i) the rela-
tive boundary dΩ consists of a finite number of analytic Jordan curves, (ii) there
exist no nonconstant bounded harmonic functions on Ω with vanishing boundary
values on dΩ, (iii) Ω has a single ideal boundary component. In this section,
let Ω be a relatively noncompact subregion satisfying the condition (i). Denote
by β the ideal boundary of Ω. Without loss of generality, we may assume that
there exists an open Riemann surface R with the exhaustion {Rn}t^o such that
Ω=R—R0. For u^HB(Ω), let un be the harmonic function on Ωr\Rn with
boundary values U\OΩ on dΩ and 0 on dRn. Observe that Yιmn^un exists and
belongs to HB(Ω). Set HB(Ω β)= {u^HB(Ω) M=limn_eoWn}. For VΞ=1J=HB(Ω),
set e^limn^ooVn. Consider the linear space B(Ω β)= {u/e u^HB(Ω β)}, its
subspace B0(Ω β)={w^B(Ω β); ϊιmp^βw(p)=0}, and the quotient space ίB(Ω β)
— B(Ω; β)/B0(Ω; β). Denote by dim &(Ω β) the dimension of the linear space
&{Ω β). Then we have the following duality relation (cf. [4], Hayashi [3],
and Nakai [7]):

THEOREM 2. // either dim£P(i2) or dim <B(Ω β) is finite, then dim &(Ω)=
dim &(Ω β).

The above theorem implies Theorem 1. In fact, if Ω satisfies the condition
(ii) then HB(Ω β)=HB{Ω) and e = l. Hence B(Ω β)=HB(Ω) and B()(Ω ; β)=
HB0(Ω), and a fortiori &(Ω β)=$(Ω).

1.2. Consider the linear space £(Ω)= {hλ — h2: hlf h2^£B(Ω)} and the bilinear

functional (w, h)^{w, h> = -\ w*dh=\ w(dh/dn)ds on B(Ω β)xε{Ω) where
JdΩ JoΩ

d/dn is the inner normal derivative. Set QΩ=\{h^£B(Ω) —\ *dh = l\.
I J dΩ J

LEMMA 1. Every w^B(Ω; β) satisfies the following equalities:

(1) limsup w(p)=sup (w, QΩ) , liminf u;(/))=inf <ẑ , Quρ> .
p-*β P~*β

Although the essence of the proof of this lemma is found in [3] and [4],
we give the proof for the sake of completeness.

Given an arbitrary cluster value a of w at β and a sequence {pn} in Ω
such that \Ίmn^oopn = β and ϊimn^wip^^a. Observe that

(2) u(Pn)=-

for u^HB(Ω; β), where g( , pn) is the Green's function on Ω with pole pn.
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Applying (2) to ew and e, we see that w{pn)— — \ w*d(g( , pn)/2πe(pn)) and

1 —— \ *d(g{ , pn)/2πe(pn)). Therefore a subsequence of {g{-, pn)/2πe(pn)} has
JδΩ

a limiting function g, which belongs to QQ, and a= — \ w*dg=Ov, g)- Thus
JoΩ

inf (w, Oβ>^liminf w(p), limsup ιv(p)^sup (w, QQ) .

Next, given an arbitrary H^QQ and let hmn be the harmonic function on
Rm—Rn (m>n) with boundary values h\dRn on Rn and 0 on dRm. Set hn =
\imm^ochmn. Observe that

(3) (—, h)=-\ u*dh=:\ u*d(h-hn)

\ e I JdΩ JdRn

for u^HB(Ω β). Applying (3) to ew and e, we see that

Γ Γ
<H/, A>=\ ew*d(h — hn) and 1=1 e*d{h — hn).

Since h — hn^0 on R—Rn, this implies that inf^u'^Ku/, /ι>^supaΛnu/ and a
fortiori

liminf ιt;(/?)^inf <iί;, Q >̂ , sup <u;, Qko>^limsup w(p).

This completes the proof.

1.3. Proof of Theorem 2. We first remark that the dimension of the
linear space 6(Ω), dim£(β) in notation, coincides with dim @(Ω) if either
dim ε{Ω) or dim ££(Ω) is finite (cf. e. g. [4]).

Consider the <?(β)-kernel (B(Ω /3)-kernel resp.)

n β ) ; (w, A>=0} ,

2 = Γ\ {/ze^(β); (w, /z>=0} resp.)
GBCΩ β

of the bilinear functional (^, h)^>(w, A>. By means of (1), we have that / ί i ^

B0(Ω;β). Lethbe'mK2. Then <w, Λ>=f w(dh/dn)ds=0 for any w^B(Ω /3)

and hence oh/dn = 0 on 3β. By the fact that AΞΞO on 3β, we conclude that
h=0 on β and especially K2={0}. Therefore B(Ω β)=B(Ω; β)/Kx and €{Ω)
=ε(Ω)/K2 can be considered to be subspaces of ε(Ω)* and &(Ω β)* (conjugate
spaces of €{Ω) and <B{Ω β)) respectively and in particular

dim &(Ω /3)^dim <?(β)* , dim ^(β)^dim B{Ω β)* .

Since finite dimensional linear spaces are isomorphic to their conjugate spaces,
it follows from the above inequalities that dim &(Ω β)=dim £"(£?)=dim
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2.1. Let Ω be an end. As in no. 1.1, Ω can be considered to be a sub-
region of a null boundary Riemann surface R with a normal exhaustion {Rn}n=o
(i.e. R—Rn has no relatively compact components) such that Ω=R—R0. Denote
by ωn the harmonic measure of dR2n with respect to An=R2n—R2n-ι. The

modulus of An, mod An in notation, is the quantity 2ττ/M *dωn\ Consider

the following conditions : dΩ^
(A.I) For every n^N, there exists a unique N^N such that Aa consists of

N disjoint annuli Anl, An2, ••• , AnN

(A.2) Σ,moάAn= + co.
71 = 1

Then we prove (cf. [4] and Kawamura [5])

THEOREM 3. // {An} satisfies (A.I) and (A.2), the harmonic dimension of Ω
is at most N.

2.2. Set μ n =mod An. The function zn=xn

Jriyn—μn{ωn

Jriωt) (ω* is the
conjugate harmonic function of ωn) maps Άn, less suitable slits on which ω% is
constant, conformally into the horizontally sliced rectangle {xn+ιyn 0^xn^μn,
O^;yn^27r}. Consider closed curves lnt(χn)= {p^Anι Rezn(p)=xn) 0 = 1, •••, N;
0^xn^μn) and set ln(xn)=\Jlίilni(xn)' Given arbitrary 7V+1 functions ulf •••,
uN+1 in HB(Ω). Denote by δnιj(xn) the oscillation of ud on lni(xn) and set

TV JV + i

ή (x ) — V V ^ •(x )
t = l J = l

We assume that δn{xn) attains its minimum when xn~tn. Then we have

δn=δn(tn)^Σ\ --— dyn (0^xn^μn).

The Schwarz inequality yields

2

dyn.
f+lΓ2π

7 = 1 JO

Integrating both sides of the above from 0 to μn with respect to dxn, we obtain

where DΛn(uj) denotes the Dirichlet integral of u} on ^4 .̂ Since each u3 has
the finite Dirichlet integral on Ω, we see that Σn=i δ\μn converges. By means
of (A.2), this yields

(4) l iminfδ n =0.

2.3. By virtue of Theorem 1, we have only to show that there e_xists a
nontrivial linear combination Σ f J 1 c^ j (CJ^R) belonging to HB0(Ω), i.e.
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dim
By (4), we can find a subsequence {Λnk} of {Λn} and clJ^R (z = l, ••• , N;

7 = 1, ••• , N+l) such that

(5) lim( max | uJ(p)-cιj\)=0.

For M,=(C 1 I 7 , - , CNJ)EΞRN (7 = 1, ••• , iV+1), choose (α 1 ? ••• , α ^ ) (^(0, ••• , 0))

J?Λ Γ + 1 such that Σj^ϊ 1 α ^ = ( 0 , ••• , 0). Then (5) yields

N + l

lim ( max | Σ ccjUj(p)\)=0 .

Since /n(ίn) separates /m(ίTO) {m—l, ••• , n—1) from the ideal boundary /3, this
implies that Σ S 1 B)

3.1. Consider the mapping (772, n)>->μ=μ(m, n)=2m~\2?i — l) of iV2 to N. It
is clear that (m, n)^μ(m, n) is bijective, //(m, n)^μ(m', nf) if mtkm' and n^n',
and that μ(m, n)—>oo if m-^00 or n—>oo.

Let £>« (μ=μ(m, n)^N) be the disk { | z - 3 2 2 ^ 2 [<2 2 / '- 2 } and 5^ a slit in
Z^. Set

| <co} -\JSμ, F0=R0- 0 DΛ

and

Rn={\z\ <oo} - 0 S^ ( m i 7 l ), Fn=Rn- 0 ZVm.*)
m = l m = l

Denote by g0 the Green's function on Ro and by ω the bounded harmonic func-
tion on Ro with boundary values 1 on \z\—l and — 1 on \Jμ=ιSμ. By choosing
Sμ sufficiently small we may assume that

(5.1) lim sup ω(z) > 0

and

(5.2) liminf go( , z)>0.
2-oo ) 2GF 0

Join Ro and Rn crosswise along Sμcm>n^ for every (m, n)(ΞN2. The result-
ing surface Ω is a covering surface of {|z|<oo} with the relative boundary
dΩ={z^R0', \z\— 1}. It is easily checked that Ω is an end. We will prove
that the harmonic dimension of Ω ts «J.

3.2. Let π be the projection of Ω. For an arbitrarily given N^N, set
ΩN=Ω-VJ^ΛRnΓ\π-\{U\^l})) and Cn = RnΓ\πΛ{\z\=l}) (n = 1, - , N).
Then fl.v is a subend of Ω with the relative boundary dΩN—dΩyJ(\Jξ=ιCn).
Consider harmonic measures wn ( n = l , •••, TV) of Cn with respect to ΩN and an
arbitrary nontrivial linear combination w=^n=i anwn of {wlf ••• , ι̂ iv} Choose
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a% such that | α ι | = m a x { | α 1 | , ••• , |a^ | }(^0). Observe that w/at=l on C% and
w/at^— 1 on RiΓ\π~\{\z\ <!})._ By means of (S.I) this implies that

w{p)/al>0, i.e. w&HB0(ΩN). Hence, from Theorem 1, it follows that
)^N. Since άimS>(Ω)=άim£P(ΩN) (cf. [4]) and N is arbitrary, we

conclude that dim

3.3. Consider the Martin compactification Ω*=Γ[JΩ of Ω where Γ is the
Martin ideal boundary of Ω. Denote by Δ the set of minimal points in Γ. In
the theory of Martin compactification, it is well-known that dim &(Ω) coincides
with %Δ (the cardinal number of J). Let {ζt} be a sequence in Ω such that
{ζj converges to q^Δ. Then kq=\ιm.τ^^ g{-, ζz) is in £P(β) and minimal, where
g is the Green's function on Ω. For a closed set F in β, let

where Φ(kq, F) is the class of nonnegative superharmonic functions v on β such
that v^kq on F except for a polar set.

LEMMA 2. If U is a neighborhood of q, then {kq)o-u is a potential and more-
over there exists a unique relatively noncompact component G of Ur\Ω such that
(kq)Ω-u<kq on G.

For the proof we refer to e. g. Constantinescu-Cornea [2].

3.4. We are in the stage to show that dim £P(β) does not exceed Jl.
Consider two sequences {ζί;)} 0 = 1, 2) in Fo (cfl) such that liiϊ^ooζp'^β

(i.e. limι_ooζί /) = oo in {M<°o}). Choosing subsequences, if necessary, we may
assume that there exist limiting functions kJ = \imι_oog( , ζίi:>) and h3—
lim^oo go(-, Ci;)) 0—1, 2). From (S.2), it follows that h1/h2 is constant (cf. e.g.
[2]). Setting h3=0 on Ω — Ro, h3 are subharmonic and 0^h3t^k3 on β. Hence
there exist least harmonic majorants h3 of h3. If k3 are minimal, then kjk2

is constant since 0^h3<kj and h±/h2 is constant. This implies that Cl(FQ)r\Δ
consists of at most a single point, where Cl denotes the closure in β*. The
similar argument yields that #(C/(FTO)π^) = l for every n^N. Consequently we
see that

71 = 0

Next, suppose that there exists a q^Δ—Δ1 where Δ1=Un^o(Cl(Fn)r\Δ). Let
{ζi} ( c β ) be a sequence converging to q and kq=liml_>Oo g(-, d) . Since β*—F o

is a neighborhood of q, by Lemma 2, there exists a unique component G of
β - F 0 such that (kq)Fo<kq on G. Set

771 = 1
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Observe that each Gn is a subregion of Ω—FQ, Gnr\Gn,=φ if nΦn'f and that

Ω-F0=Un=iGn. Hence G=Gn for an n^K Since Ω*-(F0UFn) is also a
neighborhood of q, by Lemma 2, there exists a unique component G' of Ω—

(F^Fn) such that (kq)FoΌFn<kq on G'. From the fact that (kq)Fo^(kq)FoUFn, it

follows that G' is a component of G—Fn=Gn~Fn. Observe that Gn—Fn=

(^7lWi?o)π7r~1(Um=i^//(m,n)) is a union of mutually disjoint relatively compact

subregions. This contradicts the relative noncompactness of G'. Thus Δ—Δx

and therefore, by virtue of (6), we conclude that dim5 > (β)=#J=#J 1 ^<J.
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