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ON RIEMANN SURFACES OF GENUS FOUR WITH

NON-TRIVIAL AUTOMORPHISMS

BY TAKAO KATO

§ 1. Introduction.

Let 5 be a compact Riemann surface of genus greater than two. Generi-
cally 5 does not admit a non-trivial conformal automorphism (Baily [1]).
(Henceforth, we shall use the term automorphism instead of conformal auto-
morphism.) Hence, compact Riemann surfaces which admit non-trivial auto-
morphisms have some restricted properties. These appear in the vanishing
properties of the theta functions, in Weierstrass points, in defining equations of
these surfaces and etc. Recently, Kuribayashi and Komiya [6] determined all
defining equations of Riemann surfaces of genus three which admit non-trivial
automorphisms.

In this paper we shall consider Riemann surfaces of genus four and shall
determined all defining equations of surfaces whose automorphisms groups are
of order three. First, we shall give defining equations of surfaces having
automorphisms of prime orders. The admissible prime orders are 2, 3 and 5.
To study the cases of order 3 and 5 carefully we obtain the main result.

§ 2. Statement of results.

Let S be a compact Riemann surface of genus 4. Suppose that φ is an
automorphism of S of prime order N. Let t be the number of the fixed points
of φ and let g be the genus of S/(φ}, where <0> is the group generated by φ.
Since N is prime, using the Riemann-Hurwitz relation we have

Thus there are the following 7 cases: (It is known that case N~7, g—l, t=l
does not occur.)

( I ) N=2, g=0, ί=10,
(Π) N=2, g=l, ί=6,
(Π) N=2, g=2, t=2,
(IV) N=3, g=Q, t=6,
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(V) Λτ=3, £ = 1 , ί=3,
(VI) N=3, g=2, t=0,
(YH) N=5, £=0, ί=4.

Then we have a defining equation of S as follows:

THEOREM 1. Suppose that S is a Riemann surface of genus four which
admits a non-trivial automorphism φ of prime order. Then, S is defined by one
of (1)-(17). Here, a, β, ••• are complex numbers and A{x), B(x), ••• are polynomials
in x. Although A{x), B{x), ••• and a, β, ••• must satisfy so that the genus of S
is four, the genera of the surfaces defined by (1)-(17) are genencally four.

Case ( I ) .

(1) /-xCx-lXz-α^ U-α,).

Case (Π).

(2) yA-2A(x)y2+A(x)2-B(x)2x(x-lXx-a)=0.

Here, if there ts a fixed point P of φ so that AΓ(P)={4, 5, 6, 8}, then deg.4^2
and deg B=l and if there is no such a point, then deg A^3, άeg B=2 and
A(x)2—B(x)2x(x — l)(x—a) has at least one double zero. The definition of N(P)
is given in the next section.

Case (ΠI). // there is a fixed point P of φ so that N(P)={3, 5, 6, 8}, then the
equation ts

(3)

If there is a fixed point P of φ so that N(P)={3, 6, 1, 8}, then the equation is

(4) y*Hax*Λ-βx2jrγ)yΛ-x{x2-V){x2-δ){x2-ε)={).

If there is a fixed point P of φ so that A^(P)={A, 5, 7, 8}, then the equation is

(5) y*-2A{x)y2Λ-A(x)2-x{x-l)(x-a){χ-β)(x-γ)=Q.

Here, deg A^_2 and A(x)2—x(x — ϊ)(x — a)(x — β)(x—ϊ) has at least one double zero.

If both of the fixed points P, Q of φ satisfy that N(P)=N(Q)={5, 6, 7, 8} and
if 3P+3Q is a canonical divisor, then the equation is

(6) y2={x2-l){x2-aλ) ••• ( x 2 - ^ )

or

(7)
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// 3P+3Q is not a canonical divisor, then the equation is

(8) y4+(x3+ax2+βx+r)y2+δx(x-l)2(x-ε)2=0.

Case (IV). // there is a fixed point P of φ so that N(P)={3, o, 6, 8}, then the
equation is

(9) y*=x{x-l){x-a){x-βXx-γ).

// there is no such a point, then the equation is

(10) y*=x\x-mx-ctXx-βXx-r).

Case (V). If S is hyper elliptic, then the equation is

(11) y2=(xs-iXx3--a)(x3-β).

If S is non-hyper elliptic, then the equation is

(12) yQ~2(

Case (VI).

(13)

or

(14)

Case (VH).

(15) y5=x(x-l)(x-a),

(16) yδ=x\x-l)\x-a)

or

(17) y5=x\x-l){x-a).

Studying Cases (IV)-(VΠ) carefully, we have

THEOREM 2. Let S be a compact Riemann surface of genus 4. Then the
order of the automorphisms group of S is three if and only if S is defined by
(9), (10) or (12), where a, β and γ are chosen generically.

§ 3. Preparations.

In this section we shall state some known results which are used in the
proof of our theorems. Let 5 be a compact Riemann surface of genus g (^2)
and let P be a point on S. Then there are g orders nlf I=n1<n2< ~<ng<2g
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such that there is no meromorphic function on S which has a pole of order nτ

at P and is holomorphic elsewhere. The sequence G(P)={nlf ••• , ng) is called
the gap sequence at P. The sequence N(P)= {1, •••, 2g} — G(P) is often called
the Weierstrass sequence. If a positive integer m is not a member of G(P),
then m is called a non-gap value and there is a non-constant meromorphic
function on 5 which has a pole of order m at P and is holomorphic elsewhere.
If G{P) is known, then we have a defining equation of S as follows:

LEMMA 1. [2, 5, 9] Let m be the first non-gap at P and let n be the least
non-gap which is prime to m. If x and y are meromorphic functions on S with
poles of order m and n at P, respectively, and being holomorphic elsewhere, then
S is defined by

where At(x) (ι = l, ••• , m) are polynomials in x and deg Aτ^— (iψm), deg Am=n.

Let φ be an automorphism of 5 of prime order N. Put

Hj={θ\θ is a holomorphic differential on S satisfying θ°φ—μ3θ},

(7=0, ••• , N—l), where μ=exp(2πz/N). Let n} be the dimension of H3. Then
Lewittes [7] proved

LEMMA 2. Suppose that φ has t fixed points and that the genus of S/(φ} is
g. Then

ii) // ί=0, then n,=#-l for l^j^N-L
iii) // t>l, then there is at least one index k, lf^k^N—1, such that

and for any such index

To examine the order of the automorphisms group of surfaces the following
lemma due to Igusa is convenient.

LEMMA 3. [4] Let S and Sf be compact Riemann surf aces of positive genera.
Let P(x, y)=0 and Pf{x, ;y)=0 be defining equations of S and Sf, respectively.
Suppose that Pf is a specialization of P. Then the automorphisms group of S
isomorphic to a subgroup of the automorphisms group of S''.

is

For a non-hyperelliptic surface of genus 4, we have

LEMMA 4. [3, 5, 8] Let S be a non-hyperelliptic Riemann surface of genus 4.
// S admits a half-canonical divisor of dimension 2, then, up to a linear

transformation, S can be expressible as a 3-sheeted covering of P1 only in one way.
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// S admits no half-canonical divisor of dimension 2, then, up to a linear
transformation, S can be expressible as a 3-sheeted covering of P1 in two ways.
Furthermore, if Dx and D2 are divisors of degree 3 and of dimension 2 and if
these are not linearly equivalent, then D1+D2 is a canonical divisor.

§4. Proof of Theorem 1.

Case ( I ) . In this case, S is hyperelliptic. Then we easily have an equation

(1) y2=x{x-l){x-a1) ••• (x-a7),

where alf ••• , aΊ are mutually distinct complex numbers.

Case (Π). Let π be the natural projection of S onto S/(φ}. Let Plf ••• , P6

be the fixed points of φ. Let Y2=x(x — l)(x —a) be a defining equation of the
torus S/(φ> where (x, Y)=(co, oo) corresponds to π(Px). Since x°π and Y°π
are meromorphic functions on S, M Λ ) is {4, 5, 6, 8} or {4, 6, 7, 8}. Let / be
a meromorphic function on S whose polar divisor is 5Pi or 7Pχ. Put y=f—f°φ*
Then y°φ=-y and y(Pj)=0 0 = 2 , ••• , 6). If (/)oo=5Λ, then (y)=P2

Jr - +P&

-5P1 and if (f)O0=7Pί, then {y)=P^ \-Pt+Q + φ(Q)-7Pu where Q is a
point on S. Since y2 can be viewed as a meromorphic function on S/<0> whose
polar divisor is 5τr(Pi) or 7π{P1), we have

(18) y2=A{x)Λ-B{x)Y.

Here Λ(x) and B{x) are polynomials in x such that deg^4^2, degj3=l if
(f)oo=5P1 and that deg.4^3, deg B=2 if (f)O0=7P1. From (18) we have

(2) yA-2A(x)y2+A(xT-B(x)2x{x-l){x-a)=ΰ.

In case of (/)oo=7Λ, since π(Q)=π°φ(Q),

A(x)2-B(x)2x(x-l)(x-a)

has at least one double zero.

Case (ΠI). Let Λ and P2 be the fixed points of φ. Since S/(φ) is of genus
2, N(P1) is {3, 5, 6, 8}, {3, 6, 7, 8}, {4, 5, 7, 8} or {5, 6, 7, 8}.

Suppose that ΛΓ(Pi) is {3, 5, 6, 8}. There are meromorphic functions x, y
such that x°φ= — x, y°φ= — y and that the polar divisors of x and y are 3Λ
and 5Λ, respectively. Then we have

(19) ys+Λ(x)y2+B(x)y +C(x)=0,

where /l(x), B{x) and C(x) are polynomials in x such that deg^4^1, deg 5 ^ 3
and degC=5. Since x^φ— — x and y^φ—~y,

(20) -
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Adding (19) and (20), we have

(Λ(x)+A(-x))y2+(B(x)-B(-x))y+C(x)+C(-x)=O.

Since S is not hyperelliptic, A(x)+A(-x)=0, B(x)-B(-x)=0 and C(x)+C(-x)
=0. Thus A(x)=a1x, B(x)=β1x

2+β2 and C(x)=γ\xι>+γ\x"ι+7\x, where γ^O.
In (19), replacing y to j>+α:ix/3 and applying a suitable linear transformation in
x, we have

(3) y3+(ax2-β)y + x(x2-l)(x2-r)=Q.

Suppose that iV(Pi) is {3, 6, 7, 8}. There are meromorphic functions x, y
such that x°φ— — x, y°φ= — y and that the polar divisors of x and y are 3Λ
and 7Pi, respectively. Then we have

where A(x), B{x) and C(x) are polynomials in x such that
and degC=7. As in the preceding paragraph we have A(x)=a1x, B(x)=β1χ

4

-\-β2x
2jrβs and C(x)=γ1x

1+r2x
5+r,xs-irr4X, where γ^O. Hence, applying suit-

able transformations we have

(4) y5+(ax4+βx2+γ)y + x(x2-l)(x2-δ)(x2-ε)=0.

Suppose that iV(Pi) is {4, 5, 7, 8}. Let π be the natural projection of S
onto S/ζφ}. There are meromorphic functions x, y on S such that χ°φ—χy

yQφ——y and that the polar divisors of x and y are 4Λ and 5P1} respectively.
Since x°φ=x and y°φ=—y, x and y2 can be viewed as meromorphic functions
on S/iφy whose polar divisors are 2τr(Pi) and 57r(Pi), respectively. Since
is a Weierstrass point of S/(φ}, we may assume that S/(φ} is defined by

Since the polar divisor of Y is 57r(Pi), multiplying a suitable constant we have

where A{x) is a polynomial in x such that άeg A^2. Thus we have

(5) yί~2A(x)y2+A(x)2-x(x-iχx-a)(x-βXx--r)=0.

Since ^(P 2)=0 and x has the multiplicity at least 2 at x(P2),

A(x)2-x(x-l)(x-a)(x-β)(x-r)

has at least one double zero.
Suppose that both N(Pλ) and N(P2) are {5, 6, 7, 8}. Let ̂  be a holomorphic

differential on 5 such that {Θ)^Pλ. Considering θ-\-θ°φ we may assume that
θ=θ°φ. Then (θ)=3P1+P2Λ-Q-{-φ(Q\ where PxφQ.
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First, assume that P2ΦQ. Since l(3P1+Q + φ(Q))=3 and /(3Λ)=1, we have
/(3Pi+Q)=2, where l(D) is the dimension of the space of meromorphic functions
whose divisors are multiples of D. If there is a meromorphic function / on S
whose polar divisor is 2Pχ+Q or Pλ+Qf then the polar divisor of f—f°φ is
Pi+Q+φ(Q). If (f)oo=2P1+Q, then using Lemma 4 we have that (2PX + Q)+
(Pi + Q + φiQ)) is a canonical divisor which contradicts the fact that 3PX+P2

-\-Q-\~φ(Q) is also a canonical divisor. If (f)oo-Pι-τQ, then 5 is hyperelliptic
and there is no meromorphic function whose polar divisor is of degree 3. This
is a contradiction. Therefore, there is a meromorphic function / on S whose
polar divisor is 3Pi+Q+φ(Q). Put χ=f~\-f°φ and y=f—foφ. Then (*)«,=
2P1 + Q+φ(Q) and (y)=P2+D+φ(D)-(3P1+Q+φ(Q)), where D is a positive
divisor of degree 2. Viewing x and y2 as functions on S/(φ}, we have (x)oo=
τr(Λ)+7r«?) and (3/2)=τr(P2)+2^(^)-(3τr(JPI)+2^(ρ)). Since degU)oo=2, S/<0>
is defined by Y2=A(x) where A(x) is a polynomial in x whose degree is 6.
Since y2 is a meromorphic function on S/(φ), there are rational functions B(x)
and C(x) such that

y*=B(x)+C(x)Y .

Let σ be the hyperelliptic involution of S/(φ}. Then F = — F ° σ and :: — x°σ

and π(Q)=π°σ(P1). Therefore,

Hence,

and

Since (Y)oo=3π(P1)
J

Γ3π(Q), B is a polynomial of degree 3 and C is a non-zero
constant. Since

B(x)2—(CY)2 is of degree 5 and at least 2 double zeros. Thus, noting that
DΦ2P2 and applying suitable transformations we have

(8) yι+(x3+ax2-+ βx+r)y2+δx(x-l)2(x--ε)2=0 .

Next, assume that P2=Q, i.e. (^)=3Λ+3P 2 . Using the Riemann-Roch
theorem we have /(3Pi+F 2)^2 and ί(2P1+2P2)'^2. If there is a meromorphic
function x on S whose polar divisor is P i + P 2 , then 5 is hyperelliptic and
defined by

(β) y*=(x2~l)(x2
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If there is a meromorphic function / o n S whose polar divisor is 2P1

JrP2,
then the polar divisor of x=f—f°φ is Pχ+P2. This is absurd.

Hence, if there is no meromorphic function on S whose polar divisor is
P1+P2, then there are meromorphic functions x and y whose polar divisors are
2Pi+2P2 and 3Pi+P 2, respectively, and x*φ—x, y°φ=—y. Viewing x and y2

as functions on S/<φ>, we have (x)Oo=π(P1)+π(P2) and (y2)oo=3π(P1)+π(P2). Let
S/iφy be defined by Y2=A(x), where Λ(x) is a polynomial in x of degree 6 and
let y2—B(x)JrC(x)Y. As above, since y2°σ=B(x)—C(x)Y, B is a polynomial in
x of degree 3 and C is a non-zero constant. Putting (y)=DJrφ(D)—(3Pi+P2),
where D is a positive divisor of degree 2, we have (y2)=2π(D)—(3π(P1)

Jt-π(P2))
on S/<^> and {y

2'y2^σ)=2π{D)Λ-2σ^π{D)-i{π{Pι)Λ-π{P2)). Hence,

B(x)2-(CYy=a(x-b)\x-c)2,

where a, b and c are constants. On the other hand, the divisor of x—b is
D'+φ(D/)-2P1-2P2 for a positive divisor Ώ' of degree 2. Therefore, it is
viewed as 2π(D')-π(P1)-π(P2) on S/(φ}. Thus y'~2Λ(b)y2 has two double
zeros or one fourth order zero. Hence, Λ(b)=0. Applying suitable transforma-
tions we have

(7) y-f (x*+ax2-hβx)y2-hγx2(x-δ)2=0 .

Case (IV). Let Plt ••• , PG be the fixed points of φ. Since S/iφ} is of genus
zero, N{Pλ) is {3, 5, 6, 8} or {3, 6, 7, 8}. Then there are meromorphic functions
x, y such that x°φ=x, y°φ=ωy or ω2y and that the polar divisor of x is 3P±

and that of y is 5Pi or 7Pi. By Lemma 1 we have

(21) y*+A(x)y2 + B(x)y+C(x)=Q,

where άeg Λ^2, deg B^4 and degC=5 or 7. Noting that x°φ = x and y°φ~ωy
or α>2;y we have

(22)

and

(23)

Adding (21), (22) and (23) we have

(24) ys

that is, Λ(x)=0 and B(x)=0. Since y(Pj)=y°ψ(Pj)=ωy(Pj) or ω2;y(P, ), 0 = 2 ,
- , 6), we have y(P3)=0. Hence, x-x{P3) divides C(x). If Mζ?)=0 for (?^P,
(7 = 1, ••• , β), then considering local expansions of x and y at Q, φ(Q), φ\Q)
wzkr\owt\\Άt(x~x{Q)){x-x°φ(Q)){x--x<>φ2(Q))=(x-x(Q)γ divides C(x). Thus,
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where Σ ^ ^ 1 and Σ Vj=5 or 7. Hence, applying suitable transformations we
have that S is defined by

(9) ys=x(x-iXx-aXx-β)(x-r), if M Λ ) = {3, 5, 6, 8}

and

(10) y*=x2(x-mx-a)(x-β)(x-γ), if W(Λ)={3, 6, 7, 8},

where a, β, γ are mutually distinct complex numbers.

Case (V). Let Plf P2, P 3 be the fixed points of φ. By Lemma 2, we have
holomorphic differentials θu θ2 whose divisors are 2P1

J

Γ2P2+2PS and P1

J

ΓP2

Jr
Pz+Q-rφ^+φKQ), respectively. Furthermore, θ^φ=θly θ2oφ=ωθ2 or ω2θ2y

where αr-fω+l = 0.
If Q = PU say, then 2P1 = P2

J

ΓP3 and S is hyperelliptic. Thus S is defined
by

(11) y*=(x*-iXx*-aXx*-β).

Suppose that QφPlf P2, P3. Put y = θ1/θ2. Viewing y3 as a function on
S/<^>, we have that the divisor of yz is π(P1)-hπ(P2)+π(P3)-3π(Q)f where π
is the natural projection of 5 onto S/<φ). Let the torus S/(φ) be defined by
Y2=x(x-l)(x-a) so that π(Q) corresponds to {X, 7)=(oo, oo). Putting y3=
Λ(x)JrB(x)Y, since (x)oo=2π(Q) and (Y)oo=3π(Q), we have that i is a poly-
nomial in x of degree at most 1 and B is a non-zero constant. Thus we have

and

(12) y6-2(β

where β is a non-zero constant.

Case (\Ί). Let π be the natural projection of S onto S/(φ) and let σ be
the hyperelliptic involution of S/(φ). Using Lemma 2 we can choose a basis
θu θ2, θz, θ4 of the space of holomorphic differentials on S such that Θ1°φ=ωθu

Θ2°φ=ω2θ2, θz°φ=θ3 and Θ4°φ=θ4. Let the divisor of θx be P-\-φ{P)Jrφ\P)-\-Q
+φ(Q)-rφ2(Q). Since θz and θ± are the liftings of holomorphic differentials on
S/<0>, we may assume that the divisor of θ, is P+φ(P)Jrφ\P)JrP/Jrφ(P/)
-\-φ\Pf), where π{P')=σoπ{P). If Q=P or Q=P', then we shall not need θ4

in the proof and if QφP and QφPf, then we assume that the divisor of ΘA is
Q + φ(Q)+φ%Q) + Q'Jrφ(QΊJrφ\Q/)f where π(Q')=σ*π(Q).

Assuming that Q=P' we have that 6̂ 3/̂ 1 is a constant, which is a contra-
diction.

Assume that Q = P. Put y = θs/θ1. Viewing yz as a function on S/<0> we
-have (y*)=Zπ(P')-Zπ(P). Let S/<φ> be defined by F2=C(x), where C(x) is a
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polynomial of degree β and both π(P) and π(Pf) correspond to x—--o. Put
y3=A(x)JrB(x)Y, where A.(x) and B(x) are rational functions in x. Then we
have

and

Hence, A is a polynomial of degree 3 and both B and A'2 — B2C are non-zero
constants. Therefore, applying suitable transformations we have

(13) y«+(ax*+βx2+γx+δ)y3+l=0.

Suppose that QφP and QφP'. First, we avoid the case that ~{P)—π(Pf).
Suppose that P=P'. The divisor of a function f=θa/θ1 is PJ

rφ(P)^φ%P)-Q
-φ(Q)-φ\Q) and P+φ(P)+φ2(P) is a half-canonical divisor. Put g=θsθi/θ1

2.
Since g°φ=ωg, g is not a constant. Then the polar divisors of / and g are
QJrφ{Q)Jrφ\Q) both. Using Lemma 1 we have f=αg+b for some constants α
and b. Since ω2f=f°φ=αg°φ+b=αωg+b, we have (ω2—l)f=α(ω—l)g, which
is a contradiction. Thus we have PφP'. Since 0 is fixed point free, we have
π{P)Φπ{P'). Put y = l/f=θ1/θ3. Viewing y3 as a function on S/(ό) we have
(3;8)=3ττ(ζ?)-3π(P/) and (y**φ)=3π(Q')-3π(P). Let S/<0> be defined by Y2=
C(x), where C(x) is a polynomial in x of degree β and both -(P) and π(P')
correspond to x = co. Put ys=A(x)JrB(x)Y. As above we have A(x) is a
polynomial of degree 3 and B{x) is a non-zero constant. Viewing {yz-y*oσ)=
3(π(Q)Jrπ(Q/) — π(P) — π(P/)) and applying suitable transformations we have

A(x)2-B(x)Ύ2=x"

and

(14) y6+(αx* + βx2+rx+δ)ys + xΆ = O.

Case (W). Let P : , P2> P3̂  P4 be the fixed points of φ. There are mero-
morphic functions x, y on S such that (x)oo=5Pi and (y)O0=3P1} 4Pi or 6P1. We
may assume that x°φ=x and y°φ=ηy, where η is a primitive fifth root of
unity. Then x has the multiplicity 5 at each of P2, P3 and P 4 and we have

where λ+μ+v=άeg(y)co. Applying a suitable linear transformation we have

(15) y5=x(x-iXx-α),

(25) _y δ =x 2 (x-iXx-α),
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(16) y*^x\x-l)\x-a)

or

(17) y
G
=xKx-l)(x-a).

Apply the birational transformation X=l/χ, Y=a~1/5yx~1 to (25). Then the
surface defined by (25) is conformally equivalent to the surface defined by

which is the same type as (15).
This completes the proof of Theorem 1.

§ 5. Details of Case (VII).

To prove Theorem 2 we shall discuss Cases (IV)-(Yfl) more closely. First
we do with Case (VII).

Suppose that S admits an automorphism φ of order 5. Then S/(φ} is the
sphere, φ has 4 fixed points and S is defined by (15), (16) or (17). We have
easily the following observation.

" If 5 is defined by (15), then the gap sequence of the point corresponding
to x = oo is {3, 5, 6, 8} and those to x=0, 1, a are {4, 5, 7, 8}. If S is defined
by (16), then the points corresponding to ,τ=0, 1, a, oo i.e. all of the fixed
points of φ are not Weierstrass points. If 5 is defined by (17), then S is
hyperelliptic and the fixed points of φ are not Weierstrass points ".

§ 6. Details of Case (IV).

Suppose that S admits an automorphism φ of order 3 such that S/(φ} is
of genus zero. Then S is defined by (9) or (10). It is noted that φ may be
defined by φ(x, y)=(x, coy).

Suppose that S is defined by (9). Then the points (x, y)=(Q, 0), (1, 0), (a, 0),
(β, 0), (γ, 0) and (oo, oo) are Weierstrass points of weight 4 and these are all of
such points. Let φ be another automorphism of 5. Since φ maps these 6
points onto themselves, Φ=φ-1°φ-1°φ°φ fixes these 6 points. Using the Riemann-
Hurwitz formula we have that Φ is the identity, φ or φ2. If Φ=φ2, then φ°φ
=φ. This is a contradiction. Hence, φ°ψ—φ°φ or φ°φ=φ°φ2. Put φ(x, y)=
(X, Y). If φ°φ~φ°φ, then X(x, y)=X(x, ωy). Hence, X(x, y)=X(x). If φoφ~
φ°φ2, then X(χ, y) = X(x, ω2y). Hence, X{x, y) = X(x). Thus ψ induces an
elliptic linear transformation of the x-sphere.

Suppose that S is defined by (10). Let v be the number of Weierstrass
points whose gap sequences are {1, 2, 4, 5}. Since all the fixed points of φ are
Weierstrass points with the gap sequences {1, 2, 4, 5}, v=12, 9 or 6.
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Suppose that v=12. These 12 Weierstrass points are divided into two
groups A—{Plt — , P6} and B={P7, ••• , P12} such that 3 Λ = ••• =3PG and
3P7= ••• Ξ 3 P I 2 . This is shown from Lemma 4. There is an automorphism σ
such that σ(Λ)=B, σ(B)=A. ([5] Theorem 4). Suppose that ψ is another
automorphism of S. If φ(A)=A, then as in the above discussion we have that
φ induces an elliptic linear transformation of the x-sphere. If ψ({Plf ••• , Pk})ClA
(£=4 or 5), then for ; = 1, ••• , k, Φ{Pj)=φ-^φ-^φ-ψ{Pj)=P3. Using the Riemann-
Hurwitz formula we have that Φ is the identity or φ. Thus, as above, φ
induces an elliptic linear transformation of the x-sphere. Hence, φ(A)=A. If
φ({Pi, - , Pk})aB (6=4 or 5), then σ°φ({P1} ••• , Pk})ClA. Hence, σ*ψ(A)=A.
Thus φ(A)=B, φ(B)=A. If φ({Plr P2, P8})dA, then Φ(PJ)=φ-^φ-1oφoφ(pj)^pj

for ; = 1, 2, 3. Suppose that neither Φ is the identity nor φ. Then <Φ, 0>, the
group generated Φ and 0, is a cyclic group of order 3μ (μ^2, integer). Since
φ fixes Plt •••, P 6 and no other point, P4, P5 and P6 are projected into the same
point on S/<Φ, φ}. Hence, μ = 3 . Using the Riemann-Hurwitz formula we have
a contradiction. Thus Φ is the identity or φ. Hence, φ(A)=A.

Suppose that v=9. These 9 Weierstrass points are divided into two groups
A={P1} •••, PG} and £ = { P 7 , P8, P9} such that 3 Λ = - =3P 6 , 3PΊ = 3P8=3P,.
Suppose that φ is another automorphism. As in the case of y=12, we have
^(τ4)=Λ Thus ^ induces an elliptic linear transformation of the x-sphere.

Suppose that v=6. These 6 Weierstrass points Ply ••• , P6 satisfy 3P1= •••
=3P6. Thus, as in the above discussion, every automorphism φ of S induces
an elliptic linear transformation of the x-sphere.

Thus a generic surface defined by (9) or (10) has the automorphisms group
of order exactly three.

§ 7. Details of Case (V).

Suppose that S admits an automorphism φ of order 3 such that S/(φ} is a
torus. Then S is defined by (11) or (12).

If S is defined by (11), then the order of the automorphisms group of S is
at least 6.

Discussing the automorphisms groups of surfaces defined by (12), we shall
consider a particular surface. Let 5 be defined by

(26) y6jr(αx-l-β)y3jrx3-αxJrβ=^0,

where αφO, βφl and x3—αx-\-β—(αx — 1 — /3)2/4 has distinct three zeros. Let
S' be defined by

(27) Y3

Jr3ω(l-ω)X(X-l)((X+ω)B-iS(^-fω2)8)=0.

Applying the birational transformation
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we have that 5 is conformally equivalent to S'. The points Plf P2, P» on 5
corresponding to y = l, ω, ω2, i.e. to Z=oo, 1, 0 on Sf, are Weierstrass points
of weight 4. Since 3P^ (/=1, 2, 3) are half-canonical divisors of dimension 2,
by Lemma 4 there is no other Weierstrass point of weight 4. Let φ be the
automorphism of 5 defined by φ(x, y)=(x, ωy). Then, 0(Pi)=P2, φ{Pz)—P'ά and
φ(P3)=p1 and S/<^> is a torus.

Let >̂ be an automorphism of S. Using the fact that ψ preserves {Plf P2, P3}
we shall show that 0 is the identity, φ or φ2.

First, suppose that φ(P3)=P3 0 — 1, 2, 3). We shall show that ώ is the
identity. If the order of <^> is two, then the genus of S/(φy is zero, one or
two. If it is zero, then 5 is hyperelliptic. If it is one, then 4 is a non-gap
value of P3. If it is two, then there are exactly two fixed points of φ. All of
these are absurd. If the order of <</>> is three, then the genus of S/(φ}
is zero, one or two. If it is zero, then there are 6 Weierstrass points of
weight 4 or there is no Weierstrass point of weight 4. If it is one, then P3

are not Weierstrass points of weight 4. If it is two, then there is no fixed
point of φ. All of these are absurd. If the order of <^> is five, then 5 is
defined by (15), (16) or (17). By the result of the section 5 it cannot occur that
there are exactly 3 Weierstrass points of weight 4. Suppose that the order of
(φy is a composite number. Considering subgroups of <(/>> of prime orders and
applying the above results successively we have that φ is the identity.

Secondly, suppose that φ(Pλ)=P2> φ(P2)=Ps and 0(P 8 )=P 1 . Then ό2°^(P,)
=Pj (7 = 1, 2, 3). Hence, φ2°φ is the identity and φ—φ. Similarly, if φ{Pλ)—pZ}

φ(P2)=Plf φ(p3)z=p2f then φ°φ is the identity and φ=φ2.
Lastly, suppose that 0(P 1 )=P 1 , φ(P2)=P3 and φ(P3)=P2. Then ψ2(Pj)=P3

0'—1, 2, 3) and ψ2 is the identity. Put Φ—φ~1°φ~1°φ°φ—φ?°ψ°φoψ. Since
φ(P1)=P2f Φ(P2)=P, and Φ(P3)=P1, we have Φ=φ and φ°φ=φ2oψ. Let Q be
a fixed point of φ. Since φ2°ψ(Q)—ψ°φ(Q)=ψ{Q), ψ(Q) is also a fixed point of
φ. Since there are 3 fixed points of φ and the order of (ψ) is two, there must
be a common fixed point of φ and φ. Thus (φ, φ} is a cyclic group. This
contradicts Φ=φ.

Summing up we have that the automorphisms group of 5 is (φ).
The equation (26) is a specialization of (12). Hence, by Lemma 3 a generic

surface defined by (12) has the automorphisms group of order three.

§ 8. Details of Case (VI).

Suppose that S admits an automorphism φ of order 3 such that S/(φ} is of
genus two. Then S is defined by (13) or (14).

Consider the birational transformations (X, Y)=(x, 1/y), if S is defined by
(15) and (X, Y)=(x, x/y), if S is defined by (16). Then we have that the order
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of the automorphisms group of S is at least 6.

Conclusion. Summing up the results of the sections 6 and 7 and this

section, we can conclude Theorem 2.

Adaed in proof. Recently, R. TSUJI (Thesis, Nihon Univ. 1981) studied

related problems. He proved several results which overlap a part of Theorem 1.
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