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AN EXTREMAL PROBLEM FOR SUBHARMONIC

FUNCTIONS OF //*<l/2

BY HIDEHARU UEDA

0. Introduction. Let / be an entire function. We denote the order and
the lower order of / by λ and μ, respectively. And we set

m*(r, / ) = min \f{z)\, M{r, / ) = max|/(z)|.
\z\=r \z\=r

Then the classical cos πλ theorem of Valiron and Wiman asserts

(1) Um -r^-jrzr—-,-τ- - c o s π* >
r^ log M(r, f) -

provided that O^U<1. In 1960 Kjellberg [15] showed that if 0 ^ μ < l , then the
above assertion (1) is valid with λ replaced by μ.

In [5], [6] Drasin and Shea considered those functions for which (1) is the
best, and discussed the "global" asymptotic behavior of such functions. Their
argument involves solving a convolution inequality. Baernstein [1] made use
of their study on the convolution inequality to prove two theorems complement-
ing the spread relation.

On the other hand, Edrei [9] also considered the extremal functions of the
cos πμ theorem, and discussed the "local" asymptotic behavior of such functions.
His idea in [9] lies in adapting the work of Cartwright [2] on a sinusoidal
indicator to his local one introduced in [8]. Further he showed in [9] that his
method is applicable to the following extremal problem:

For meromorphic functions, assume 0 ^ μ < l / 2 , k = d(oo, /) — 1+cos πμ>0.
Then

(2) π5M»!^Z).^ίίf
T(r j)r-oo T(r, j) Lsin πμ

This inequality is best possible. The problem is to characterize those functions
for which (2) is the best (See [9, Theorem 1].).

In connection with (2), it is natural to consider the quantity:

m2(r, f)
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458 HIDEHARU UEDA

for an entire or a meromorphic function /, where

In [19] we defined the local indicator for a sequence of subharmonic functions,
and considered the above problem more generally for ^-subharmonic functions,
that is, those functions v{z) which can be represented as

(3) v{z)=-ua\z)-u^\z),

where uiι\z), uw(z) are subharmonic functions in C. For a ^-subharmonic func-
tion (3), we put

m*(r, v)= inf v{z), Mir, v)= sup v(z), N{r, v)= ^—
\z\=r \z\=r Δ7Z

Then the characteristic function of v is defined by

T(r, v)=N(r, v+)+N(r, uC2})=N(r, max(ttα ), ui2))).

With the above T{r, v), we consider the following four quantities:

^ = I ϊ m - ^ - T ( r > l ; ) - (the order of v),
log r

jtz=lim --",—----- (the lower order of v),p ¥^ logr

λ*=sup\p: ϊίm ~^Φr^\ =°°\ (the upper index of Polya peaks for v).

«*=inf \o : lim — ^ — p - ^ - = θ | (the lower index of Polya peaks for v).

It is easy to see that μ*^μ^*λ^λ*. Drasin and Shea [7] proved that the Polya
peaks of order p for v exist iff p£Ξlμ*, λ*Ί, ρ<oo. We remark that there exists
a subharmonic function satisfying μ*<μ or λ<λ*. Further we define δ(oo, v)
and m2(r, v) as follows:

^ ^ ) — , ma(r, v)={N(r, v2)V'2.

One of our results in [19] can now be described.

THEOREM A. Let v be δ-subhαrmonic defined by (3). Assume that μ*<\/2
end N(r, wc l ))~T(r, υ) (r->oo). Further let p satisfy the following three condi-
tions :

(i) μ*ύp^λ*, (ϋ)

(iii) ^2( io)=cos TΓ̂
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Then

r-cx> m2(r, v) = v/l/2+sin27ri0/4πio

In particular, if v is subharmonic, then the assumption: N(r, u(Ό)^T(r, v) can be

dropped.

If δ(oo, v)=l, the estimate (4) is best possible. And an elementary but some-
what lengthy computation shows that

sup C2(/θ)=C2(μ#),
,0<l/2 *

provided that 0(00, v)=l.

In this paper we shall make use of Edrei's idea stated above to obtain the
following result.

THEOREM. Let u{z) be a subharmonic function in C and have μ%<\/2.

Assume that u{z) satisfies

(5)
, u)

Then there exists a positive, increasing, unbounded sequence { JMT having all the

following properties:

I.

(6) li^4

(7)

4
k, u)

N(yk,u)ff
*-co m2(yk>u) πμ*

(8) , im.^«)-=i.
k^ T(yk, u)

II. There also exist three positive sequences {}^}?, {y'k}'u \^k}\ such that,
as &-*oo,

(9) ykly'k

and such that

(10)

implies
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(12) a-e
t u) \yk

(13) J
kf u)

III. Further ifμ*>0, then there exist three sequences {v"}T>
such that as k~>coy

(14)

and such that

(15)

implies

(16) N{r, u;Sk)<εkN(r, u),

where

(17) Sk={z: dk-^axg z

From the statement of I and II in Theorem, we can easily derive the fol-
lowing facts:

If u(z) has / J * < 1 / 2 and satisfies (5), then

(18) 1 -r-g AΓ(r, u) r-~ T(r, M)

uniformly for /{" in any interval A~^K<A (A>1), with

n = i

Further,

and

(20) l i m - ^ p - ^ ^ C ^ * )
^f ™2(r, ι/.)

hold.

The above estimates (18)—(20) are no longer true if we omit the restriction
r^G. To see this, we make use of the concept of a flexible proximate order
which was introduced by Drasin [4].
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Let λ(r) (r>0) be a continuous, nonnegative function which is continuously
differentiable off a discrete set D, such that

(21) rλ\r) —> 0

Let E and Ex be sets of the form

, r <£ D).

(22)

where

(23)

E=\Jίan, bnl,
71 = 1

Ϊ1=W[
71 = 1

f r1dt=o(\ogr) (r—oo).

Now, suppose that λ(r) satisfies

(24)

(25)

P l (rεU[fl !B,U,
7 1 - 1

71 = 1

> (pi< ρ< p2) (r^Ej),

and let Λ(r) be extended to Ex — E so that it is continuous and

' —(ρ — pi)/log k2n t^(k2ia2nt a2n),

(p—p1)/\ogk2n t^(b2n, k2nb2n),

Then (21) holds, and by (23), (25) it is clear that

(26) (log rY1^λ(t)Γ'dt — > p (r->cx?).

Let f{z) be a canonical product with negative zeros with counting function

(27)

Then (26) implies that / is of order p « 1 ) (cf. [2, Theorem 1.11.]) and so for
a suitable branch of log/(2)

(28)
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Using the reasoning of the proof of Proposition in [4, p. 133], we have from (21),
(24), (25), (26) and (28)

(29)

where the o(l) in (29) tends to zero uniformly as z—>oo in any sector : \θ\ ^
From (29) we easily obtain for κ ( z ) = l o g | / ( z ) | ,

(30) N{r,u)=

(31) T(r, «)=

(32) mz(r, u)=
sin πλir)

(33) w*(r, M ) ^ s i ^ L cos ^(r)-(1 + 0(1)).

If K (>0) is fixed, (21) implies that λ(Kr)=λ(r) + o(l) (r—oo), and so by (27)
n(Kr)~Kλ(r}n(r) (r—co). Hence by (31)

Thus (25) and the definition of μ* (λ*) imply

(34) μ* =pι (λ* = (.

On the other hand, we have by (32), (33)

(35) ra*fr' u) =C*WrW1+°W=c

It follows from (34) and (35) that u(z) satisfies (5). However, by (30)—(33) we
have

(36)

(37)

N(r υ) N(r v) ί 1 + 0(1) (Λ(r)<l/2)
(38) —^-' -CiUWXl + ̂ l ) ) , .--î ---;-.-==«!

(36)—(38) illustrate our assertion which we have stated above in relation to
(18)—(20). And from (22), (23) we have log dens G=0 in this case. This fact
is worth while to be compared with the result of Drasin and Shea in [6, pp.
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281-283]. Further we note from (26), (27), (31) and (34) that pλ=μ*<μ=p=:

Our theorem is unsatisfactory in one respect, that is, we cannot answer
whether in addition to (13) an estimate from below such as

k' m2(yk, u)

holds or not.
Now, we conclude § 0 by describing our plan for the proof of our theorem.

First, in § 1, we shall state the definition and the elementary properties of the
local indicator for a sequence {Bm(z)}™ of subharmonic functions such that Bm{z)
is subharmonic in the annulus: r'm^\z\^r'i1l (m=l, 2, •••) (cf. [19]). Next, we
remark that, roughly speaking, Edrei's idea in [9] is supported by two facts—
the one is the Boutroux—Cartan Lemma and the other is a lemma due to Edrei
and Fuchs [10, p. 322]. So in §2, we shall extend these two lemmas for sub-
harmonic functions. In § 3, in relation to an extremal function u(z) satisfying
(5), we define a sequence {Bm(z)}°ϊ of subharmonic functions and show that the
local indicator of {Bm(z)}™ is sinusoidal. This fact implies that Edrei's idea is
applicable to our problem. In §4, we shall prove a lemma which is essential
to the proof of I and II of our theorem. To do this, we need an estimate of
Miles and Shea [16] and an estimate due to GoΓdberg [11]. In § 5, we follow
Edrei's procedure in [9] to obtain I and II of our theorem. In § 6, combining
some estimates obtained in § 4 and § 5 and the reasoning of Miles and Shea in
[17], III of our theorem will be proved.

For background material on subharmonic functions, see [13] or [18].

1. Definition of the local indicator of order p of a sequence {Bm(z)}™
of subharmonic functions.

We now prepare several notations and their properties in order to define the
local indicator of order p of a sequence {£m(z)}7 of the given subharmonic
functions.

(i) three infinite sequences of positive numbers {r™}T, {rm}T, {r'm}™ such
that r'm<rm<r'i<rr

m+ι (m = l, 2, •••), and such that, as ?7?-+oo

rmlrf

m — > oo , rfi/rm — > co .

(ii) a sequence {Z?m(z)}T such that Bm(z) is subharmonic in the annulus:

(iii) a strictly positive sequence {V(rm)}Ί and a quantity p (0< io<co). We
then define a sequence {Vm(z)}™ of analytic comparison functions:
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The symbol Vm(r) always refers to the choice of 0=0.
(iv) Consider the intervals Im=[_r'm, r'ή~] im—\, 2, •••) as well as the intervals

Im(s)=lrme-S, rme*~\ (m=l, 2, ••• s = l, 2, •••), and let

Λ= 0 In , Λ(s)= 0 Im(s) ( s = l , 2, •••).
771 = 1 771 = 1

(v) Let the sequence {Bm(z)}~ be chosen so that

^- M(r, B)

where B(z) stands for Bm(z) in the annulus: r'm<\z\<r'm (ra=l, 2, •••). With
these preparations we now define the local indicator. Firstly we set for every
real value of θ,

( s = l , 2 , ••

and consider
h(θ)=\imhs(θ).

The real function h(θ) is called the local indicator of order p of {Bm(z)}°{ at
the peaks {rm}T With this definition, Edrei's Fundamental Lemma can be ex-
tended straightforwardly for the sequence {J5m(z)}T of subharmonic functions.

FUNDAMENTAL LEMMA. Let h(θ) be the local indicator of order p (0< io<oo)
of {Bm(z)}°? at the peaks {rm}? Let θlf θ2 be given such that 0<θ2—θi<π/p,
and let the constants a, b be such that the sinusoid H(θ)=a-cos pθ+b-s'm pθ
satisfies the conditions: h(θj)^H{θj) 0 = 1, 2). Then given ε>0 and any integer
5>0, there exists a bound ro=ro(ε, s, a, b, θlf θ2), independent of θ, such that

for

From Fundamental Lemma, we immediately have h(θ)SH(θ) (Θiύθ^θ2),
that is, the subtrigonometric character of h{θ). It is known that many important
properties of an indicator depend only on its subtrigonometric character (cf.
[3]). For example, we have the following three facts:

1. The subtrigonometric inequality (cf. [3, p. 44]). If h(θ) is of order p
and if 0<θ2-θx<π/py 0<θ3-θ2<π/p, then

(1.1)

h(θ1)

h(θs)

COS

COS

COS

pθ1

pθ2

pθs

sin

sin

sin

pθ,

pθ2

pθ3
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In particular, if 0^θ<π/p, then

(1.2) A(

2. Continuity (cf. [3, p. 37]). If h(θ0)Φ—oo for some θ0, then h(θ) is uni-
formly bounded and continuous in [—π, π],

3. Uniformity (cf. [3, p. 46]). If h(θ0)Φ—co for some θ0, then it is possible,
given ε>0 and s>0, to find ro=ro(ε, s) such that r>r0, r^Λ(s) imply

2. Some lemmas on subharmonic or d-subharmonic functions.

First, we shall extend the Boutroux-Cartan Lemma for positive Borel mea-
sures. For the original form of this lemma, cf. [9, p. 39].

LEMMA 1. Suppose that μ is a positive Borel measure defined in the disk :
\w\^σ<ί such that μ ( |u ; |^σ)<oo. Then given ξ (0<ξ^l), there exist a finite

or countable set of disks, say {Γk}, whose radii {ρk} satisfy

such that

imply

J ^μ(| w \ ^σ)(l+2e) log

Proof. For each fixed positive integer v, we construct a maximal number
of mutually disjoint closed disks Γ(

k

v}=Γ(x{

k

v\ rJ2), k = l, ••• , kv such that rv=
2ξσ2~ve~v and μ(Γ(

k^)^μ(\z\^σ)e~1J, where r is the radius and x is the center
of Γ=Γ(x, r). Clearly kvSlev~]. Hence

Σ Σ ^ Σev-2ξσ-2-ve-v=2ξσ.

Now, suppose that w (\w\^σ) is a point outside all the disks Γ(xiv\ r j (ι>=
lf 2, ••• k=l, " , kv). Then it is easy to see that

μ{Γ(w, rJ2))<μ{\QSσ)-e-v (y=l, 2, •••).

Thus
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( log|u/-ζ|rfiu(ζ)=( r , logic—
JU,<σ J{\ζ-w\>r1/2}Γ\{\ζ\<σ}

^Og(ζA'μ(\ζ\£σ)+ Σ,\θg(^~-)

σ Σ,e-*-log2e Σv
l l

This completes the proof.

Once the Boutroux-Cartan Lemma is established for positive Borel measures,
it is not difficult to prove the following fact which is an extension of Lemma 1
in [9, pp. 35-42] for subharmonic functions.

LEMMA 2. Let u{ζ) (ζ=teιω) be subharmonic in the sector:

Σ = { ζ : e's<t<es, \ω\<— \ (s>0, r ^ l ) ,

and let w(.ζ)^0 (ζ^Σ), u(ϊ)Ψ—<χ>. Consider the sector

M < £ ) (o<s'<s, r

Then there exist two positive constants H3 (j = 1, 2) depending only on s, s'', γ, γ'\
and having the following properties:

Given ζ ( 0 < f ^ l ) , it is possible to associate a set Ω(ξ) such that means Ω(ξ)
<πξ, and such that the conditions ω&Ω(ζ), teXu)<Ξ.Σr imply

\ log -

Next, we shall extend a lemma of Edrei and Fuchs [10, p. 322] to ^-sub-
harmonic functions in C.

LEMMA 3. Let v=u(Ό — u(2) be a δ-subharmonic function in C. Then if I(r)
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is any measurable subset of [_—π, π], it is possible to find absolute constants K3

O"=l, 2) such that 0<Kx<K2 and

r ) ) -)2}(T(4r, v)f .

Proof. Let μ3 0 = 1 , 2) be the Riesz mass associated with u°\z). For \z\
r < ί < c o , we have

lζl<ί

where w^'CO^^dζl <0 and

(2.1) ^ 1>ω

is harmonic in \z\<t. Here we put

Clearly va\z) is subharmonic and satisfies vίΌ(z)^v(z) in | z | < ί . Hence the
Poisson-Jensen formula for subharmonic functions (See [13, Theorem 3.14]) gives

^^^^te1*)-—,—^^ log

2τrJ-- t —2tr co$(φ — θ)JrrA J\ζ\<t

- t-r x ' / 7

so that

(2.2) o/υω)+ =

We deduce from (2.1) and (2.2) that

(2.3) (v(z)y ' ^
ί — r Jιζι<£ | z — ζ |

If we write z=re%d and ζ=sg' i S, we easily have

It follows from this and (2.3) that

(2.4) {v{z)Y g j^-N(f, log
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Now, we prove the second inequality of our lemma. The proof of the first one
is contained in the proof of the second one. From (2.4) we have

(2.5)

f {v(re)YdθSm(I(r))\N{t,
J/(r) I t—r

( ί ) lrN(t, v ) + n ( ί ) l o g —
t — T T

In order to estimate the integrals in the right hand side of (2.5), we put

Then

sin θ

Hence

(2.6) [ dθ\ log.-.- ,\
J/CO J{ζ:S<ί>l i3-^|s^/2} | S m ( ^ —

= [ dμ2(ζ)\ l 1
J ι ζ ι < ί ^ Jicnn[0.\θ-β\^π/2}

β)\ Γ

\sm(θ

— β)\ϊ

In the same way we have

•//)2-21og//+2-log^-log

so that by Schwarz's inequality in continuous form
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/co
dΘ

\β-θ\zπ/2] \sm(θ — β)\

dθ\ {log
sin (0-0) I

(2.7) =nί2\t)\ dμ2(ζ)\ {log , -.-• ----- ^
lζl<ί JI (r)Γ\{θ.\θ-β\Sπ/2}{ [ S1Π. ( σ —

2—2 log 7/+2—log-^- -log

Substituting (2.6) and (2.7) into (2.5), we obtain

[
J I (r

(2.8)

)(0)2((log //) 2 -2 log J/+2+log - | log

We remark that (2.8) also holds if we replace v+ and ??C2) b}̂  v~ and 77cn, respec-
tively. And it is clear that

N(t, v+)+N(t, v~)^2T{tf v ) ,

All the above estimates combine to show the desired inequality (with f—2r).

3. The indicator associated with Theorem.

Let u(z) be an extremal subharmonic function satisfying (5). Take a
sequence {rm}T of Pόlya peaks of order μ* for u(z), and let {r'm}°ϊ, {r{i}T, {εm}T
be the associated sequences. We define comparison functions:

r m

) τ ( r

And let v(ζ) be the positive Borel measure associated with u(z), and put n(t)
v ( | ζ | < 0 With these notations, we define

TJ ^ ) = J o

m 4 l o g dn(t) (772 = 1 , 2 , •••).
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Let h(θ) be the local indicator for the sequence {Bm(z)}™ at the peaks {rm}7,
with comparison functions {Fm(z)}T. In [19] we have shown the existence of
h(θ) and Λ (0)^:1. In this section, we shall prove the following lemma.

LEMMA 4. h(θ)=h(0)cosμ*θ (\θ\^π).

Proof. We define two sequences {ulim(z)}™ and {us,m(z)}^ of subharmonic
functions as follows:

Ui,m(Z) = )=u(z) — u1 m(z).

As Kjellberg showed in [15, p. 192], we have

(3.1) I "a. mWK 16 ^ r
' m

And the Poisson-Jensen formula for subharmonic functions gives

(3.2) MM/2, 2 ^ 3 T ( r £ , M) .

It follows from (3.1) and (3.2) that

(3.3) \us,m(z)\<48T(r'L « ) ^

Let ΎJ>0 (small enough) be given, and determine s (>0) so that lιs(π)>h(π)
— η/6. By the definition of hs(π), there exists a sequence {Z^JC/lίs), tending
to co, such that

(3.4) B(-

Using (3.3), we have for n>no(η, s)

(3.5) 7

On the other hand, by Schwarz's inequality

(3.6) m2(Zn, M)=m2(Xn, Mi+M8)^m2(Zn, Mi)+yF(Zn) (n>n0).

We now use an estimate due to Miles and Shea [16, p. 378], that is,

(3.7) τn2(χn

In order to estimate ;7Z2(ZW, 5) from above, we may note (3.4) and appeal to the
Fundamental Lemma, so that

(3.8) 0<B(Xne
iθ)<(H(θ)+e)V(Xn) (n>n1(ε, s)),
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where

/ o m ττ/nλ h(O)sin(π — θ)μ*-)-h(π)sinθμ*
sm πμ*

Combining (3.5)—(3.9) we have

(3 io) m*(χn> u) y (1-E(β,j})yt
m2(Xn, u) j n , . 2 ./ ϊ s in2τr^λ , , / s i n - - ^^1/2

/ sin ^ * _ c o s

\ πμ* i 'πμ%

where t—h(π)/h(0)^cosπμ*, E(ε, η)->0 as ε-+0 and 57—>0.
The right hand side increases at t increases, and so, it is not smaller than
C2(μ*)(l — E(ε, η)). It follows from this and our assumption (5) that ί=cos πμ*.
Hence h{π)—h{—π)=h(0)-cos πμ*. Substituting these into the subtrigonometric
inequality (1.1), we have /z(0)^/z(O) cos θμ*. On the other hand, it is clear from
(1.2) that Λ(0)^Λ(O) cos0μ*. Thus /ι(0)=Λ(O) cos θμ* (\θ\^π).

4. A preliminary lemma for the proof of assertions I and II of Theorem.

LEMMA 5. Let u(z) be a subharmonic function satisfying (5), and let {rm},
{r'm)> {r'm}> Um}, {V'm(z)}, {Bm(z)}, h(θ) be defined as in §3. Then given ε
(0<ε</ι(0)cos7rμ#)> δ (Q<δ<δ0, where δ0 is a fixed positive number satisfying
A2^'2δ0K2(l+(log2δ0)

2)<ε/6) and L (>0), it is possible to determine q=q (ε, δ, L)
{a positive integer), {/m}T (α sequence of unbounded, increasing integers) and
{RιJ~ such that

(7π=l, 2, » 0 ,

m J ε ) V l m ( R l m ) (m=l, 2, . - ) ,

and such that for e'LRιm^r^eLRίm

(l-2e)Λ(0) S m 7 Γ ' " * Vlm(r)^N(r, u)^T(r, u)^(l + ε)h(0) S m πμ* Vhn(r),
izμ* 7ΐ μ*

Proof. We define s, 5', γ, γ' as follows:

s=2L, s'=L, γ=\, γ'=π/(π-δ).

And let η be a number satisfying the following inequalities.
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i log — ) ^ ε

Next, we determine q=q(η)—q(s, δ, L) so that hq(0)>h(0) — η/2. By the defini-
tion of hq(Ό), it is possible to find a sequence {Rlm}°ϊClΛ(q) tending to co such
that

>(K0)~V)Vlm(Rlm)>(h(0)-ε)Vlm(Rlm).

By the uniformity property of the local indicator (cf. § 1), we can determine 7/τ0.
so that the conditions ?n>mQ, r^A(2L-\-q) imply

(4.2) Blm(re^)^{h{θ)+ηe-^)Vlm(r) (\θ\^π).

Now, we introduce a sequence {uιm(Q}°ϊ of subharmonic functions:

(4.3) UιJΩ=Bιn{z)

Further we put

From (4.2) and (4.3) we deduce ulm(ζ)^0 ( ζ e Σ ) . And it follows from (4.1) and
(4.3) that uιm(l)Φ— oo. Hence we can apply Lemma 2 to u~uιm. That is, it
is possible to find positive two constants Hi, H2, depending only on L, δ, and
having the following properties.

Given ζ (0<?^l) , there exists a set Ω(ξ) such that means Ω(ξ)<πξ and such
that the conditions ω&Ω{ξ), teιω^Σ; imply uιJteιω)'^{H2+H1 log (l/f))wzm(l)>
Returning to the variable z, we have from (4.1), (4.3) and the choice of η,

(4.4) Blrr(re

Here we put Ωf{η)—\i—π, — τr+δ]W[τr — d, π~]^JΩ(η). Then by Lemma 3,

, Blm)

so that from (4.4) and the choice of η we have
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<4 5> s

lmSrSeLRim, m>m1).

However, since Jensen's formula gives N(r, u)=N(r, Bιm) for r^rfm/4, we have
from (4.5)

(4.6) N(r, M)>(i_2ε)Λ(0)-^£*- Vljn(r) {e~LRlm^rSeLRlm, m>mi).

Now, we estimate T(r, u) from above. For r^r" m /8, we have

(4.7) T{r, u)=T(r, M1 > l m+M3. ί m)^T(r, H ^ J + T ί r , M 8 i i J .

Using an estimate due to GoΓdberg [11] and (4.2), we obtain for e~LRlm^

(4.8) T(r, Ul,lm)^T{r, Blm)^^-π^*-

And from (3.3) we have for e-LRl

(4.9) T(r, u,,lm)<~~μ*-'(ε/2) Vlm{r) (m^m2(e, D).

Substituting (4.8) and (4.9) into (4.7) we have

(4.10) T{r, ^ π ^

Finally we estimate vι2(r, u) from above. First we estimate m2(r, Bim). It fol-
lows from (4.2) and (4.4) that for e~LRim^rSeLRιm

(4.11) 4

^

By Lemma 3 and the choice of η, we have

(4.12)
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Combining (4.11) and (4.12), we obtain

(4.13) m2(r, B,)<(lJrε)h(0)\—Jι -—Vlm(r).

Remembering (3.6) and (3.7), we have

(4.14) mlr, u)S

The restrictions: m^m0 in (4.14), m>πiι in (4.6), m^m2 in (4.10) are not essential.
Thus we have the desired results.

5. Diagonalization—Proof of assertions I and II of Theorem.

In this section we follow Edrei's procedure in [9, pp. 54-59]. We set ε~
εn i 0 (n—>oo), δ=δn [ 0 (n—»oo), L=n in our previous Lemma 5. Then using
the method of diagonalization, we easily obtain the following fact:

Let u{z) be a subharmonic function satisfying (5). Then it is possible to
find a sequence {tn} of Pόlya peaks of order μ* for u (As usual, we denote the
associated sequences by {t'n}, {t'ή}.), a positive unbounded sequence {xn}, {Bn}
d{Blm} and {Vn}d{Vlm} such that

(5.1) ent'n<e-nxn, enxn<e-ntί, Bn(xn)^(h(0)-εn)Vn(xn),

and such that for e'nxn^r^enxn

(5.2) B n ( r e Ϋ

(5.3) (l-2en)Λ(0) *™^*- Vn(r)^N(r, u)^T{r, M ) ^ ( l + en)A(0) s i n - ^ * - Vn(r),

(5.4) mlr, M ) ^ ( l + 2 ε n ) J~+ ^ΞM* h(0)Ϋn(r).
> Δ ^πμ

Now, consider the sequence {Bn} of subharmonic functions in 0 [<? nxn, enXnl
71 = 1

— Λ, and set 0 [_e~sxn, esxn~] = Λ(s) (s = l, 2, •••). We introduce the indicator h{θ)

of order μ* of {Bn} with peaks {xn} and comparison functions {Vn}. By (5.1),
(5.2) and (1.2) we have ϊί(θ)= h(θ)= h(0) cos μ*θ (\θ\^π). Further we put

, λ f , z
Ui n W = \ lOg 1 — —

J':is:tΛ'/4 ζ

Then as we have shown in (3.3),
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Hence if r^[_e~nxn, enxn~] we have from (5.1)

Without loss of generality we may assume 48 e~nil~μ*^εn, so that

(5.5) \uz>n{z)\<εn Vn(r) (re[ jr n x n , enxnj).

Let η>0 be given. Determine s=s(rj) so that hs(—π)>h(—π)—η/2. By the
definition of hs(—π), there exists a positive sequence {τn}dΛ(s) tending to oo
such that

B{-τn)>{hs{-π)-rj/2)V{τn)>{h{-π)-7])V{τn), n<=N,

where JV is a sequence of unbounded increasing integers. Therefore it follows
from this and (5.5) that

(5.6) m*(τn, w)^(Λ(0) cos πμ* — η — εn)V(τn).

Take rj—Ύjn—n'1 in (5.6). Using the method of diagonalization, we give to k
consecutive values, and at each stage select n — nk such that

), nk+1>nk, nk>k + s(-^, 2εnk<l/k .

If we put

yk=Tnk, y'k=e~kyk, y'k=ekyk, Bk=Bnk, Vk=Vnk,

then we have by (5.1)—(5.4), and (5.6)

(5.7) m*(yk, u)>h(0)(cosπμ*-j)Ϋk(yk),

(5.8) Bk(reιθ)

(5.9) (l--ί)/z(0) s m 7 Γ ^ * - Vk(r)^N{r, u)^T{r, u)
\ k/ πμ*

(5.10) m-Ar, u)φ + ~)Λ/4+ ST--~^* h($)Vk(r)
\ R / > Δ ^Ttμ

Now, we prove the assertions I and II of our theorem. First by assumption
(5), we easily see that given ε>0 there exists a bound k0 such that k^ko(ε)
implies

(5.11) m2(yk, u)>{l-ε)J\+ S1J-2-^* h(0)Vk(yk).
y Δ 4t μ
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Hence, by (5.10), (5.11) we have (6) and (13). And from (5.10), (5.11) and (5.9),
(7) follows. (8), (11) and (12) are immediate consequences of (5.9).

6. Proof of assertion III of Theorem.

Choose a = a(μ*)^(Q, 1/2) such that

(6.1) atu<μ* log 2/2^*, a~^-\ +(2'£ /log 2) log a > 0 .

Let

uhk(z)=\ log
Jv k' <\ζ\<av k'"

Further put

'-f dv{Q , us. *(2)=w(z) —Mi

u2,k(z)=\ k log 1+4" dn(t).
Jy'k

Similar computations as in [19] yield

(6.2) \ u B , k ( z

From (11) we have

(6.3) N(ayΐ, u)S:(l + ek)(-—y' a'"N(yk, u),

On the other hand, by the choice of a of (6.1), we have

Combining (6.3) and (6.4), we obtain

u)+ n(ay'ϊ) lo

It follows from this and (11) that

(6.5) 'Nk(r) = N(r, ult k)=N(r, u2, k)^(.

Next, we introduce auxiliary functions:

(6.6) β*(z)=ί log

(yk,

^ T dn,Xt)

—Y' (0<r<cc)
y /

= l, 2, •••),

where
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(6.7) nk(f)=μj—)f"N(yk, u) (0<ί<oo).

The convergence of the right hand side of (6.6) is due to Heins [14]. If we
put for a subharmonic function u(z)

(m=Q, ± 1 ,

we easily have from (6.5)—(6.7)

(6.8) \cm(yk,Bk)\=N(yk, *0 , /** *, ,

,r r\\ N(yk, U) n , λ /ί, 1 o

(6.9) — ~ — — =d(/i*) (k = l, 2,
wiC^*, Bk)

(6.10) k J ^ ^ M2

By (6.2), (11), (8) and (7) we have for \z\=yk

k/ χyk' yyk' >

^ k , u)

so that with a suitable {δk} I 0,

(6.11) l~δk m2(yk, u)

Further an estimate due to Miles and Shea gives

(6.12) \ c m { r , U ί , k ) \ ^ \ c m { r , u 2 , k ) \ {k = \ , 2 } •••; m = 0 , ± 1 , • • • ) .

Hence by (7), (6.11), (6.12) and (6.10), we have

?n2(yk,

m Niyk,u)ψ m ) Ci( }
This implies, in particular, that for m=1, 2

(6.13) km(j;*, M L A J I X I - ^ ^ I C ^ * , M2.*)I (37*10, fe = l, 2, •••).

Now we appeal to the reasoning of Miles and Shea in [17, pp. 182-183]. In fact,
their reasoning in it is applicable since (6.8), (6.10) and (6.13) hold. Hence it is
possible to find a positive, increasing, unbounded sequence {Mk} (Mk>ΐ) such
that
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Mkyk<y'ϊί (£ = 1,2, •••),

and such that Mlfiyk^r^Mkyk implies

N(r, u;Sk)< J4^
N(S, u)

for a suitable Sk- Therefore, if we put

Xk=Mkyk, Xk=Mlfiyk, xk = yk, x'u^y'k, e£

then all the assertions I, II and III of our theorem are valid for {yk}, {y'k}, {yίl},
{y'k}, {s*} replaced by {xk}, {x'k}, {%%}, {x'ί}, {e[}, respectively. This completes
the proof of our theorem.
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