# AN EXTREMAL PROBLEM FOR SUBHARMONIC FUNCTIONS OF $\mu_{*}<1 / 2$ 

By Hideharu Ueda

0. Introduction. Let $f$ be an entire function. We denote the order and the lower order of $f$ by $\lambda$ and $\mu$, respectively. And we set

$$
m^{*}(r, f)=\min _{|z|=r}|f(z)|, \quad M(r, f)=\max _{|z|=r}|f(z)|
$$

Then the classical $\cos \pi \lambda$ theorem of Valiron and Wiman asserts

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{\log M(r, f)} \geqq \cos \pi \lambda \tag{1}
\end{equation*}
$$

provided that $0 \leqq \lambda<1$. In 1960 Kjellberg [15] showed that if $0 \leqq \mu<1$, then the above assertion (1) is valid with $\lambda$ replaced by $\mu$.

In [5], [6] Drasin and Shea considered those functions for which (1) is the best, and discussed the "global" asymptotic behavior of such functions. Their argument involves solving a convolution inequality. Baernstein [1] made use of their study on the convolution inequality to prove two theorems complementing the spread relation.

On the other hand, Edrei [9] also considered the extremal functions of the $\cos \pi \mu$ theorem, and discussed the "local" asymptotic behavior of such functions. His idea in [9] lies in adapting the work of Cartwright [2] on a sinusoidal indicator to his local one introduced in [8]. Further he showed in [9] that his method is applicable to the following extremal problem:

For meromorphic functions, assume $0 \leqq \mu<1 / 2, \quad k=\delta(\infty, f)-1+\cos \pi \mu>0$. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{T(r, f)} \geqq k \cdot \frac{\pi \mu}{\sin \pi \mu} . \tag{2}
\end{equation*}
$$

This inequality is best possible. The problem is to characterize those functions for which (2) is the best (See [9, Theorem 1].).

In connection with (2), it is natural to consider the quantity:

$$
\varlimsup_{r \rightarrow \infty} \frac{\log m^{*}(r, f)}{m_{2}(r, f)}
$$

Received May 6, 1980
for an entire or a meromorphic function $f$, where

$$
m_{2}(r, f)=\left(\frac{1}{2 \pi} \int_{-\pi}^{+\pi}\left\{\log \left|f\left(r e^{2 \theta}\right)\right|\right\}^{2} d \theta\right)^{1 / 2} .
$$

In [19] we defined the local indicator for a sequence of subharmonic functions, and considered the above problem more generally for $\delta$-subharmonic functions, that is, those functions $v(z)$ which can be represented as

$$
\begin{equation*}
v(z)=u^{(1)}(z)-u^{(2)}(z), \tag{3}
\end{equation*}
$$

where $u^{(1)}(z), u^{(2)}(z)$ are subharmonic functions in $C$. For a $\delta$-subharmonic function (3), we put

$$
m^{*}(r, v)=\inf _{|z|=r} v(z), \quad M(r, v)=\sup _{|z|=r} v(z), \quad N(r, v)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} V\left(r e^{\imath \theta}\right) d \theta .
$$

Then the characteristic function of $v$ is defined by

$$
T(r, v)=N\left(r, v^{+}\right)+N\left(r, u^{(2)}\right)=N\left(r, \max \left(u^{(1)}, u^{(2)}\right)\right) .
$$

With the above $T(r, v)$, we consider the following four quantities:

$$
\begin{aligned}
& \left.\lambda=\varlimsup_{r \rightarrow \infty} \frac{\log T(r, v)}{\log r} \quad \text { (the order of } v\right), \\
& \mu=\lim _{r \rightarrow \infty} \frac{\log T(r, v)}{\log r} \quad \text { (the lower order of } v \text { ), } \\
& \lambda_{*}=\sup \left\{\rho: \varlimsup_{A, r \rightarrow \infty} \frac{T(A r, v)}{A^{\rho} T(r, v)}=\infty\right\} \quad \text { (the upper index of Pólya peaks for } v \text { ). } \\
& \mu_{*}=\inf \left\{\rho: \lim _{A, r \rightarrow \infty} \frac{T(A r, v)}{A^{\rho} T(r, v)}=0\right\} \quad \text { (the lower index of Pólya peaks for } v \text { ). }
\end{aligned}
$$

It is easy to see that $\mu_{*} \leqq \mu \leqq \lambda \leqq \lambda_{*}$. Drasin and Shea [7] proved that the Pólya peaks of order $\rho$ for $v$ exist iff $\rho \in\left[\mu_{*}, \lambda_{*}\right], \rho<\infty$. We remark that there exists a subharmonic function satisfying $\mu_{*}<\mu$ or $\lambda<\lambda_{*}$. Further we define $\delta(\infty, v)$ and $m_{2}(r, v)$ as follows:

$$
\delta(\infty, v)=1-\overline{\lim _{r \rightarrow \infty}} \frac{N\left(r, u^{(2)}\right)}{T(r, v)}, \quad m_{2}(r, v)=\left\{N\left(r, v^{2}\right)\right\}^{1 / 2} .
$$

One of our results in [19] can now be described.
Theorem A. Let $v$ be $\delta$-subharmonic defined by (3). Assume that $\mu_{*}<1 / 2$ and $N\left(r, u^{(1)}\right) \sim T(r, v)(r \rightarrow \infty)$. Further let $\rho$ satisfy the following three conditions:
(i) $\mu_{*} \leqq \rho \leqq \lambda_{*}$,
(ii) $0 \leqq \rho<1 / 2$,
(iii) $\quad k_{2}(\rho)=\cos \pi \rho-1+\delta(\infty, v) /(2-\delta(\infty, v))>0$.

Then
(4)

$$
\varlimsup_{r \rightarrow \infty} \frac{m^{*}(r, v)}{m_{2}(r, v)} \geqq \frac{k_{2}(\rho)}{\sqrt{ } 1 / 2+\sin 2 \pi \rho / 4 \pi \rho} \equiv C_{2}(\rho) .
$$

In partıcular, if $v$ is subharmonic, then the assumption: $N\left(r, u^{(1)}\right) \sim T(r, v)$ can be dropped.

If $\delta(\infty, v)=1$, the estimate (4) is best possible. And an elementary but somewhat lengthy computation shows that

$$
\sup _{\substack{\mu_{s} \leq \leq \leq \leq \sum_{2} \\ \rho<1 / 2}} C_{2}(\rho)=C_{2}\left(\mu_{*}\right),
$$

provided that $\delta(\infty, v)=1$.
In this paper we shall make use of Edrei's idea stated above to obtain the following result.

Theorem. Let $u(z)$ be a subharmonic function in $\boldsymbol{C}$ and have $\mu_{*}<1 / 2$. Assume that $u(z)$ satisfies

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{m^{*}(r, u)}{m_{2}(r, u)}=C_{2}\left(\mu_{*}\right) . \tag{5}
\end{equation*}
$$

Then there exists a positive, increasing, unbounded sequence $\left\{y_{k}\right\}_{1}^{s o}$ having all the following properties:
I.

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \frac{m^{*}\left(y_{k}, u\right)}{m_{2}\left(y_{k}, u\right)}=C_{2}\left(\mu_{*}\right),  \tag{6}\\
& \lim _{k \rightarrow \infty} \frac{N\left(y_{k}, u\right)}{m_{2}\left(y_{k}, u\right)}=\frac{\sin \pi \mu_{*}}{\pi \mu_{*}} \frac{1}{\sqrt{ } 1 / 2+\sin 2 \pi \mu_{*} / 4 \pi \mu_{*}} \equiv C_{1}\left(\mu_{*}\right), \\
& \lim _{k \rightarrow \infty} \frac{N\left(y_{k}, u\right)}{T\left(y_{k}, u\right)}=1 . \tag{8}
\end{align*}
$$

II. There also exist three positive sequences $\left\{y_{k}^{\prime}\right\}_{1}^{\infty},\left\{y_{k}^{\prime \prime \prime}\right\}_{1},\left\{\varepsilon_{k}\right\}_{1}^{\}_{1}^{\circ}}$ such that, as $k \rightarrow \infty$,

$$
\begin{equation*}
y_{k} / y_{k}^{\prime} \longrightarrow \infty, \quad y_{k}^{\prime \prime \prime} / y_{k} \longrightarrow \infty, \quad \varepsilon_{k} \longrightarrow 0, \tag{9}
\end{equation*}
$$

and such that

$$
\begin{equation*}
y_{k}^{\prime} \leqq r \leqq y_{k}^{\prime \prime \prime}, \quad k \geqq k_{0} \tag{10}
\end{equation*}
$$

implies
(11)

$$
\left(1-\varepsilon_{k}\right)\left(\frac{r}{y_{k}}\right)^{\mu_{*}} \leqq \frac{N(r, u)}{N\left(y_{k}, u\right)} \leqq\left(1+\varepsilon_{k}\right)\left(\frac{r}{y_{k}}\right)^{\mu *},
$$

$$
\begin{equation*}
\left(1-\varepsilon_{k}\right)\left(\frac{r}{y_{k}}\right)^{\mu *} \leqq-\frac{T(r, u)}{T\left(y_{k}, u\right)} \leqq\left(1+\varepsilon_{k}\right)\left(\frac{r}{y_{k}}\right)^{\mu *}, \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{m_{2}(r, u)}{m_{2}\left(y_{k}, u\right)} \leqq\left(1+\varepsilon_{k}\right)\left(\frac{r}{y_{k}}\right)^{\mu *} . \tag{13}
\end{equation*}
$$

III. Further if $\mu_{*}>0$, then there exist three sequences $\left\{y_{k}^{\prime \prime}\right\}_{1}^{c},\left\{\delta_{k}\right\}_{1}^{c},\left\{\theta_{k}\right\}_{1}^{\infty}$ such that as $k \rightarrow \infty$,

$$
\begin{equation*}
y_{k}^{\prime \prime} / y_{k} \longrightarrow \infty, \quad y_{k}^{\prime \prime} / y_{k}^{\prime \prime} \longrightarrow \infty, \quad \delta_{k} \longrightarrow 0, \tag{14}
\end{equation*}
$$

and such that

$$
\begin{equation*}
y_{k}^{\prime \prime} \leqq r \leqq y_{k}^{\prime \prime \prime}, \quad k \geqq k_{1} \tag{15}
\end{equation*}
$$

implies

$$
\begin{equation*}
N\left(r, u ; S_{k}\right)<\varepsilon_{k} N(r, u), \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{S}_{k}=\left\{z: \delta_{k} \leqq \arg z-\theta_{k} \leqq 2 \pi-\delta_{k}\right\} . \tag{17}
\end{equation*}
$$

From the statement of I and II in Theorem, we can easily derive the following facts:

If $u(z)$ has $\mu_{*}<1 / 2$ and satisfies (5), then

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ r \in G}} \frac{N(K r, u)}{N(r, u)}=K^{\mu_{*}}, \quad \lim _{\substack{r \infty \\ r \in G}} \frac{T(K r, u)}{T(r, u)}=K^{\prime *}, \tag{18}
\end{equation*}
$$

uniformly for $K$ in any interval $A^{-1} \leqq K \leqq A(A>1)$, with

$$
G=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \quad\left(a_{n} \rightarrow \infty, b_{n} / a_{n} \rightarrow \infty\right) .
$$

Further,

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ r \in G}} \frac{N(r, u)}{T(r, u)}=1, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lim _{\substack{r \rightarrow \infty \\ r \in G}} \frac{N(r, u)}{m_{2}(r, u)} \geqq C_{1}\left(\mu_{*}\right)}{} \tag{20}
\end{equation*}
$$

hold.
The above estimates (18)-(20) are no longer true if we omit the restriction $r \in G$. To see this, we make use of the concept of a flexible proximate order which was introduced by Drasin [4].

Let $\lambda(r)(r>0)$ be a continuous, nonnegative function which is continuously differentiable off a discrete set $D$, such that

$$
\begin{equation*}
r \lambda^{\prime}(r) \longrightarrow 0 \quad(r \rightarrow \infty, r \oplus D) . \tag{21}
\end{equation*}
$$

Let $E$ and $E_{1}$ be sets of the form

$$
\begin{equation*}
E=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], \quad E_{1}=\bigcup_{n=1}^{\infty}\left[k_{n}^{-1} a_{n}, k_{n} b_{n}\right], \tag{22}
\end{equation*}
$$

where

$$
\begin{gather*}
(1<) k_{n} \uparrow \infty \quad(n \rightarrow \infty), \quad\left[k_{n}^{-1} a_{n}, k_{n} b_{n}\right] \cap\left[k_{m}^{-1} a_{m}, k_{m} b_{m}\right]=0 \quad(m \neq n), \\
\int_{E_{1} \cap[1, r]} t^{-1} d t=o(\log r) \quad(r \rightarrow \infty) . \tag{23}
\end{gather*}
$$

Now, suppose that $\lambda(r)$ satisfies

$$
\begin{gather*}
\quad 0<\rho_{1} \leqq \lambda(r) \leqq \rho_{2}<1  \tag{24}\\
\lambda(r)=\left\{\begin{array}{lll}
\rho_{1} & (<1 / 2) & \left(r \in \bigcup_{n=1}^{\infty}\left[a_{2 n}, b_{2 n}\right]\right), \\
\rho_{2} & \left(r \in \bigcup_{n=1}^{\infty}\left[a_{2 n-1}, b_{2 n-1}\right]\right), \\
\rho & \left(\rho_{1}<\rho<\rho_{2}\right) & \left(r \notin E_{1}\right),
\end{array}\right.
\end{gather*}
$$

and let $\lambda(r)$ be extended to $E_{1}-E$ so that it is continuous and

$$
t \lambda^{\prime}(t)=\left\{\begin{array}{cl}
-\left(\rho-\rho_{1}\right) / \log k_{2 n} & t \in\left(k_{2 n}^{-1} a_{2 n}, a_{2 n}\right), \\
\left(\rho_{2}-\rho\right) / \log k_{2 n-1} & t \in\left(k_{2 n-1}^{-1} a_{2 n-1}, a_{2 n-1}\right), \\
\left(\rho-\rho_{1}\right) / \log k_{2 n} & t \in\left(b_{2 n}, k_{2 n} b_{2 n}\right), \\
-\left(\rho_{2}-\rho\right) / \log k_{2 n-1} & t \in\left(b_{2 n-1}, k_{2 n-1} b_{2 n-1}\right) .
\end{array}\right.
$$

Then (21) holds, and by (23), (25) it is clear that

$$
\begin{equation*}
(\log r)^{-1} \int_{1}^{r} \lambda(t) t^{-1} d t \longrightarrow \rho \quad(r \rightarrow \infty) \tag{26}
\end{equation*}
$$

Let $f(z)$ be a canonical product with negative zeros with counting function

$$
\begin{equation*}
n(r)=\left[\exp \left(\int_{1}^{r} \lambda(t) t^{-1} d t\right)\right] \tag{27}
\end{equation*}
$$

Then (26) implies that $f$ is of order $\rho(<1)$ (cf. [2, Theorem 1.11.]) and so for a suitable branch of $\log f(z)$

$$
\begin{equation*}
\log f(z)=z \int_{0}^{\infty} \frac{n(t)}{t(t+z)} d t \quad(|\arg z|<\pi) \tag{28}
\end{equation*}
$$

Using the reasoning of the proof of Proposition in [4, p. 133], we have from (21), (24), (25), (26) and (28)

$$
\begin{equation*}
\log f(z)=\left\{\frac{\pi}{\sin \pi \lambda(r)} e^{\imath \kappa(r) \theta}+o(1)\right\} n(r), \tag{29}
\end{equation*}
$$

where the $o(1)$ in (29) tends to zero uniformly as $z \rightarrow \infty$ in any sector: $|\theta| \leqq \pi-\eta$. From (29) we easily obtain for $u(z)=\log |f(z)|$,

$$
\begin{align*}
& N(r, u)=\frac{n(r)}{\lambda(r)}(1+o(1)),  \tag{30}\\
& T(r, u)=\frac{n(r)}{\lambda(r)}(1+o(1))(\lambda(r) \leqq 1 / 2),=\frac{n(r)}{\lambda(r) \sin \pi \lambda(r)}(1+o(1))(\lambda(r)>1 / 2),  \tag{31}\\
& m_{2}(r, u)=\frac{\pi n(r)}{\sin \pi \lambda(r)} \sqrt{1 / 2+\sin 2 \pi \lambda(r) / 4 \pi \lambda(r) \cdot(1+o(1)),}  \tag{32}\\
& m^{*}(r, u) \leqq \frac{\pi n(r)}{\sin \pi \lambda(r)} \cos \pi \lambda(r) \cdot(1+o(1)) . \tag{33}
\end{align*}
$$

If $K(>0)$ is fixed, (21) implies that $\lambda(K r)=\lambda(r)+o(1)(r \rightarrow \infty)$, and so by (27) $n(K r) \sim K^{\lambda(r)} n(r)(r \rightarrow \infty)$. Hence by (31)

$$
\frac{T(K r, u)}{K^{\lambda(r)} T(r, u)}=1+o(1) \quad(r \rightarrow \infty) .
$$

Thus (25) and the definition of $\mu_{*}\left(\lambda_{*}\right)$ imply

$$
\begin{equation*}
\mu_{*}=\rho_{1} \quad\left(\lambda_{*}=\rho_{2}\right) . \tag{34}
\end{equation*}
$$

On the other hand, we have by (32), (33)

$$
\begin{equation*}
\frac{m^{*}(r, u)}{m_{2}(r, u)} \leqq C_{2}(\lambda(r))(1+o(1)) \leqq C_{2}\left(\rho_{1}\right)(1+o(1)) . \tag{35}
\end{equation*}
$$

It follows from (34) and (35) that $u(z)$ satisfies (5). However, by (30)-(33) we have

$$
\begin{equation*}
\frac{N(K r, u)}{N(r, u)}=K^{\lambda(r)}(1+o(1)), \tag{36}
\end{equation*}
$$

(37) $\quad \frac{T(K r, u)}{T(r, u)}=K^{\lambda(r)}(1+o(1))$,

$$
\frac{N(r, u)}{m_{2}(r, u)}=C_{1}(\lambda(r))(1+o(1)), \quad \frac{N(r, u)}{T(r, u)}=\left\{\begin{array}{l}
1+o(1)(\lambda(r)<1 / 2)  \tag{38}\\
\sin \pi \lambda(r) \cdot(1+o(1))(\lambda(r) \geqq 1 / 2) .
\end{array}\right.
$$

(36)-(38) illustrate our assertion which we have stated above in relation to (18)-(20). And from (22), (23) we have $\log$ dens $G=0$ in this case. This fact is worth while to be compared with the result of Drasin and Shea in [6, pp.

281-283]. Further we note from (26), (27), (31) and (34) that $\rho_{1}=\mu_{*}<\mu=\rho=$ $\lambda<\lambda_{*}=\rho_{2}$.

Our theorem is unsatisfactory in one respect, that is, we cannot answer whether in addition to (13) an estimate from below such as

$$
\left(1-\varepsilon_{k}\right)\left(\frac{r}{y_{k}}\right)^{\mu *} \leqq \frac{m_{2}(r, u)}{m_{2}\left(y_{k}, u\right)} \quad\left(y_{k}^{\prime} \leqq r \leqq y_{k}^{\prime \prime \prime}\right)
$$

holds or not.
Now, we conclude $\S 0$ by describing our plan for the proof of our theorem. First, in §1, we shall state the definition and the elementary properties of the local indicator for a sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ of subharmonic functions such that $B_{m}(z)$ is subharmonic in the annulus: $r_{m}^{\prime} \leqq|z| \leqq r_{m}^{\prime \prime}(m=1,2, \cdots$ ) (cf. [19]). Next, we remark that, roughly speaking, Edrei's idea in [9] is supported by two factsthe one is the Boutroux-Cartan Lemma and the other is a lemma due to Edrei and Fuchs [10, p. 322]. So in §2, we shall extend these two lemmas for subharmonic functions. In $\S 3$, in relation to an extremal function $u(z)$ satisfying (5), we define a sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ of subharmonic functions and show that the local indicator of $\left\{B_{m}(z)\right\}_{1}^{\infty}$ is sinusoidal. This fact implies that Edrei's idea is applicable to our problem. In §4, we shall prove a lemma which is essential to the proof of I and II of our theorem. To do this, we need an estimate of Miles and Shea [16] and an estimate due to Gol'dberg [11]. In §5, we follow Edrei's procedure in [9] to obtain I and II of our theorem. In §6, combining some estimates obtained in $\S 4$ and $\S 5$ and the reasoning of Miles and Shea in [17], III of our theorem will be proved.

For background material on subharmonic functions, see [13] or [18].

1. Definition of the local indicator of order $\rho$ of a sequence $\left\{B_{m}(z)\right\}_{1}^{\circ}$ of subharmonic functions.

We now prepare several notations and their properties in order to define the local indicator of order $\rho$ of a sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ of the given subharmonic functions.
(i) three infinite sequences of positive numbers $\left\{r_{m}^{\prime}\right\}_{1}^{\infty},\left\{r_{m}\right\}_{1}^{\infty},\left\{r_{m}^{\prime \prime}\right\}_{1}^{\infty}$ such that $r_{m}^{\prime}<r_{m}<r_{m}^{\prime \prime}<r_{m+1}^{\prime}(m=1,2, \cdots)$, and such that, as $m \rightarrow \infty$

$$
r_{m} / r_{m}^{\prime} \longrightarrow \infty, \quad r_{m}^{\prime \prime} / r_{m} \longrightarrow \infty
$$

(ii) a sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ such that $B_{m}(z)$ is subharmonic in the annulus:

$$
r_{m}^{\prime}<|z|<r_{m}^{\prime \prime} .
$$

(iii) a strictly positive sequence $\left\{V\left(r_{m}\right)\right\}_{1}^{\infty}$ and a quantity $\rho(0<\rho<\infty)$. We then define a sequence $\left\{V_{m}(z)\right\}_{1}^{\infty}$ of analytic comparison functions:

$$
V_{m}(z)=V_{m}(r) e^{2 \rho \theta}=V\left(r_{m}\right)\left(\frac{r}{r_{m}}\right)^{\rho} e^{2 \rho \theta} \quad\left(z=r e^{2 \theta}\right) .
$$

The symbol $V_{m}(r)$ always refers to the choice of $\theta=0$.
(iv) Consider the intervals $I_{m}=\left[r_{m}^{\prime}, r_{m}^{\prime \prime}\right](m=1,2, \cdots)$ as well as the intervals $I_{m}(s)=\left[r_{m} e^{-s}, r_{m} e^{s}\right](m=1,2, \cdots ; s=1,2, \cdots)$, and let

$$
\Lambda=\bigcup_{m=1}^{\infty} I_{m}, \quad \Lambda(s)=\bigcup_{m=1}^{\infty} I_{m}(s) \quad(s=1,2, \cdots) .
$$

(v) Let the sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ be chosen so that

$$
\varlimsup_{\substack{r \rightarrow \infty \\ r \in A}} \frac{M(r, B)}{V(r)}<\infty,
$$

where $B(z)$ stands for $B_{m}(z)$ in the annulus: $r_{m}^{\prime}<|z|<r_{m}^{\prime \prime}(m=1,2, \cdots)$. With these preparations we now define the local indicator. Firstly we set for every real value of $\theta$,

$$
h_{s}(\theta)=\varlimsup_{\substack{r \rightarrow \infty \\ r \in \Lambda(s)}} \frac{B\left(r e^{2 \theta}\right)}{V(r)} \quad(s=1,2, \cdots),
$$

and consider

$$
h(\theta)=\lim _{s \rightarrow \infty} h_{s}(\theta) .
$$

The real function $h(\theta)$ is called the local indicator of order $\rho$ of $\left\{B_{m}(z)\right\}_{1}^{\circ}$ at the peaks $\left\{r_{m}\right\}_{1}^{\infty}$. With this definition, Edrei's Fundamental Lemma can be extended straightforwardly for the sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ of subharmonic functions.

Fundamental Lemma. Let $h(\theta)$ be the local indicator of order $\rho(0<\rho<\infty)$ of $\left\{B_{m}(z)\right\}_{1}^{\infty}$ at the peaks $\left\{r_{m}\right\}_{1}^{\infty}$. Let $\theta_{1}, \theta_{2}$ be given such that $0<\theta_{2}-\theta_{1}<\pi / \rho$, and let the constants $a, b$ be such that the sinusord $H(\theta)=a \cdot \cos \rho \theta+b \cdot \sin \rho \theta$ satisfies the conditions: $h\left(\theta_{j}\right) \leqq H\left(\theta_{j}\right)(\jmath=1,2)$. Then given $\varepsilon>0$ and any integer $s>0$, there exists a bound $r_{0}=r_{0}\left(\varepsilon, s, a, b, \theta_{1}, \theta_{2}\right)$, independent of $\theta$, such that

$$
B\left(r e^{2 \theta}\right) \leqq(H(\theta)+\varepsilon) \cdot V(r),
$$

for $r \in \Lambda(s), \theta_{1} \leqq \theta \leqq \theta_{2}, r \geqq r_{0}$.
From Fundamental Lemma, we immediately have $h(\theta) \leqq H(\theta)\left(\theta_{1} \leqq \theta \leqq \theta_{2}\right)$, that is, the subtrigonometric character of $h(\theta)$. It is known that many important properties of an indicator depend only on its subtrigonometric character (cf. [3]). For example, we have the following three facts:

1. The subtrigonometric inequality (cf. [3, p. 44]). If $h(\theta)$ is of order $\rho$ and if $0<\theta_{2}-\theta_{1}<\pi / \rho, 0<\theta_{3}-\theta_{2}<\pi / \rho$, then

$$
\left|\begin{array}{lll}
h\left(\theta_{1}\right) & \cos \rho \theta_{1} & \sin \rho \theta_{1}  \tag{1.1}\\
h\left(\theta_{2}\right) & \cos \rho \theta_{2} & \sin \rho \theta_{2} \\
h\left(\theta_{3}\right) & \cos \rho \theta_{3} & \sin \rho \theta_{3}
\end{array}\right| \geqq 0 .
$$

In particular, if $0 \leqq \theta<\pi / \rho$, then

$$
\begin{equation*}
\frac{h(-\theta)+h(\theta)}{2} \geqq h(0) \cos \rho \theta . \tag{1.2}
\end{equation*}
$$

2. Continuity (cf. [3, p. 37]). If $h\left(\theta_{0}\right) \neq-\infty$ for some $\theta_{0}$, then $h(\theta)$ is uniformly bounded and continuous in $[-\pi, \pi]$.
3. Uniformity (cf. [3, p. 46]). If $h\left(\theta_{0}\right) \neq-\infty$ for some $\theta_{0}$, then it is possible, given $\varepsilon>0$ and $s>0$, to find $r_{0}=r_{0}(\varepsilon, s)$ such that $r>r_{0}, r \in \Lambda(s)$ imply

$$
B\left(r e^{i \theta}\right) \leqq(h(\theta)+\varepsilon) \cdot V(r) \quad(-\pi \leqq \theta \leqq \pi) .
$$

## 2. Some lemmas on subharmonic or $\delta$-subharmonic functions.

First, we shall extend the Boutroux-Cartan Lemma for positive Borel measures. For the original form of this lemma, cf. [9, p. 39].

Lemma 1. Suppose that $\mu$ is a positive Borel measure defined in the disk: $|w| \leqq \sigma<1$ such that $\mu(|w| \leqq \sigma)<\infty$. Then given $\xi(0<\xi \leqq 1)$, there exist a finite or countable set of disks, say $\left\{\Gamma_{k}\right\}$, whose radii $\left\{\rho_{k}\right\}$ satısfy

$$
\sum_{k} \rho_{k} \leqq 2 \xi \sigma,
$$

such that

$$
w \notin \bigcup_{k} \Gamma_{k}, \quad|w| \leqq \sigma
$$

emply

$$
\int_{\mid \zeta \ll \sigma} \log |w-\zeta| d \mu(\zeta) \geqq \mu(|w| \leqq \sigma)(1+2 e) \log \left(\frac{\xi \sigma}{2 e}\right) .
$$

Proof. For each fixed positive integer $\nu$, we construct a maximal number of mutually disjoint closed disks $\Gamma_{k}^{(\nu)}=\Gamma\left(x_{k}^{(\nu)}, r_{\nu} / 2\right), k=1, \cdots, k_{\nu}$ such that $r_{\nu}=$ $2 \xi \sigma 2^{-\nu} e^{-\nu}$ and $\mu\left(\Gamma_{k}^{(\nu)}\right) \geqq \mu(|z| \leqq \sigma) e^{-\nu}$, where $r$ is the radius and $x$ is the center of $\Gamma=\Gamma(x, r)$. Clearly $k_{\nu} \leqq\left[e^{\nu}\right]$. Hence

$$
\sum_{\nu=1}^{\infty} \sum_{k=1}^{k_{\nu}} r_{\nu} \leqq \sum_{\nu=1}^{\infty} e^{\nu} \cdot 2 \xi \sigma \cdot 2^{-\nu} e^{-\nu}=2 \xi \sigma
$$

Now, suppose that $w(|w| \leqq \sigma)$ is a point outside all the disks $\Gamma\left(x_{k}^{(\nu)}, r_{2}\right)(\nu=$ $\left.1,2, \cdots ; k=1, \cdots, k_{\nu}\right)$. Then it is easy to see that

$$
\mu\left(\Gamma\left(w, r_{\nu} / 2\right)\right)<\mu(|\zeta| \leqq \sigma) \cdot e^{-\nu} \quad(\nu=1,2, \cdots) .
$$

Thus

$$
\begin{aligned}
\int_{\mid \zeta \ll \sigma} \log |w-\zeta| d \mu(\zeta)= & \int_{i|\zeta-w| \Sigma r_{1} / 2|\cap| \zeta|<\sigma|} \log |\zeta-w| d \mu(\zeta) \\
& +\sum_{\nu=1}^{\infty} \int_{\left|r_{\nu+1} / 2 \leq|\zeta-w|<r_{\nu} / 2\right| \cap|\zeta \zeta|<\sigma \mid} \log |\zeta-w| d \mu(\zeta) \\
\geqq & \log \left(\frac{r_{1}}{2}\right) \cdot \mu(|\zeta| \leqq \sigma)+\sum_{\nu=1}^{\infty} \log \left(\frac{r_{\nu+1}}{2}\right) \mu(|\zeta| \leqq \sigma) \cdot e^{-\nu} \\
= & \mu(|\zeta| \leqq \sigma) e \sum_{\nu=1}^{\infty} \log \left(\frac{r_{\nu}}{2}\right) \cdot e^{-\nu} \\
= & \mu(|\zeta| \leqq \sigma) e\left\{\log \xi \sigma \sum_{\nu=1}^{\infty} e^{-\nu}-\log 2 e \cdot \sum_{\nu=1}^{\infty} \nu \cdot e^{-\nu}\right\} \\
& \geqq \mu(|\zeta| \leqq \sigma)\left\{\frac{e}{e-1} \log \xi \sigma-(1+2 e) \log 2 e\right\} \\
& \geqq \mu(|\zeta| \leqq \sigma)(1+2 e) \log \left(\frac{\xi \sigma}{2 e}\right) .
\end{aligned}
$$

This completes the proof.
Once the Boutroux-Cartan Lemma is established for positive Borel measures, it is not difficult to prove the following fact which is an extension of Lemma 1 in [9, pp. 35-42] for subharmonic functions.

Lemma 2. Let $u(\zeta)\left(\zeta=t e^{2 \omega}\right)$ be subharmonic in the sector:

$$
\Sigma=\left\{\zeta: e^{-s}<t<e^{s},|\omega|<\frac{\pi}{\gamma}\right\} \quad(s>0, \gamma \geqq 1),
$$

and let $u(\zeta) \leqq 0(\zeta \in \Sigma), u(1) \neq-\infty$. Consider the sector

$$
\Sigma^{\prime}=\left\{\zeta: e^{-s^{\prime}}<t<e^{s^{\prime}},|\omega|<\frac{\pi}{\gamma^{\prime}}\right\} \quad\left(0<s^{\prime}<s, \gamma^{\prime}>\gamma\right) .
$$

Then there exist two positive constants $H_{j}(\jmath=1,2)$ depending only on $s, s^{\prime}, \gamma, \gamma^{\prime}$, and having the following properties:

Given $\hat{\xi}(0<\xi \leqq 1)$, it is possible to associate a set $\Omega(\xi)$ such that means $\Omega(\xi)$ $<\pi \xi$, and such that the conditions $\omega \oplus \Omega(\xi), t e^{\imath \omega} \in \Sigma^{\prime}$ imply

$$
u\left(t e^{2 \omega}\right) \geqq\left(H_{2}+H_{1} \log \frac{1}{\xi}\right) u(1) .
$$

Next, we shall extend a lemma of Edrei and Fuchs [10, p. 322] to $\delta$-subharmonic functions in $\boldsymbol{C}$.

Lemina 3. Let $v=u^{(1)}-u^{(2)}$ be a $\delta$-subharmomic function on $\boldsymbol{C}$. Then if $I(r)$
is any measurable subset of $[-\pi, \pi]$, it is possible to find absolute constants $K_{\text {, }}$ $(j=1,2)$ such that $0<K_{1}<K_{2}$ and

$$
\begin{aligned}
& \int_{I(r)}\left|v\left(r e^{\imath \theta}\right)\right| d \theta \leqq K_{1} m(I(r))\left\{1+\log ^{+} \frac{1}{m(I(r))}\right\} T(4 r, v), \\
& \int_{I(r)}\left|v\left(r e^{i \theta}\right)\right|^{2} d \theta \leqq K_{2} m(I(r))\left\{1+\left(\log \frac{1}{m(I(r))}\right)^{2}\right\}(T(4 r, v))^{2} .
\end{aligned}
$$

Proof. Let $\mu_{\jmath}(\jmath=1,2)$ be the Riesz mass associated with $u^{(\nu)}(z)$. For $|z|$ $=r<t<\infty$, we have

$$
u^{(\nu)}(z)=h^{(\nu)}(z)+\int_{(\zeta \ll t} \log \frac{|z-\zeta|}{2 t} d \mu_{j}(\zeta)+n^{(\nu)}(t) \log 2 t
$$

where $u^{(j)}(t)=\mu_{\rho}(|\zeta|<t)$ and $h^{(j)}(z)$ is harmonic in $|z|<t$. Here we put

$$
\begin{equation*}
v^{(1)}(z)=v(z)+\int_{15<t} \log \frac{|z-\zeta|}{2 t} d \mu_{2}(\zeta)=u^{(1)}(z)-h^{(2)}(z)-n^{(2)}(t) \log 2 t \tag{2.1}
\end{equation*}
$$

Clearly $v^{(1)}(z)$ is subharmonic and satisfies $v^{(1)}(z) \leqq v(z)$ in $|z|<t$. Hence the Poisson-Jensen formula for subharmonic functions (See [13, Theorem 3.14]) gives

$$
\begin{aligned}
v^{(1)}\left(r e^{2 \theta}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{+\pi} v^{(1)}\left(t e^{2 \dot{\rho}}\right) \frac{t^{2}-r^{2}}{t^{2}-2 t r \cos (\phi-\theta)+r^{2}} d \phi+\int_{15<t} \log \left|\frac{t(z-\zeta)}{t^{2}-\bar{z} \zeta}\right| d \mu_{1}(\zeta) \\
& \leqq \frac{t+r}{t-r} N\left(t, v^{+}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\left(v^{(1)}(z)\right)^{+} \leqq \frac{t+r}{t-r} N\left(t, v^{+}\right) \tag{2.2}
\end{equation*}
$$

We deduce from (2.1) and (2.2) that

$$
\begin{equation*}
(v(z))^{+} \leqq \frac{t+r}{t-r} N\left(t, v^{+}\right)+\int_{\zeta \zeta<t} \log \frac{2 t}{|z-\zeta|} d \mu_{2}(\zeta) . \tag{2.3}
\end{equation*}
$$

If we write $z=r e^{\imath \theta}$ and $\zeta=s e^{\imath \beta}$, we easily have

$$
|z-\zeta| \geqq \begin{cases}r|\sin (\theta-\beta)| & (|\beta-\theta| \leqq \pi / 2), \\ r & (\pi / 2<|\beta-\theta| \leqq \pi) .\end{cases}
$$

It follows from this and (2.3) that

$$
\begin{align*}
(v(z))^{+} \leqq & \frac{t+r}{t-r} N\left(t, v^{+}\right)+n^{(2)}(t) \log \frac{2 t}{r}  \tag{2.4}\\
& +\int_{\{\zeta, s<t,|\beta-\theta| \equiv \pi / 2)} \log \frac{1}{|\sin (\theta-\beta)|} d \mu_{2}(\zeta) .
\end{align*}
$$

Now, we prove the second inequality of our lemma. The proof of the first one is contained in the proof of the second one. From (2.4) we have

$$
\begin{align*}
\int_{I(r)}\left\{v^{+}\left(r e^{2 \theta}\right)\right\}^{2} d \theta \leqq & m(I(r))\left\{\frac{t+r}{t-r} N\left(t, v^{+}\right)+n^{(2)}(t) \log \frac{2 t}{r}\right\}^{2} \\
& +2\left\{\frac{t+r}{t-r} N\left(t, v^{+}\right)+n^{(2)}(t) \log \frac{2 t}{r}\right\}  \tag{2.5}\\
& \cdot \int_{I(r)} d \theta \int_{\{\zeta, s<t,|\beta-\theta| \leqq \pi / 2\}} \log \frac{1}{|\sin (\theta-\beta)|} d \mu_{2}(\zeta) \\
& +\int_{I(r)} d \theta\left\{\int_{\{\zeta: s<t,|\beta-\theta| \leqq \pi / 2\}} \log \frac{1}{|\sin (\theta-\beta)|} d \mu_{2}(\zeta)\right\}^{2}
\end{align*}
$$

In order to estimate the integrals in the right hand side of (2.5), we put

$$
H=\inf \left\{\frac{\pi}{2}, \frac{m(I(r))}{2}\right\}
$$

Then

$$
\begin{aligned}
& \int_{I(r) \cap|\theta:|\theta-3| \leqq \pi / 2\}} \log \frac{1}{|\sin (\theta-\beta)|} d \theta \leqq 2 \int_{0}^{H} \log \frac{1}{\sin \theta} d \theta \\
& \quad \leqq 2 \int_{0}^{H}\left(\log \frac{1}{\theta}+\log \frac{\pi}{2}\right) d \theta \\
& \quad=2 H\left(1+\log \frac{\pi}{2}+\log \frac{1}{H}\right) \leqq m(I(r))\left(1+\log ^{+} \begin{array}{c}
\pi \\
m(I(r))
\end{array}\right)
\end{aligned}
$$

Hence

$$
\begin{align*}
& \int_{I(r)} d \theta \int_{\{\zeta: s<t,|\beta-\theta| \leqq \pi / 2\}} \log \frac{1}{|\sin (\theta-\beta)|} d \mu_{2}(\zeta)  \tag{2.6}\\
& \quad=\int_{|\zeta|<t} d \mu_{2}(\zeta) \int_{I(r) \cap|\theta,|\theta-\beta| \leqq \pi / 2\}} \log \begin{array}{l}
\mid \\
|\sin (\theta-\beta)|
\end{array} d \theta \\
& \quad \leqq n^{(2)}(t) m(I(r)) \cdot\left\{1+\log ^{+} \frac{\pi}{m(I(r))}\right\}
\end{align*}
$$

In the same way we have

$$
\begin{aligned}
& \int_{I(r) \cap(\theta:|\theta-\beta| \leqq \pi / 2\}}\left\{\log \frac{1}{|\sin (\theta-\beta)|^{-}}\right\}^{2} d \theta \\
& \quad \leqq m(I(r))\left\{(\log H)^{2}-2 \log H+2-\log \frac{\pi}{2} \log H+\left(\log \frac{\pi}{2}\right)^{2}\right\}
\end{aligned}
$$

so that by Schwarz's inequality in continuous form

$$
\begin{align*}
& \int_{I(r)} d \theta\left\{\int_{|\zeta, s<t,|\beta-\theta| \leq \pi / 2|} \log \frac{1}{|\sin (\theta-\beta)|} d \mu_{2}(\zeta)\right\}^{2} \\
& \quad \leqq n^{(2)}(t) \int_{I(r)} d \theta \int_{|\zeta, s<t,|\beta-\theta| \leq \pi / 2|}\left\{\log \frac{1}{|\sin (\theta-\beta)|}\right\}^{2} d \mu_{2}(\zeta) \\
& \quad=n^{(2)}(t) \int_{\mid \zeta \ll t} d \mu_{2}(\zeta) \int_{I(r) \cap \mid(\theta-|\theta-\beta| \leq \pi / 2 \mid}\left\{\log \frac{1}{|\sin (\theta-\beta)|}\right\}^{2} d \theta  \tag{2.7}\\
& \quad \leqq\left(n^{(2)}(t)\right)^{2} m(I(r)) \cdot\left\{(\log H)^{2}-2 \log H+2-\log \frac{\pi}{2} \cdot \log H+\left(\log \frac{\pi}{2}\right)^{2}\right\}
\end{align*}
$$

Substituting (2.6) and (2.7) into (2.5), we obtain

$$
\begin{align*}
& \int_{I(r)}\left\{v^{+}\left(r e^{2 \theta}\right)\right\}^{2} d \theta \leqq m(I(r))\left\{\left(\frac{t+r}{t-r} N\left(t, v^{+}\right)+n^{(2)}(t) \log \frac{2 t}{r}\right)^{2}\right. \\
& \quad+2\left(\frac{t+r}{t-r} N\left(t, v^{+}\right)+n^{(2)}(t) \log \frac{2 t}{r}\right) n^{(2)}(t)\left(1+\log ^{+} \frac{\pi}{m(I(r))}\right)  \tag{2.8}\\
& \left.\quad+\left(n^{(2)}(t)\right)^{2}\left((\log H)^{2}-2 \log H+2+\log \frac{\pi}{2} \log H+\left(\log \frac{\pi}{2}\right)^{2}\right)\right\} .
\end{align*}
$$

We remark that (2.8) also holds if we replace $v^{+}$and $n^{(2)}$ by $v^{-}$and $n^{(1)}$, respectively. And it is clear that

$$
\begin{gathered}
N\left(t, v^{+}\right)+N\left(t, v^{-}\right) \leqq 2 T(t, v), \\
n^{(1)}(t)+n^{(2)}(t) \leqq \frac{N\left(2 t, u^{(1)}\right)+N\left(2 t, u^{(2)}\right)}{\log 2} \leqq \frac{2}{\log 2}-T(2 t, v) .
\end{gathered}
$$

All the above estimates combine to show the desired inequality (with $t=2 r$ ).

## 3. The indicator associated with Theorem.

Let $u(z)$ be an extremal subharmonic function satisfying (5). Take a sequence $\left\{r_{m}\right\}_{1}^{\infty}$ of Pólya peaks of order $\mu_{*}$ for $u(z)$, and let $\left\{r_{m}^{\prime}\right\}_{1}^{\infty},\left\{r_{m}^{\prime \prime}\right\}_{1}^{\infty},\left\{\varepsilon_{m}\right\}_{1}^{\infty}$ be the associated sequences. We define comparison functions:

$$
\begin{aligned}
V_{m}(z) & =\left(\frac{z}{r_{m}}\right)^{\mu_{*}}\left(1+\varepsilon_{m}\right) T\left(r_{m}, u\right)=\left(\frac{r}{r_{m}}\right)^{\mu_{*}} e^{\mu_{*} \theta}\left(1+\varepsilon_{m}\right) T\left(r_{m}, u\right) \\
& =V\left(r_{m}\right)\left(\frac{r}{r_{m}}\right)^{\mu_{*}} e^{\imath \mu_{*} \theta} \quad(m=1,2, \cdots) .
\end{aligned}
$$

And let $\nu(\zeta)$ be the positive Borel measure associated with $u(z)$, and put $n(t)=$ $\nu(|\zeta|<t)$. With these notations, we define

$$
B_{m}(z)=\int_{0}^{r_{m}^{*} / 4} \log \left|1+\frac{z}{t}\right| d n(t) \quad(m=1,2, \cdots) .
$$

Let $h(\theta)$ be the local indicator for the sequence $\left\{B_{m}(z)\right\}_{1}^{\infty}$ at the peaks $\left\{r_{m}\right\}_{1}^{\infty}$, with comparison functions $\left\{V_{m}(z)\right\}_{1}^{\infty}$. In [19] we have shown the existence of $h(\theta)$ and $h(0) \geqq 1$. In this section, we shall prove the following lemma.

Lemma 4. $\quad h(\theta)=h(0) \cos \mu_{*} \theta \quad(|\theta| \leqq \pi)$.
Proof. We define two sequences $\left\{u_{1, m}(z)\right\}_{1}^{\infty}$ and $\left\{u_{3, m}(z)\right\}_{1}^{\infty}$ of subharmonic functions as follows:

$$
u_{1, m}(z)=\int_{|\zeta| \leq r_{m^{\prime \prime}}^{\prime 4}} \log \left|1-\frac{z}{\zeta}\right| d \nu(\zeta), \quad u_{3, m}(z)=u(z)-u_{1 m}(z)
$$

As Kjellberg showed in [15, p. 192], we have

$$
\begin{equation*}
\left|u_{3, m}(z)\right|<16 \frac{M\left(r_{m}^{\prime \prime} / 2, u\right)}{r_{m}^{\prime \prime}} \cdot r \quad\left(r<r_{m}^{\prime \prime} / 8\right) . \tag{3.1}
\end{equation*}
$$

And the Poisson-Jensen formula for subharmonic functions gives

$$
\begin{equation*}
M\left(r_{m}^{\prime \prime} / 2, u\right) \leqq 3 T\left(r_{m}^{\prime \prime}, u\right) \tag{3.2}
\end{equation*}
$$

It follows from (3.1) and (3.2) that

$$
\begin{equation*}
\left|u_{3, m}(z)\right|<48 T\left(r_{m}^{\prime \prime}, u\right) \frac{r}{r_{m}^{\prime \prime}} \leqq 48 V(r)\left(\frac{r}{r_{m}^{\prime \prime}}\right)^{1-\mu_{*}} \quad\left(r<r_{m}^{\prime \prime} / 8\right) \tag{3.3}
\end{equation*}
$$

Let $\eta>0$ (small enough) be given, and determine $s(>0)$ so that $h_{s}(\pi)>h(\pi)$ $-\eta / 6$. By the definition of $h_{s}(\pi)$, there exists a sequence $\left\{\chi_{n}\right\} \subset \Lambda(s)$, tending to $\infty$, such that

$$
\begin{equation*}
B\left(-\chi_{n}\right)>\left(h_{s}(\pi)-\eta / 3\right) V\left(\chi_{n}\right)>\left(h(0) \cos \pi \mu_{*}-\eta / 2\right) \cdot V\left(\chi_{n}\right)>0 . \tag{3.4}
\end{equation*}
$$

Using (3.3), we have for $n>n_{0}(\eta, s)$

$$
\begin{align*}
m^{*}\left(\chi_{n}, u\right) & \geqq m^{*}\left(\chi_{n}, u_{1}\right)+m^{*}\left(\chi_{n}, u_{3}\right)  \tag{3.5}\\
& \geqq m^{*}\left(\chi_{n}, B\right)+m^{*}\left(\chi_{n}, u_{3}\right)>(h(\pi)-\eta) \cdot V\left(\chi_{n}\right) .
\end{align*}
$$

On the other hand, by Schwarz's inequality

$$
\begin{equation*}
m_{2}\left(\chi_{n}, u\right)=m_{2}\left(\chi_{n}, u_{1}+u_{3}\right) \leqq m_{2}\left(\chi_{n}, u_{1}\right)+\frac{\eta}{2} V\left(\chi_{n}\right) \quad\left(n>n_{0}\right) . \tag{3.6}
\end{equation*}
$$

We now use an estimate due to Miles and Shea [16, p. 378], that is,

$$
\begin{equation*}
m_{2}\left(\chi_{n}, u_{1}\right) \leqq m_{2}\left(\chi_{n}, B\right) . \tag{3.7}
\end{equation*}
$$

In order to estimate $m_{2}\left(\chi_{n}, B\right)$ from above, we may note (3.4) and appeal to the Fundamental Lemma, so that

$$
\begin{equation*}
0<B\left(\gamma_{n} e^{i \theta}\right)<(H(\theta)+\varepsilon) V\left(\chi_{n}\right) \quad\left(n>n_{1}(\varepsilon, s)\right), \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
H(\theta)=\frac{h(0) \sin (\pi-\theta) \mu_{*}+h(\pi) \sin \theta \mu_{*}}{\sin \pi \mu_{*}} . \tag{3.9}
\end{equation*}
$$

Combining (3.5)-(3.9) we have

$$
\frac{m^{*}\left(\chi_{n}, u\right)}{m_{2}\left(\chi_{n}, u\right)}>\frac{(1-E(\varepsilon, \eta)) \cdot t}{\left\{\left(1+t^{2}\right)\left(\frac{1}{2}-\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}\right)+t\left(\begin{array}{c}
\sin \pi \mu_{*}  \tag{3.10}\\
\pi \mu_{*}
\end{array}-\cos \pi \mu_{*}\right)\right\}^{1 / 2}}
$$

where $t=h(\pi) / h(0) \geqq \cos \pi \mu_{*}, E(\varepsilon, \eta) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and $\eta \rightarrow 0$.
The right hand side increases at increases, and so, it is not smaller than $C_{2}\left(\mu_{*}\right)(1-E(\varepsilon, \eta))$. It follows from this and our assumption (5) that $t=\cos \pi \mu_{*}$. Hence $h(\pi)=h(-\pi)=h(0) \cdot \cos \pi \mu_{*}$. Substituting these into the subtrigonometric inequality (1.1), we have $h(\theta) \leqq h(0) \cdot \cos \theta \mu_{*}$. On the other hand, it is clear from (1.2) that $h(\theta) \geqq h(0) \cdot \cos \theta \mu_{*}$. Thus $h(\theta)=h(0) \cdot \cos \theta \mu_{*}(|\theta| \leqq \pi)$.

## 4. A preliminary lemma for the proof of assertions I and II of Theorem.

Lemma 5. Let $u(z)$ be a subharmonic function satisfying (5), and let $\left\{r_{m}\right\}$, $\left\{r_{m}^{\prime}\right\},\left\{r_{m}^{\prime \prime}\right\},\left\{\varepsilon_{m}\right\},\left\{V_{m}(z)\right\},\left\{B_{m}(z)\right\}, h(\theta)$ be defined as in $\S 3$. Then given $\varepsilon$ $\left(0<\varepsilon<h(0) \cos \pi \mu_{*}\right), \delta\left(0<\delta<\delta_{0}\right.$, where $\delta_{0}$ is a fixed positive number satisfynng $\left.4^{2 \mu_{*}} \cdot 2 \delta_{0} K_{2}\left(1+\left(\log 2 \delta_{0}\right)^{2}\right)<\varepsilon / 6\right)$ and $L(>0)$, it is possible to determine $q=q(\varepsilon, \delta, L)$ (a positive integer), $\left\{l_{m}\right\}_{1}^{\infty}$ (a sequence of unbounded, increasing integers) and $\left\{R_{l_{m}}\right\}_{1}^{\infty}$ such that

$$
\begin{gathered}
e^{-q} r_{l_{m}} \leqq R_{l_{m}} \leqq e^{q} r_{l_{m}} \quad(m=1,2, \cdots), \\
B_{l_{m}}\left(R_{l_{m}}\right)>(h(0)-\varepsilon) V_{l_{m}}\left(R_{l_{m}}\right) \quad(m=1,2, \cdots),
\end{gathered}
$$

and such that for $e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}$

$$
\begin{aligned}
& (1-2 \varepsilon) h(0) \stackrel{\sin \pi \mu_{*}}{\pi \mu_{*}} V_{l_{m}}(r) \leqq N(r, u) \leqq T(r, u) \leqq(1+\varepsilon) h(0) \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} V_{l_{m}}(r), \\
& m_{2}(r, u) \leqq(1+2 \varepsilon) \sqrt{\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}} h(0) V_{l_{m}}(r) .
\end{aligned}
$$

Proof. We define $s, s^{\prime}, \gamma, \gamma^{\prime}$ as follows:

$$
s=2 L, \quad s^{\prime}=L, \quad \gamma=1, \quad \gamma^{\prime}=\pi /(\pi-\delta) .
$$

And let $\eta$ be a number satisfying the following inequalities.

$$
\left\{\begin{array}{l}
\eta^{2}+2 \eta \leqq \varepsilon / 2, \quad e^{L \mu_{*}}\left(H_{2}+H_{1} \log \frac{1}{\eta}\right) \leqq \varepsilon, \\
2 \delta+\pi \eta \\
2 \pi \\
2 \pi K_{1}(\pi \eta+2 \delta)\left\{1+\log \frac{1}{\pi \eta+2 \delta}\right\}^{\mu_{*}} \leqq \varepsilon, \\
4^{2 \mu_{*} \cdot} K_{2}(\pi \eta+2 \delta)\left\{1+\left(\log \frac{1}{\pi \eta+2 \delta}\right)^{2}\right\}<(\varepsilon / 2)\left(\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}\right) h(0) .
\end{array}\right.
$$

Next, we determine $q=q(\eta)=q(\varepsilon, \delta, L)$ so that $h_{q}(0)>h(0)-\eta / 2$. By the definition of $h_{q}(0)$, it is possible to find a sequence $\left\{R_{l_{m}}\right\}_{1}^{\infty} \subset \Lambda(q)$ tending to $\infty$ such that

$$
\begin{align*}
B_{l_{m}}\left(R_{l_{m}}\right) & >\left(h_{q}(0)-\eta / 2\right) V_{l_{m}}\left(R_{l_{m}}\right)  \tag{4.1}\\
& >(h(0)-\eta) V_{l_{m}}\left(R_{l_{m}}\right)>(h(0)-\varepsilon) V_{l_{m}}\left(R_{l_{m}}\right)
\end{align*}
$$

By the uniformity property of the local indicator (cf. §1), we can determine $m_{0}$ so that the conditions $m>m_{0}, r \in \Lambda(2 L+q)$ imply

$$
\begin{equation*}
B_{l_{m}}\left(r e^{2 \theta}\right) \leqq\left(h(\theta)+\eta e^{-2 L \mu_{\mu}}\right) V_{l_{m}}(r) \quad(|\theta| \leqq \pi) . \tag{4.2}
\end{equation*}
$$

Now, we introduce a sequence $\left\{u_{l_{m}}(\zeta)\right\}_{1}^{\infty}$ of subharmonic functions:

$$
\begin{equation*}
u_{l_{m}}(\zeta)=B_{l_{m}}(z)-h(\theta) V_{l_{m}}(r)-V_{l_{m}}\left(R_{l_{m}}\right) \quad\left(\zeta=z / R_{l_{m}}=t e^{\imath \omega}\right) . \tag{4.3}
\end{equation*}
$$

Further we put

$$
\Sigma=\left\{\zeta: e^{-2 L} \leqq t \leqq e^{2 L},|\omega| \leqq \pi\right\}, \quad \Sigma^{\prime}=\left\{\zeta: e^{-L} \leqq t \leqq e^{L},|\omega| \leqq \pi-\delta\right\} .
$$

From (4.2) and (4.3) we deduce $u_{l_{m}}(\zeta) \leqq 0(\zeta \in \Sigma)$. And it follows from (4.1) and (4.3) that $u_{l_{m}}(1) \neq-\infty$. Hence we can apply Lemma 2 to $u=u_{l_{m}}$. That is, it is possible to find positive two constants $H_{1}, H_{2}$, depending only on $L, \delta$, and having the following properties.

Given $\xi(0<\xi \leqq 1)$, there exists a set $\Omega(\xi)$ such that means $\Omega(\xi)<\pi \xi$ and such that the conditions $\omega \notin \Omega(\xi)$, te $e^{2 \omega} \in \Sigma^{\prime}$ imply $u_{l_{m}}\left(t e^{2 \omega}\right) \geqq\left(H_{2}+H_{1} \log (1 / \xi)\right) u_{l_{m}}(1)$. Returning to the variable $z$, we have from (4.1), (4.3) and the choice of $\eta$,

$$
\begin{align*}
& B_{l_{m}}\left(r e^{2 \theta}\right) \geqq(h(\theta)-\varepsilon) V_{l_{m}}(r)>0  \tag{4.4}\\
& \quad\left(e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}, \theta \oplus \Omega(\eta),|\theta| \leqq \pi-\hat{\delta}\right) .
\end{align*}
$$

Here we put $\Omega^{\prime}(\eta)=[-\pi,-\pi+\delta] \cup[\pi-\delta, \pi] \cup \Omega(\eta)$. Then by Lemma 3,

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{\Omega^{\prime}(\eta)}\left|B_{l_{m}}\left(r e^{\imath \theta}\right)\right| d \theta \leqq K_{1}(2 \delta+\pi \eta)\left(1+\log \frac{1}{2 \delta+\pi r_{\eta}}\right) T\left(4 r, B_{l_{m}}\right) \\
\leqq(2 \delta+\pi \eta) 4^{\mu^{*}} K_{1}\left(1+\log \frac{1}{2 \delta+\pi \eta}\right) V_{l_{m}(r)} \quad\left(m>m_{1}\right)
\end{gathered}
$$

so that from (4.4) and the choice of $\eta$ we have

$$
\begin{align*}
& N\left(r, B_{l_{m}}\right) \geqq \frac{1}{2 \pi} \int_{[-\pi,+\pi] \Omega^{\prime}(\gamma)} B_{l_{m}}\left(r e^{2 \theta}\right) d \theta-\frac{1}{2 \pi} \int_{\Omega^{\prime}(\eta)}\left|B_{l_{m}}\left(r e^{i \theta}\right)\right| d \theta \\
& \quad \geqq\left\{\frac{\sin \pi \mu_{*}}{\pi \mu_{*}} h(0)-h(0) \frac{2 \delta+\pi \eta}{2 \pi}-\varepsilon-4^{\mu_{*}} K_{1}(2 \delta+\pi \eta)\left(1+\log \frac{1}{2 \delta+\pi \eta}\right)\right\} V_{l_{m}}(r)  \tag{4.5}\\
& \quad \geqq \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} h(0)(1-2 \varepsilon) V_{l_{m}}(r) \quad\left(e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}, m>m_{1}\right) .
\end{align*}
$$

However, since Jensen's formula gives $N(r, u)=N\left(r, B_{l_{m}}\right)$ for $r \leqq r_{l_{m}}^{\prime \prime} / 4$, we have from (4.5)
(4.6) $\quad N(r, u)>(1-2 \varepsilon) h(0) \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} V_{l_{m}}(r) \quad\left(e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}, m>m_{1}\right)$.

Now, we estimate $T(r, u)$ from above. For $r \leqq r_{l_{m}}^{\prime \prime} / 8$, we have

$$
\begin{equation*}
T(r, u)=T\left(r, u_{1, l_{m}}+u_{3, l_{m}}\right) \leqq T\left(r, u_{1, l_{m}}\right)+T\left(r, u_{3, l_{m}}\right) \tag{4.7}
\end{equation*}
$$

Using an estimate due to Gol'dberg [11] and (4.2), we obtain for $e^{-L} R_{l_{m}} \leqq r$ $\leqq e^{L} R_{l_{m}}$

$$
\begin{equation*}
T\left(r, u_{1, l_{m}}\right) \leqq T\left(r, B_{l_{m}}\right) \leqq \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} h(0)(1+\varepsilon / 2) V_{l_{m}}(r) \tag{4.8}
\end{equation*}
$$

And from (3.3) we have for $e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}$

$$
\begin{equation*}
T\left(r, u_{3, l_{m}}\right)<\frac{\sin \pi \mu_{*}}{\pi \mu_{*}} \cdot(\varepsilon / 2) \cdot V_{l_{m}}(r) \quad\left(m \geqq m_{2}(\varepsilon, L)\right) . \tag{4.9}
\end{equation*}
$$

Substituting (4.8) and (4.9) into (4.7) we have

$$
\begin{equation*}
T(r, u)<\frac{\sin \pi \mu_{*}}{\pi \mu_{*}}(1+\varepsilon) h(0) V_{l_{m}}(r) \quad\left(e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}, m \leqq m_{2}\right) . \tag{4.10}
\end{equation*}
$$

Finally we estimate $m_{2}(r, u)$ from above. First we estimate $m_{2}\left(r, B_{l_{m}}\right)$. It follows from (4.2) and (4.4) that for $e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}$

$$
\begin{gather*}
\frac{1}{2 \pi} \int_{[-\tau, \pi] Q^{\prime}(\eta)}\left\{B_{l_{m}}\left(r e^{2 \theta}\right)\right\}^{2} d \theta \leqq \frac{1}{2 \pi} \int_{-\pi}^{+\pi}(h(\theta)+\eta)^{2} d \theta \cdot\left(V_{l_{m}}(r)\right)^{2}  \tag{4.11}\\
\leqq(1+\varepsilon / 2)(h(0))^{2}\left(\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}\right)\left(V_{l_{m}}(r)\right)^{2} .
\end{gather*}
$$

By Lemma 3 and the choice of $\eta$, we have
$\frac{1}{2 \pi} \int_{\Omega^{\prime}\left(\gamma_{)}\right)}\left\{B_{l_{m}}\left(r e^{2 \theta}\right)\right\}^{2} d \theta \leqq K_{2}(2 \delta+\pi \gamma)\left\{1+\left(\log \frac{1}{\pi \eta+2 \delta}\right)^{2}\right\}\left(T\left(4 r, B_{l_{m}}\right)\right)^{2}$

$$
\begin{align*}
& \leqq 4^{2 \mu_{*}} K_{2}(2 \delta+\pi \eta)\left\{1+\left(\log \frac{1}{\pi \eta+2 \delta}\right)^{2}\right\}\left(V_{l_{m}}(r)\right)^{2}  \tag{4.12}\\
& \leqq(\varepsilon / 2)\left(\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}\right) h(0)\left(V_{l_{m}}(r)\right)^{2} \quad\left(e^{-L} R_{l_{m}} \leqq r \leqq e^{L} R_{l_{m}}\right)
\end{align*}
$$

Combining (4.11) and (4.12), we obtain

$$
\begin{equation*}
m_{2}\left(r, B_{l_{m}}\right) \leqq(1+\varepsilon) h(0) \sqrt{\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}} V_{l_{m}}(r) \tag{4.13}
\end{equation*}
$$

Remembering (3.6) and (3.7), we have

$$
\begin{equation*}
m_{2}(r, u) \leqq(1+2 \varepsilon) h(0) \sqrt{\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}} V_{l_{m}}(r) \quad\left(m \geqq m_{0}\right) . \tag{4.14}
\end{equation*}
$$

The restrictions: $m \geqq m_{0}$ in (4.14), $m>m_{1}$ in (4.6), $m \geqq m_{2}$ in (4.10) are not essential. Thus we have the desired results.

## 5. Diagonalization-Proof of assertions I and II of Theorem.

In this section we follow Edrei's procedure in [9, pp. 54-59]. We set $\varepsilon=$ $\varepsilon_{n} \downarrow 0(n \rightarrow \infty), \delta=\delta_{n} \downarrow 0(n \rightarrow \infty), L=n$ in our previous Lemma 5. Then using the method of diagonalization, we easily obtain the following fact:

Let $u(z)$ be a subharmonic function satisfying (5). Then it is possible to find a sequence $\left\{t_{n}\right\}$ of Pólya peaks of order $\mu_{*}$ for $u$ (As usual, we denote the associated sequences by $\left\{t_{n}^{\prime}\right\},\left\{t_{n}^{\prime \prime}\right\}$.), a positive unbounded sequence $\left\{x_{n}\right\},\left\{\widetilde{B}_{n}\right\}$ $\subset\left\{B_{l_{m}}\right\}$ and $\left\{\tilde{V}_{n}\right\} \subset\left\{V_{l_{m}}\right\}$ such that

$$
\begin{equation*}
e^{n} t_{n}^{\prime}<e^{-n} x_{n}, \quad e^{n} x_{n}<e^{-n} t_{n}^{\prime \prime}, \quad \tilde{B}_{n}\left(x_{n}\right) \geqq\left(h(0)-\varepsilon_{n}\right) \tilde{V}_{n}\left(x_{n}\right), \tag{5.1}
\end{equation*}
$$

and such that for $e^{-n} x_{n} \leqq r \leqq e^{n} x_{n}$

$$
\begin{gather*}
\left(1-2 \varepsilon_{n}\right) h(0) \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} \tilde{V}_{n}(r) \leqq N(r, u) \leqq T(r, u) \leqq\left(1+\varepsilon_{n}\right) h(0) \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} \tilde{V}_{n}(r)  \tag{5.3}\\
m_{2}(r, u) \leqq\left(1+2 \varepsilon_{n}\right) \cdot \sqrt{\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}} h(0) \tilde{V}_{n}(r) .
\end{gather*}
$$

Now, consider the sequence $\left\{\tilde{B}_{n}\right\}$ of subharmonic functions in $\bigcup_{n=1}^{\infty}\left[e^{-n} x_{n}, e^{n} x_{n}\right]$ $=\tilde{\Lambda}$, and set $\bigcup_{n=1}^{\infty}\left[e^{-s} x_{n}, e^{s} x_{n}\right]=\tilde{\Lambda}(s)(s=1,2, \cdots)$. We introduce the indicator $\tilde{h}(\theta)$ of order $\mu_{*}$ of $\left\{\tilde{B}_{n}\right\}$ with peaks $\left\{x_{n}\right\}$ and comparison functions $\left\{\tilde{V}_{n}\right\}$. By (5.1), (5.2) and (1.2) we have $\tilde{h}(\theta)=h(\theta)=h(0) \cos \mu_{*} \theta \quad(|\theta| \leqq \pi)$. Further we put

$$
\tilde{u}_{1 n}(z)=\int_{1: \leq \leq t_{n^{n} / 4}} \log \left|1-\frac{z}{\zeta}\right| d \nu(\zeta), \quad \tilde{u}_{3, n}(z)=u(z)-\tilde{u}_{1, n}(z) .
$$

Then as we have shown in (3.3),

$$
\left|\tilde{u}_{3, n}(z)\right|<48 \tilde{V}_{n}(r)\left(\frac{r}{t_{n}^{\prime \prime}}\right)^{1-\mu *} .
$$

Hence if $r \in\left[e^{-n} x_{n}, e^{n} x_{n}\right]$ we have from (5.1)

$$
\left|\tilde{u}_{3, n}(z)\right|<48 e^{-n\left(1-\mu_{0}\right)} \tilde{V}_{n}(r) .
$$

Without loss of generality we may assume $48 e^{-n\left(1-\mu_{*}\right)} \leqq \varepsilon_{n}$, so that

$$
\begin{equation*}
\left|\tilde{u}_{3, n}(z)\right|<\varepsilon_{n} \cdot \tilde{V}_{n}(r) \quad\left(r \in\left[e^{-n} x_{n}, e^{n} x_{n}\right]\right) . \tag{5.5}
\end{equation*}
$$

Let $\eta>0$ be given. Determine $s=s(\eta)$ so that $\tilde{h}_{s}(-\pi)>\tilde{h}(-\pi)-\eta / 2$. By the definition of $\tilde{h}_{s}(-\pi)$, there exists a positive sequence $\left\{\tau_{n}\right\} \subset \tilde{\Lambda}(s)$ tending to $\infty$ such that

$$
\tilde{B}\left(-\tau_{n}\right)>\left(\tilde{h}_{s}(-\pi)-\eta / 2\right) \tilde{V}\left(\tau_{n}\right)>(\tilde{h}(-\pi)-\eta) \tilde{V}\left(\tau_{n}\right), \quad n \in N,
$$

where $N$ is a sequence of unbounded increasing integers. Therefore it follows from this and (5.5) that

$$
\begin{equation*}
m^{*}\left(\tau_{n}, u\right) \geqq\left(h(0) \cos \pi \mu_{*}-\eta-\varepsilon_{n}\right) \tilde{V}\left(\tau_{n}\right) . \tag{5.6}
\end{equation*}
$$

Take $\eta=\eta_{n}=n^{-1}$ in (5.6). Using the method of diagonalization, we give to $k$ consecutive values, and at each stage select $n=n_{k}$ such that

$$
n_{k} \in N(k), n_{k+1}>n_{k}, \quad n_{k}>k+s\left(\frac{1}{k}\right), \quad 2 \varepsilon_{n_{k}}<1 / k .
$$

If we put

$$
y_{k}=\tau_{n_{k}}, \quad y_{k}^{\prime}=e^{-k} y_{k}, \quad y_{k}^{\prime \prime \prime}=e^{k} y_{k}, \quad \tilde{B}_{k}=\tilde{B}_{n_{k}}, \quad \tilde{V}_{k}=\tilde{V}_{n_{k}},
$$

then we have by (5.1)-(5.4), and (5.6)

$$
\begin{gather*}
m^{*}\left(y_{k}, u\right)>h(0)\left(\cos \pi \mu_{*}-\frac{2}{k}\right) \tilde{V}_{k}\left(y_{k}\right),  \tag{5.7}\\
\tilde{B}_{k}\left(r e^{2 \theta}\right) \leqq h(0)\left(\cos \theta \mu_{*}+\frac{1}{k}\right) \tilde{V}_{k}(r) \quad\left(|\theta| \leqq \pi, y_{k}^{\prime} \leqq r \leqq y_{k}^{\prime \prime \prime}\right),  \tag{5.8}\\
\left(1-\frac{1}{k}\right) h(0) \frac{\sin \pi \mu_{*}}{\pi \mu_{*}} \tilde{V}_{k}(r) \leqq N(r, u) \leqq T(r, u)  \tag{5.9}\\
\leqq\left(1+\frac{1}{k}\right) h(0) \begin{array}{c}
\sin \pi \mu_{*} \\
\pi \mu_{*} \\
\tilde{V}_{k}(r), \\
m_{2}(r, u) \leqq \\
\left(1+\frac{1}{k}\right) \sqrt{\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}} h(0) \tilde{V}_{k}(r) \quad\left(y_{k}^{\prime} \leqq r \leqq y_{k}^{\prime \prime \prime}\right) .
\end{array}
\end{gather*}
$$

Now, we prove the assertions I and II of our theorem. First by assumption (5), we easily see that given $\varepsilon>0$ there exists a bound $k_{0}$ such that $k \geqq k_{0}(\varepsilon)$ implies

$$
\begin{equation*}
m_{2}\left(y_{k}, u\right)>(1-\varepsilon) \sqrt{\frac{1}{2}+\frac{\sin 2 \pi \mu_{*}}{4 \pi \mu_{*}}} h(0) \tilde{V}_{k}\left(y_{k}\right) . \tag{5.11}
\end{equation*}
$$

Hence, by (5.10), (5.11) we have (6) and (13). And from (5.10), (5.11) and (5.9), (7) follows. (8), (11) and (12) are immediate consequences of (5.9).

## 6. Proof of assertion III of Theorem.

Choose $a=a\left(\mu_{*}\right) \in(0,1 / 2)$ such that

$$
\begin{equation*}
a^{\mu_{*}}<\mu_{*} \log 2 / 2^{\mu_{*}}, \quad a^{-\mu_{*}}-1+\left(2^{\mu_{*}} / \log 2\right) \log a>0 \tag{6.1}
\end{equation*}
$$

Let

Further put

$$
u_{2, k}(z)=\int_{y_{k}^{\prime}}^{a y_{k}^{\prime \prime \prime}} \log \left|1+\frac{z}{t}\right| d n(t) .
$$

Similar computations as in [19] yield
(6.2) $\left|u_{3, k}(z)\right| \leqq K_{3}\left\{T\left(2 y_{k}^{\prime}, u\right) \log \left(\frac{r}{y_{k}^{\prime}}\right)+T\left(2 a y_{k}^{\prime \prime \prime}, u\right)\left(\frac{r}{y_{k}^{\prime \prime \prime}}\right)\right\} \quad\left(2 y_{k}^{\prime} \leqq r \leqq \frac{a y_{k}^{\prime \prime \prime}}{2}\right)$.

From (11) we have

$$
\begin{align*}
& N\left(a y_{k}^{\prime \prime \prime}, u\right) \leqq\left(1+\varepsilon_{k}\right)\left(\frac{y_{k}^{\prime \prime \prime}}{y_{k}}\right)^{\mu *} a^{\prime \prime *} N\left(y_{k}, u\right),  \tag{6.3}\\
& n\left(a y_{k}^{\prime \prime \prime}\right) \leqq\left(1+\varepsilon_{k}\right)(2 a)^{\mu^{\prime \prime} *} \frac{N\left(y_{k}, u\right)}{\log 2}\left(\frac{y_{k}^{\prime \prime \prime}}{y_{k}}\right)^{\prime \mu *} .
\end{align*}
$$

On the other hand, by the choice of $a$ of (6.1), we have

$$
\begin{equation*}
\left(\frac{y_{k}^{\prime \prime \prime}}{y_{k}}\right)^{\mu *} a^{\mu *}+\frac{(2 a)^{\prime \mu *}}{\log 2}\left(\frac{y_{k}^{\prime \prime \prime}}{y_{k}}\right)^{\mu *} \log \left(\frac{r}{a y_{k}^{\prime \prime \prime}}\right) \leqq\left(\frac{r}{y_{k}^{\prime}}\right)^{\mu * *}\left(r>y_{k}^{\prime \prime \prime}\right) . \tag{6.4}
\end{equation*}
$$

Combining (6.3) and (6.4), we obtain

$$
N\left(a y_{k}^{\prime \prime \prime}, u\right)+n\left(a y_{k}^{\prime \prime \prime}\right) \log \left(\frac{r}{a y_{k}^{\prime \prime \prime}}\right) \leqq\left(1+\varepsilon_{k}\right) N\left(y_{k}, u\right)\left(\frac{r}{y_{k}}\right)^{\prime \prime *} \quad\left(r>y_{k}^{\prime \prime \prime}\right) .
$$

It follows from this and (11) that

$$
\begin{equation*}
\cdot N_{k}(r) \equiv N\left(r, u_{1, k}\right)=N\left(r, u_{2, k}\right) \leqq\left(1+\varepsilon_{k}\right) N\left(y_{k}, u\right)\left(\frac{r}{y_{k}}\right)^{\mu \cdot} \quad(0<r<\infty) . \tag{6.5}
\end{equation*}
$$

Next, we introduce auxiliary functions:

$$
\begin{equation*}
B_{k}(z)=\int_{15<\infty} \log \left|1+\frac{z}{t}\right| d n_{k}(t) \quad(k=1,2, \cdots), \tag{6.6}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{k}(t)=\mu_{*}\left(\frac{t}{y_{k}}\right)^{\mu_{*}} N\left(y_{k}, u\right) \quad(0<t<\infty) . \tag{6.7}
\end{equation*}
$$

The convergence of the right hand side of (6.6) is due to Heins [14]. If we put for a subharmonic function $u(z)$

$$
c_{m}(r, u)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} u\left(r e^{2 \theta}\right) e^{-\imath m \theta} d \theta \quad(m=0, \pm 1, \cdots),
$$

we easily have from (6.5)-(6.7)

$$
\begin{equation*}
\left|c_{m}\left(y_{k}, B_{k}\right)\right|=N\left(y_{k}, u\right) \frac{\mu_{*}^{2}}{\left|m^{2}-\mu_{2}^{*}\right|} \tag{6.8}
\end{equation*}
$$

By (6.2), (11), (8) and (7) we have for $|z|=y_{k}$

$$
\begin{aligned}
\left|u_{3, k}(z)\right| & \leqq K_{3} T\left(y_{k}, u\right)\left(1+2 \varepsilon_{k}\right)\left\{\left(\frac{y_{k}^{\prime}}{y_{k}}\right)^{\mu *} \log \left(\frac{y_{k}}{y_{k}^{\prime \prime \prime}}\right)+\left(\frac{y_{k}}{y_{k}^{\prime \prime \prime}}\right)^{1-\mu_{*}}(2 a)^{\mu_{*}}\right\} \\
& \leqq K_{3} C_{1}\left(\mu_{*}\right)\left(1+2 \varepsilon_{k}\right) \varepsilon_{k} m_{2}\left(y_{k}, u\right) \quad\left(k \geqq k_{0}\right),
\end{aligned}
$$

so that with a suitable $\left\{\delta_{k}\right\} \downarrow 0$,

$$
\begin{equation*}
1-\delta_{k}<\frac{m_{2}\left(y_{k}, u_{1, k}\right)}{m_{2}\left(y_{k}, u\right)}<1+\delta_{k} . \tag{6.11}
\end{equation*}
$$

Further an estimate due to Miles and Shea gives

$$
\begin{equation*}
\left|c_{m}\left(r, u_{1, k}\right)\right| \leqq\left|c_{m}\left(r, u_{2, k}\right)\right| \quad(k=1,2, \cdots ; m=0, \pm 1, \cdots) . \tag{6.12}
\end{equation*}
$$

Hence by (7), (6.11), (6.12) and (6.10), we have

$$
\begin{aligned}
C_{1}\left(\mu_{*}\right) & =\lim _{k \rightarrow \infty} \frac{N\left(y_{k}, u\right)}{m_{2}\left(y_{k}, u\right)}=\lim _{k \rightarrow \infty} \frac{N\left(y_{k}, u\right)}{m_{2}\left(y_{k}, u_{1, k}\right)} \\
& \geqq \varlimsup_{k \rightarrow \infty} \frac{N\left(y_{k}, u\right)}{m_{2}\left(y_{k}, u_{2, k}\right)} \geqq \varlimsup_{k \rightarrow \infty} \frac{N\left(y_{k}, u\right)}{m_{2}\left(y_{k}, B_{k}\right)}=C_{1}\left(\mu_{*}\right) .
\end{aligned}
$$

This implies, in particular, that for $m=1,2$

$$
\begin{equation*}
\left|c_{m}\left(y_{k}, u_{1, k}\right)\right|>\left(1-\eta_{k}\right)\left|c_{m}\left(y_{k}, u_{2, k}\right)\right| \quad\left(\eta_{k} \downarrow 0, k=1,2, \cdots\right) . \tag{6.13}
\end{equation*}
$$

Now we appeal to the reasoning of Miles and Shea in [17, pp. 182-183]. In fact, their reasoning in it is applicable since (6.8), (6.10) and (6.13) hold. Hence it is possible to find a positive, increasing, unbounded sequence $\left\{M_{k}\right\}\left(M_{k}>1\right)$ such that

$$
M_{k} y_{k} \leqq y_{k}^{\prime \prime \prime} \quad(k=1,2, \cdots),
$$

and such that $M_{k}^{3 / 4} y_{k} \leqq r \leqq M_{k} y_{k}$ implies

$$
N\left(r, u ; \mathcal{S}_{k}\right)<\frac{1}{M_{k}^{\mu_{k} / 1 / 8}} N(r, u)
$$

for a suitable $\mathcal{S}_{k}$. Therefore, if we put

$$
x_{k}^{\prime \prime \prime}=M_{k} y_{k}, \quad x_{k}^{\prime \prime}=M_{k}^{3 / 4} y_{k}, \quad x_{k}=y_{k}, \quad x_{k}^{\prime}=y_{k}^{\prime}, \quad \varepsilon_{k}^{\prime}=\max \left(\varepsilon_{k}, \quad 1 \quad M_{k}^{\mu * / \delta}\right)
$$

then all the assertions I, II and III of our theorem are valid for $\left\{y_{k}\right\},\left\{y_{k}^{\prime}\right\},\left\{y_{k}^{\prime \prime}\right\}$, $\left\{y_{k}^{\prime \prime \prime}\right\},\left\{\varepsilon_{k}\right\}$ replaced by $\left\{x_{k}\right\},\left\{x_{k}^{\prime}\right\},\left\{x_{k}^{\prime \prime}\right\},\left\{x_{k}^{\prime \prime \prime}\right\},\left\{\varepsilon_{k}^{\prime}\right\}$, respectively. This completes the proof of our theorem.

## References

[1] Baernstein, II, A., Regularity theorems associated with the spread relation, J. d'Analyse Math. Vol. 31, (1977), 76-111.
[2] Cartwright, M.L., On the directions of Borel of functions which are regular and of finite order in an angle, Proc. London Math. Soc.. 38 (1930), 503-541.
[3] Cartwright, M.L., Integral functions, Cambridge (1956).
[4] Drasin, D., A flexible proximate order, Bull. London Math. Soc., 6, (1974), 129135.
[5] Drasin, D. and Shea, D.F., Asymptotic properties of entire functions extremal of the $\cos \pi \rho$ theorem, Bull. Amer. Math. Soc., 75 (1969), 119-122.
[6] Drasin, D. and Siea, D.F., Convolution inequalities, regular variation and exceptional sets, J. d'Analyse Math., 29 (1976), 232-293.
[7] Drasin, D. and Shea, D.F., Pólya peaks and the oscillation of positive functions, Proc. Amer. Math. Soc., 34 no. 2 (1972), 403-411.
[8] Edrei, A., A local form of the Phragmén-Lindelöf indicator, Mathematika, 17 (1970), 149-172.
[9] Edrei, A., Extremal problems of the $\cos \pi \rho$ type, J. d'Analyse Math., 29 (1976), 19-66.
[10] Edrei, A. and Fuchs, W.H.J., Bounds for the number of deficient values of certain classes of functions, Proc. London Math. Soc., 12 (1962), 315-344.
[11] Gol'dberg, A.A., On an inequality for logarithmically convex functions, (Ukrainian) Dopovidi Akad. Nauk. Ukrain. R.S.R. (1957), no. 3, 277-230.
[12] Hayman, W.K., Meromorphic functions (Oxford), (1964).
[13] Hayman, W.K. and Kennedy, P.D., Subharmonic functions, Academic Press (1976).
[14] Heins, M., Entire functions with bounded minımum modulus, subharmonic functions analogues, Ann. of Math. (2), 49 (1948), 200-213.
[15] Kjellberg, B., On the minimum modulus of entire functions of lower order less than one, Math. Scand., 8 (1960) 189-197.
[16] Miles, J. and Shea, D.F., An extremal problem in value distribution theory, Quart. J. Math. Oxford (2), 24 (1973), 377-383.
[17] Miles, J. and Shea, D.F., On the growth of meromorphic functions having at
least one deficient value, Duke Math. J., 43, 1 (1976), 171-186.
[18] Rado, T., Subharmonic functions, Berlin, (1973).
[19] Ueda, H., On the minimum modulus of a subharmonic or an algebrold function of $\mu_{*}<1 / 2$, Kodai Math. J. 4 (1981), 298-314.

Department of Mathematics,
Tokyo Institute of Technology.

Current Address
Department of Mathematics, Daido Institute of Technology, 2-21, Daido-cho, Minami-ku, Nagoya, Japan

