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§ 1. Introduction.

Let D be a domain (or a complex manifold) in Cn and let H{D) be the class
of holomorphic functions (or forms) in D. Let Jί'(D) be a Hubert space of
elements in H(D) with a reproducing kernel K(z, ζ). More specifically, we shall
assume that JC(D) is the space of all f^H(D) with the norm

Here μ is a positive measure acting on Do, where Do is either D or any part
of the boundary dD which determines the holomorphic functions in D as, for
example, the Silov boundary of D. In the case that Do is not D, f in the last
integral stands for the nontangential boundary values of the holomorphic
function f(z), z^D. In this way we may regard JC(D)^H2(D: μ) as a closed
subspace of L2(D0: μ) in a natural manner. Examples of such spaces are the
familiar Bergman and Hardy-Szegδ spaces to name only a few (see [2, 6, 9, 13]
for more details).

Let T(z) be a holomorphic function of Z E D and whose values are bounded
linear operators of a Hubert space U into a Hubert space W with norm ||T(z)||
rgl. Thus, T(z) is a holomorphic contraction of U into W. Let Iv and Iw be
the identity operators of U and W, respectively. For any z^D,

\\T(z)u\\tv^\\u\\b; \\nz)*w\\b^\\w\\*w

for every u^U and w^W, where T(z)* is adjoint operator of T(z). These
generate the kernel

(1.1) Kτ{z, Q=K(z, ζ)Uu-πζ)*T(z)l,

which is holomorphic in (z, ζ) for (z, ζ)^DxD and is a bounded linear operator
from H into U, and the " dual" kernel

(1.2) ctfΓ.(ζ, *)
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which is holomorphic in (ζ, z) for (ζ, z)^DxD and is a bounded linear operator
from W into W.

One of the main purposes of this paper is to prove the following statement:

THEOREM A. The kernel JCτ(z, ζ) is positive definite, that is

*Σ(JCτ(zmf zn)um, ιtn)u^0
vι, n

for every finite system {zm}m=i of points in D, and every corresponding system
{um}m=i of vectors in U.

It is our purpose to also prove the corresponding dual theorem regarding
the kernel JCτ*(ζ, z).

When D is the unit disk Δ={z^C: \z\<l}, U=W=C, Iv=l and K(z, ζ)
=(1—zζ)'1 is the Szegδ kernel of J, then this theorem is classical and is due
to Pick (cf. Ahlfors [1, pp. 3-4]). A more general case of Pick's theorem,
namely when in (1.1) K(z, ζ) is again the Szegδ kernel of the disk was first
proved by Rovnyak [8] and is discussed in Sz.-Nagy and Foias [13, pp. 231-233].

In our previous works [4, 5] we extended the theorem of Pick by replacing
the Szegδ kernel of the disk Δ with some reproducing kernel of H2(D: μ). The
method of proof of this general assertion is simpler then those found in [1, pp.
3-4] and [13, pp. 231-233] for the less general case when D=Δ and K{z, ζ) is
its Szegδ kernel. In fact, our method of proof conceals in it the proof of the
much more general assertion embodied in the present Theorem A.

In the course of proving the above theorem we also prove some other
relevant assertions which extend those found in [13, pp. 231-233]. The proof
of this theorem appears in Theorem 2 of this paper. Moreover, when D&0AB
is a plane domain we provide yet another generalization of Theorem A by
letting K(z, ζ) be the " generalized Szego kernel" of D. This positive definite
kernel is induced from the analytic capacity of D and was first studied by
Suita [11]. The present Theorem 3 is dedicated to this generalization.

§ 2. Preliminaries.

As usual, the space L2(D0: μ) stands for the Hubert space of /^-measurable
functions (or rather ^-equivalence classes of functions) / on Do for which

2 = ( \f(z)\*dμ(z)<oo.
JDQ

The inner product is, of course, given by

(/,£)=[ f(z)g(z)dμ(z)<oo.

The space H2(D : μ), mentioned in the introduction, may be regarded as a closed
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subspace of L2(D0: μ) in a natural way. We shall write kζ(z)=K(z, ζ) z, ζ^D,
for the reproducing kernel of H2(D: μ) and, therefore, k^H2(D: μ) with

and

Clearly, convergence in the norm in H2(D: μ) implies uniform convergence on
compacta of D.

Let U be any Hubert space with the inner product (, )u> The space
L2(U: μ) consists of those functions f(-)^UD° which are strongly //-measurable
and such that

\\f\\ϊ2iu ,o = \ \\f(z)\\hdμ(z)<oo.

With this definition L2(U: μ) becomes a Hubert space with the inner product

where, as usual, two functions in L2(U: μ) are regarded as identical if they
coincide //-a. e. on Do. Moreover, from every converging sequence of L2(U: μ)
one can extract a convergent subsequence which converges in the U-novm
μ-a.e. on Do.

The class of £/-holomorphic functions in D will be denoted by H(D: U).
Thus, H(D: U) is the class of all f( )(ΞUD for which (f(z), u)σ is holomorphic
in z^D for each u^U. We also denote by H2{U: μ) the subspace of L2(U: μ)
consisting of those functions f^L2(U:μ) for which (/(•), U)U(ΞH2(D : μ) for
each weί/. For any weί/ we have

which shows that H2(U: μ) is a closed subspace of L2(U: ^). Also, one may
regard H2(U: μ) as a subclass of i/(D: £/) in a natural way.

Some modifications of the arguments will be needed when DQ is not D.
This, however, does not constitute a major problem whenever H2(D: μ) is well-
defined. For sake of completeness we shall describe in some detail such an
instance when D is a plane domain. This, along with other possible extensions,
will be given in § 4.

We have the following obvious proposition :

PROPOSITION 1. The following hold:
( i ) For every {z, u)^DxU and each f^H2(U : μ)

2U.μ)=(f(z), u)u.

(ii) For every {z, u), (ζ,
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(kζ(-)v, kg(-)u)Liw.μ)=(kζ(z)v, u)u=K(z, ζ)(v, u)u,

(iii) For every (z, u)

A kernel JC(z, ζ) defined on DxD, whose values are bounded operators on
U is said to be positive definite, in short JC>0, if

for every finite system {zm}m=i of points of D, and every corresponding vectors
{um}m=i of U. For two kernels, the notation Jd>JC 2 or J ^ C J d will indicate
that Jίι—J£2>0.

§3. Holomorphic Kernels.

Let U and W be two Hubert spaces. The Banach algebra of all bounded
linear operators from U into W is denoted by &(JJ: W). Let T(z)^^B(U : W)
which is holomorphic in z^D. Thus, for any (u, ι^)eί/χT^, (T(z)u, w)w is
holomorphic in ^ G D i.e., (T(-)u, w)w<=H(D). Since T(z) is in ^ ( ί / : W) for
each ^ e i ) , it is clear that its adjoint T(z)* is in $(W: £/) and, moreover, it is
antiholomorphic in z^D. We shall assume that T(z) is also a contraction, i.e.,

| ^ l for all z^D. This, of course, means

for every z(=D and (M, w;)eί7xW. We therefore, have T(z)*T(z)^Iu and
T(z)T(z)*t^Iw f° r all z e ί ) and so one can form the positive operators

and

which are self-ad joint on U and W respectively. Here, O^H
for every z^D.

We now define the following holomorphic kernels belonging to <B(U: ί/).
For (z,ζ)^DxD we let

ζ)

and thus, in view of (1.1),

These kernels are holomorphic in (z, ζ) for (z, ζ)<^DxD and they are Hermitian,
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i.e.,

and so on for the remaining kernels. A holomorphic and Hermitian kernel
L(z, ζ) belonging to &(U: U) is said to be of class H2(JJ: μ)> if for any fixed
ζ e D , L(z, Qu^H2(U: μ), as a function of Z G D , for every u<=U.

We start with the following theorem, where some care is needed when Do

is not D (see §4).

THEOREM 1. gΌ(z, ζ), &τ(z, O and J(τ(z, ζ) are of class H2(U: μ). More-
over, Slτ{z, ζ) is of class H2(U : μ) provided μ(D0)<oo.

Proof.

Uu(-,Ou\\i2cu-μ> = \ \\K(z,ζ)u\\bdμ(z)=\\u\\b\ \K(z, Q\*dμ(z)

=A(ζ,ζ)| |u| |&<oo.

Next,

It therefore, also follows that JCτ(z, ζ) is of class H2(U μ). Moreover, when
μ{D0)<oo we have

\\&τ( , ζ)u\\ltar.μ> = \ \\T{Q*T(z)u\\hdμ{z)

^\\u\\b\ dμ(z)=\\u\\2

uμ(D0)<cx>,
J DQ

which concludes the proof.
In analogy to the previous holomorphic kernels we also define the following

kernels belonging &(W:W). For (ζ, Z)(ΞDXD we let

$w{ί, z)=K{z, ζ)Iw , Si Γ*(ζ, z ) = 7 W ( Q *

Bτ*{ζ, z)=K(z, ζ)ΛΓ.(C, z)

and thus, in view of (1.2),

<XτlL z)=Jw(ζ, z)-$τ*{ζ, z).

Clearly, these kernels are holomorphic in (ζ, z) for (ζ, z)^DxD and they are
Hermitian (for example, -0Γ*(C 2f)*=jSΓ*(5, ζ)) A holomorphic and Hermitian
kernel L(ζ, ^) belonging to ^(P7: PF), is said to be of class H2(W: μ), if for
any fixed ζ e D , L(ζ, z)w^H2(W: μ), as a function of Z G D , for every
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Similarly to Theorem 1 we have:

THEOREM 1.* gw(ζ, z), &τ*(ί, z) and JCΓ*(ζ, z) are of class H2(W: μ). More-
over, 3lτ*{ζ, z) is of class H2(W: μ) provided D)

The following lemma is crucial and, again, one must make the appropriate
interpretation when Do is not D.

LEMMA 1. Let (z, ζ)^DxD and (u, V)EΞUXU. Then JCτ(z, QEΞH2(U: μ)

and

(JCτ(z, Qu, vh=(kzlT(')-T(z)lu,

Proof. We use the reproducing property of kζ(z)=K(z, ζ) as given in Prop-
osition 1. Thus,

(JCτ(z, ζ)w, v)u=(JCτ(>, Qu, kz(')v)L2iU./0

However,

We will therefore, in view of Theorem 1, conclude the proof by showing that
the last term is zero. In fact, in view of Proposition 1,

(kr(')T(z)u, kΛ(-mQv)Litw μ) = K(z, ζ)(T(z)u, T(ζ)v)w

and

(kζ(-)T(z)u,

v, T{z)u)w

^K{z, ζXT(z)u, T(Qv)w

which concludes the proof.
Similarly to this lemma we also obtain:
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LEMMA 1.* Let (ζ, Z)<ΞDXD and (ω, w)^WxW. Then JCΓ*(ζ, Z)ZΞH2(W: μ)

, z)ω, u;V=(

and

We are now is a position to prove our main results.

THEOREM 2. 77ιe kernels gΌ(z, ζ), J£ Γ (Z, ζ), i£r(z, ζ) and JCΓfo ζ) are posi-
tive definite. In fact,

Proof. For {zm}m=i in £> and corresponding vectors {wOT}5Li of ί/ we have :

showing that

and therefore

Further, by Proposition 1,

Zn)um, Un)σ= ΣK(zm, Zn)(T{zn)*T(zm)llm, Un)u
m, n

= Σ K(zn, Zn)(T(zm)um, T{Zn)Un)w

Finally, by virtue of Lemma 1, we have

, kZnΩu{')lln)LoiU / 0

which shows that JCΓ>0 or Su>^T- This concludes the proof.
Similarly, by appealing to Lemma 1*, we also obtain :

THEOREM 2.* The kernels gw(ζ, z), <Rτ*(ζ, z), i5r*(ζ, z) and JCτ*(ζ, z) are
positive definite. In fact,

&T* » 0 , 3W » ^?Γ* > 0 cλV* > 0 .

The most important results of the previous two theorems are, of course.
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that JCΓ>0 or JCΓ*>0. Since these generalize the classical result of Pick (see
Ahlfors [1, pp. 3-4]) one might expect that the positive definiteness of these
kernels would lead to some distortion theorems of the Schwarz-Pick type. That
this is indeed the case is shown in the following corollaries (see also [4, 5]).

COROLLARY 1. Let u be any vector in U and let {zm)m=i be points in D.
Then

άetί(JCτ(zm,zn)u, u)u]ί>n^Q>.

Proof. Let {am}ίm=i be scalars in C and define um—amu, l^m^N. Since
JCΓ>0, it follows that

Έ(<Xτ(.Zm, zn)um, un)u= Σ(JCτ{zm, zn)u, u)amάn^0
m,n rϊi.n

and the result follows.
We say that D is of class 3i if for any ζeZ) there exists an f^H2(D: μ)

so that f(ζ)Φθ. Clearly, D G J if and only if K(z, z)>0 for every

COROLLARY 2. Let D^3l and let u^U be a unit vector. Suppose further
that \\T(z)u\\w is not a constant throughout D. Then

\K(z,ζ)\2

 < C l - H T
<

K{z, z)K(ζ, ζ) = I l-(T(z)u, T(ζ)M V1
for any z,

Proof. This follows from Corollary 1 by taking N—2 and z1=zi z2=ζ.
Note also that the denominator of the right hand side of the inequality does
not vanish for every z, ζeZλ Indeed, \\T(z)u\\w^l and by the maximum
principle (see [7, p. 100]), in view of the non-constancy of \\T{z)u\\w, we actu-
ally have ||T(2r)tt|Ur<l for each z ε D . Consequently, \{T(z)u, T(Qu)w\<l for
every z, ζ e i λ The left hand side of the inequality is, of course, well defined
because D^3ί. This concludes the proof.

If / is a (^-function near z=(zlf ••• , zn)^Cn, and, v=(vlf ••• , vn)^Cn, we
write

3vf(z)= Σ vjd.f(z), 3Όf(z)= Σ v&Kz).
3 = 1 J 3 = 1 J

Let D G J , ζ(ΞD and v^Cn. We write

^2«(z))(ζ : v)=dJ3Ό\og K, K=K(ζf ζ ) ,

and note that when dμ is the usual (Lebesgue) volume element then this
expression is, precisely, the classical Bergman metric for D. We also have

(^)| : / - <B:(D : μ)},

where
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<Bζ(D:μ)^{f^H2(D:μ): | | / | | ^ 1 , /(ζ)=0},

(see [2, p. 26] and [3]).

COROLLARY 3. Let the assumptions of Corollary 2 prevail. Assume further
that v^Cn. Then

bμu»(z:v)=H-\\T(z)u\\ϊvJ

and thus

for any

Proof. For a fixed ζ^D, consider the function

g{Z' Z) g T T(QuV]21Og K(z,

According to Corollary 2, g^O and, moreover, g assumes a local minimum at
z=ζ. Therefore, for each direction v^Cn the Hessian of g

is non-negative at z—ζ. However, by a direct computation,

\dΏT(z)u\\>w \φvT{z)u,T{z)u)w\* , .

and the corollary follows.
The last corollary also shows that the so-called " Caratheodory-Reiffen

metric" of D is always dominated by bμtD>(z: v) (see [3, 4] for more details).

Remark. The previous results were proven under the assumptions that
T{z) is contractive and thus, T(z)*T(z)^Iu and T{z)T{z)*^Iw. These results
can be further generalized by assuming instead that T{zYT{z)^A and T(z)T(z)*
^B where A^ &(U': U) and B^<B(W:W) are constant operators. Indeed, we
can, for example, write T(z)=S(z)A1/2 with S(z)<= &(JJ : W) and \\S(z)\\ <Ξ1. Then
A-T{z)*T(z)^All2Uu-S(z)*S{z)~]A112 and one proceeds as before. We omit
the details.

§ 4. The Szegό Kernel.

The results exhibited earlier are valid for holomorphic reproducing kernels
of the Hubert spaces H2(D: μ). However, some care is needed when dμ does
not act on D but rather, say, on the Silov boundary of D. This care is mostly
needed in providing a precise meaning for H2(U: μ) or H2(W: μ) where the
inner products are defined via the boundary values of certain holomorphic
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vector functions. As an example we shall treat the case when I) is a plane
domain and, in so doing, we even obtain an extension of the previous results.

Let D be a plane domain whose boundary consists of a finite number of
rectifiable curves. We shall assume that 3D is in fact smooth or more gener-
ally of Smirnov type. Let L2(3D) designate the customary Hubert space of
functions on 3D with the inner product

(f>g)=\ / ( * ) £ ( * ) I d z I ; II/II = V ( 7 , 7 ) ,
JoD

that is, here we are taking D0=3D and dμ(z)=\dz\. Let Li(3D) be the
closed linear subspace of L2(3D) consisting of those functions v^L2{3D) for
which

2πι ζ

Then

(4.1) z—ζ

is holomorphic in D and v coincides almost everywhere on 3D with the non-
tangential limit of /.

We now introduce the classical Hardy-Szegδ space H2(D). A function
f(=.H(D) is said to belong to H2(D) if there exists an exhaustion {Dm} of D
such that each dDm is smooth, the lengths of the dDm are bounded, and

(4.2) ll/ll?/-TmT( \f(z)\2\dz\<co.

It is well known that every f^H2(D) has a nontangential limit v almost every-
where on 3D with ||/||//=||v|| and that / can be recovered from its boundary
function v via a Cauchy integral over 3D. Since 3D is of Smirnov type, the
set of boundary functions of H2(D) is precisely the class Lt(3D). Therefore,
each v^Li(3D) determines exactly one holomorphic function f^H2(D) by (4.1)
with | |/HJ/=IM1, and, because of this uniqueness we shall not destinguish between
v(ζ) and /(ζ), ζ(ΞdD. We can therefore, identify H2(D) with Li{3D), thus
providing H2(D) with the Hubert structure of Li(3D) and embedding it in
L2{3D) as a closed subspace.

In view of (4.1) point evaluations are bounded linear functionals on H2(D)
and therefore, H2{D) admits a reproducing kernel kζ(z)=K(z, ζ) which is the
classical Szego kernel for D. Let U be any Hubert space with the inner
product (,)σ. As before, we consider the space L2(U) of functions f{-)^UdD

which are (strongly) measurable on 3D and for which

JuD
\\b\dz\
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This is, of course, a Hubert space with the inner product

(f(z), g(z))u\dz\.

We let Lt(U) be the closed subspace of L2(U) consisting of those functions
v^L2(U) for which (v(z), u)u^Lt(dD), as a function of z^dD, for every u^U.
Here, (v(z), u)u is the boundary value of the holomorphic function (f(z), u)υ

where

(4.3)

the integral being in the sense of Bochner [7, p. 95]. Analogously, we can
define the class H2(U), thus f^H(D:U) belongs to H2(U) if

where {Dm} is an exhaustion of D as that in (4.2). Therefore, every f(=H2(U)
has a nontangential limit (in the ί/-norm convergence) v^Li(U) almost every-
where on 3D and can be recovered from v by (4.3). Consequently, we can
identify H2(U) and Li(U) in the previous natural way. An account for the
main part of the above exposition can be found, for example, in [6, pp. 167-185]
and [13, pp. 183-190] where further literature is quoted.

Once the spaces L2(U) and H2(U) have been introduced it obviously follows
that Proposition 1, Lemma 1 (or 1*), Theorems 1, 2 (or 1*, 2*) and their corol-
laries hold true in this setting.

We now pass to the more general case where D is merely assumed to be
D&OAB, i.e., D admits a non-constant bounded holomorphic function. In this
case one can define the "analytic capacity" of D at ζeZ) by

CI,(ζ)=max{|//(ζ)l : f^Hζ(D:Δ)} ,

where, H-(D: Δ) is the family of all holomorphic functions / from D into the
unit disk Δ with /(ζ)=0. Then, there exists a unique F^Hζ(D: Δ), called the
" Ahlfors function" F(z)=F(z:ζ), with F'(ζ: ζ)=CD(ζ)>0. Moreover, if D is a
plane domain with a smooth boundary then CD(ζ)=2πK(ζ, ζ), where K(z, ζ) is
the Szegδ kernel for D (see [2, p. 118]).

Let {Dm} be a canonical exhaustion of D&OAB such that each Dm consists
of a finite number of analytic curves. Here, Dm eventually contains each
compact subset of D. In every Dm we have the Szegδ kernel Km(z, ζ), the
analytic capacity Cm(z) and the Ahlfors function Fn(z)=Fm(z: ζ). Obviously,
F'm(ζ)=Cm(ζ)=2πKm(ζ, ζ) and F m (ζ)=0. Under these circumstances, {Fm(z)}
and {Cm(z)} converge uniformly on compacta of D to_F(z) and CD{z), respec-
tively. The same is also true for the sequence {Km(z, 0} as was pointed out
by Suita [11]. Indeed, {Km{z, ζ)} converges uniformly on compacta of D to a
function K(z, ζ) which is holomorphic in (z, ζ) with (z, ζ )e ί )χZ) .
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The function K(z, ζ) will be called the "generalized Szego kernel" for
D&OΛB. It is clearly an Hermitian positive definite kernel with 2πK(z, z)—
CD(z) for every z^D. Let T(z) be a holomorphic contraction in D from U into
W. Then the kernels SiΓ^iz, ζ), iRfm)(z, ζ) and so on are, of course, well defined.
In particular, {Jί{

τ

m\z, ζ)}, given by

converges uniformly on compacta of D to JCΓ(^, ζ)=K(z, Z)Uu—T(Q*T(z)~}. This
leads to an extension of Theorems 2 and 2* as follows:

THEOREM 3. Let D be a plane domain, D&OAB, and let K(z, ζ) be its
generalized Szego kernel. Let Jίτ{z, ζ)=K(z, ζ)Uu—T(ζ)*T(z)l have the same
meaning as before. Then JCΓ>0 and the same holds for the corresponding
kernel JCτ*(ζ, z).

It is clear that Corollaries 1-3 are also valid for this generalized Szegδ
kernel. This leads to many interesting distortion theorems. In fact, already
even in the scalar case where U~W~C we have, in view of Corollary 2,

- I z>

where f^H(D: Δ). Here, H(D: Δ) is the family of holomorphic functions from
D into Δ. This inequality constitutes an improvement of the well known
inequality \K(z, ζ)\2^K(z, z)K(ζ, ζ) From (4.4) one deduces, as in Corollary 3,
that the curvature of the analytic capacity is ^—4 (see [3] and [12] for
details). It also shows that

(4.5)
K{z, z)K{ζ, I

which means that the so-called " Ahlfors distance " is dominated by the right
hand side of (4.5). Evidently, these results may be also formulated in terms
of weighted Szegδ kernels and the so-called " Rudin kernels " (see Saitoh [9, 10]
for further information on these kernels). We omit the details.
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