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Introduction. R. C. James [2] and J. Lindenstrauss and C. Stegall [3] gave
the examples of separable Banach spaces having no subspace isomorphic to I1

whose duals are non-separable. We are concerned here with James' example.
In [2], he constructed a Banach space having properties a) it is separable and
its dual is non-separable and b) every infinite dimensional subspace contains a
subspace isomorphic to /2. Property a) is a direct consequence of his construc-
tion, but to see property b) requires a rather deep observation. Property b) is
equivalent to

b') for any weakly null normalized sequence {xn n = l, 2, •••} there is a
sequence {yn n = l , 2, •••} equivalent to an /2-basis for which each yn is a linear
combination of xn's together with

b") every infinite dimensional subspace contains a weakly null normalized
sequence.

In this paper we will prove a stronger property than b')> namely that there
is a subsequence, instead of linear combinations, of {xn n = l, 2, •••} which is
equivalent to an /2-basis. In fact, we will show this under an (apparently)
weaker assumption than being weakly null. It should be mentioned here that
if we use H. P. RosenthaΓs characterization of Banach spaces containing I1 [5],
property b") is equivalent to saying that there is no subspace isomorphic to I1.

In section 1, we give a definition of James spaces on trees, which are slightly
more general than James' example, and we formulate our main result in Theo-
rem. In section 2 we prove our main result.

§ 1. James Spaces and the Main Result.

Let T be a union of a countable family of pairwise disjoint non-empty finite
sets Pn, ?t=0, 1, 2, •••. We call a point t of Pn a point of level n, and write
l(t)=n. We assume there is a binary relation between points of Pn and points
of Pn+i, which we call a connection, such that for every n=0, 1, 2, •••, each
point of level n is connected to at least one point of level n + 1 and each point
of level n + 1 is connected to only one point of level n. The following illustrates
an example of connections between points of the first three levels
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level 2

level 1

level 0

We call T with connection as above an infinite tree. A finite sequence 5==
{̂ o, tίt ••• , tn} in T is called a segment if tk^Pk+no for all &=0, 1, ••• , n, where
no—l(to), and ^ is connected to tk+1 for all &=0, 1, ••• , n — 1. Any two points
5 and t of a tree T are called connected if there is a segment which initiates
with either s or t and terminates with the other. An infinite sequence B~
{to, tlf t2, •••} in T is called a branch if tk^Pk+n() for all k=0, 1, 2, ••• with n o =
/(ί0) and f* is connected to tk+i for all k—0, 1, 2, ••• . The starting point ί0 of B
is called the initial point of 5 and ί(to)=no is called the initial level of 5 .

The James space J(T) on a tree T is defined to be the space consisting of
all complex valued functions x on T such that

k

||x|| =sup ( Σ I Σ χ(0Γ) 1 / 2 < + c o >
3 = 1 t(ΞSj

where the supremum is taken over all choices of mutually disjoint segments
Slt S2, ••• , Sk in T. It is not hard to see that J(T) is a Banach space with
respect to this norm. In particular, if every Pn consists of one point, than /(T)
is identical with the well known classical James space given in [1].

The space J{T) has the natural basis {et ί e T } ,

x= Ύ^ x(t)e*= T1 V r(t)et
ier 7i=o t<ΞPn

for all x<=J(T), where et is the characteristic function of {t} and the order in
the summation Σ follows the order of the level of t and any fixed ordering

among points on the same level. It is easy to see that {et t^T} is a normalized,
monotone and boundedly complete basis.

Any segment 5 or branch B in T gives a linear functional with norm 1 on
ΆT) by

STx~) — N Λ x(f^\ o r /"?fx^ — N Λ x(f} f o r T

where the order in the summation Σ follows the order of the level of
t&B

We recall that a sequence {xn n — 1 , 2, •••} in a Banach space is said to be
equivalent to an /2-basis if for any linear combination Σ anxn of xn's we have

\ l / 2
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where a and b are fixed positive numbers.

Our mam result can be stated as follows.

T H E O R E M . Suppose {xn; n = l, 2, •••} is a normalized sequence in J(T) satis-

fying lim B(xn)=0 for all branches B in T. Then there is a subsequence of
n-*<χ>

{xn; n = l, 2, •••} which is equivalent to an l2-basιs. More precisely, for any ε > 0
we can choose a subsequence {xUk ', k = l, 2, •••} such that for any linear combina-
tion ΣakXny of xn's with Σ\ak\

2=l we have
k k k k

The constant 2 may not be best possible. We do not know the best possible

constant.

§ 2. Lemma and Proof of Theorem.

A sequence {xn, an; n = l, 2, •••}, where {xn n — 1, 2, •••} is a sequence in

J(T) and {an; w = l , 2, •••} is an increasing sequence of levels, is called a block

sequence if the support of xn is located between the level an, including an, and

the level an+1, excluding α n + 1 , for all n = l , 2, •••. We call it bounded or nor-

malized if {xn; n = l , 2, •••} is bounded or normalized. The following Lemma

is a key to the proof of our theorem. We wish to thank Tom Starbird for sim-

plifying the original proof by suggesting the use of Ramsey's theorem. Our

original proof involved more combinatorial arguments.

L E M M A . Let {xn, an; n=l, 2, •••} be a bounded block sequence satisfying

lim B(xn)=0 for all branches B in T. Then for given ε > 0 there is a subsequence
7i-»oo

{xn, an; n^M} of {xn, an; n = l, 2, •••} such that for any segment S initiating

with the level 0, \S(xn)\^ε for all n^M except at most one n = n(S) in M.

Proof. For given ε>0, let Qn be the set of all points t with l(t)=an such

that |S(Xτi)|>ε for some segment S initiating with t. By our definition of the

norm ||xn | |, it is clear that the number of points of Qn is dominated by \\xnγ/ε2

ε2, where /iT=sup||jtn||. Thus we may assume, by passing to a subsequence

if necessary, that each Qn consists of a points for all n = l, 2, ••• . There is

nothing to prove if a=0, so assume α ^ l . Ramsey's theorem is applicable in

the following way for choosing a subsequence {xn, an) n^M} of {xnf an\ n —

1, 2, •••} with property we desire. Let tt,n, lrgfrgα, be all points of Qn. For

It^i, jt^a, let ΛltJ be the set of all pairs {n, m] of positive integers n and m

with n<m such that there is a segment S initiating at tl>n and terminating at

tj,m with \S(xn)\>ε. Finally, let A be the set of all pairs {n, m} of positive

integers n and m with n<m which are not in any AltJ for l^i, j^a. It is
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clear that AXίJ for lrgz, j^a together with A give a finite cover of the space

of all pairs {n, m] of positive integers n and m with n<m. By Ramsey's

theorem [4], there is an infinite subset M of positive integers such that M ( 2 ) is

contained m AltJ for some % and j or otherwise contained in A, where M C 2 )

denote the set of all pairs {n, m] with n and m in M and n<m. We claim

M C 2 ) C.4. Suppose MwdAι,J for some / and j , then we will see that for any

n and m in Λ/ with n < m there is a segment 5 w , m connecting tι>n to ί l i m such

that \Sn m{xn)\>ε. For given n and m in M with n<m, choose k in M with

n<m<k. Since {w, &} and {m, &} are in AltJ, there are segments Si and S 2

initiating fί;?z and tτ,m respectively and terminating at tJ>k with \S1(xn)\>s and

| S 2 ( x m ) | > ε . Since Si and S 2 are terminating at the same point tJιk, S2 must

be a subsegment of Slf thus Sλ must contain the point tτ,m which is the initial

point of So. Let Sn>m be the part of Sλ between tι>n and tτ,m, then we have

\Sn,m(xn)\ = \S1(xn)\>ε It is clear that this property of M we have just shown

implies that there is a branch Bo which connects all points tx,n, n^M, and that

\B0(xn)\>ε for all n^M. However this contradicts our assumption lim B(xn)

= 0 for all branches B. Thus we have shown M ( 2 ) C/L.

Now we can see that this subsequence {xn, an\ n^M} has the property we

desire. Suppose there is a segment 5 initiating with level 0 such that | S ( x n ) |

> ε and 15(x m ) | > ε for some n and m in M w i t h n<m. Let tλ and t2 be points

of 5 with level an and level am respectively, then we have t1=tι,n and t^—thm

for some i and j because \S(xn)\>ε and \S(xm)\>ε, thus {n, m} belongs to

Aτ,j, which contradicts {n, m} ^MwdA and Ar\AtiJ=Q. This completes the

proof.

A block sequence {xn, an / i e M J which satisfies the conclusion of the lemma

will be called ε-separated.

Proof of Theorem. We are given an ε > 0 and a normalized sequence {xn;

n = l, 2, •••} in / ( T ) satisfying

1) lim B(xn)=0 for all branches B in T.
7i-»oo

Since this assumption implies that lim xn(0=0 for all ί e T , by the use of the
n-*oo

s t a n d a r d " g l i d i n g h u m p " a r g u m e n t , w e first c h o o s e a s u b s e q u e n c e {xn

f n = 1 , 2, •••}

of {xn) 71 = 1, 2, •••} a n d a n o r m a l i z e d b l o c k s e q u e n c e {yny an; ?2—1, 2, •••} s u c h

t h a t

2) Σ l | x 7 / - ^ n l i 2 < ε 2 .
71 = 1

It is clear that the normalized block sequence {yn, an; n = 1, 2, •••} also

satisfies 1). Using the lemma, choose a decreasing sequence of infinite subsets

Mk of positive integers associated with a sequence of positive numbers εk tend-

ing to 0 such that
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3) {yn, an; n^Mk) is ε^-separated for all k=l, 2, ••• .

That is, for each k=l, 2, ••• and any segment 5 initiating at level 0 we have
\S{yn)\^εk for all n in Mk except at most one n~n{S) in Mk.

We now apply the diagonal process and choose sequence pi<ρ2< ••• and
kχ<k2< ••• such that

4) pn^Mkn for all n = l , 2,

and

5) Έmn{ Σ εlL)<ε2,
7i = l l = n + l

where mn is the number of all points of the level aPn for n = l, 2, •••. Setting
zn—yPn, bn—aPn and δn—εkn for all n = l, 2, •••, we have, from 3), 4) and 5),

6) {zn, bn\ n = k, k+1, "•} is ^-separated for all k — l, 2, •••,

and

7) Σ m n ( Σ 3 , 8 ) < ε 2 ,
71 = 1 ί = 7l + l

where wn is the cardinality of Pbn for all n = l, 2, •••. Property 6) tells us that
for any k~l, 2, ••• and any segment S initiating at level bk we have \S(zn)\ ^δk

for all n = l , 2, ••• except at most one n — n(S)^k.
For a segment S, we denote by i(S) the smallest positive integer n with the

initial level of S^bn. We call 5 regular if 5 initiates with a point of level
busi Fo r a regular segment S we denote by λ(S) the smallest positive integer
n with \S(zn)\>δn, and we put λ(S)~ + oo if there is no such 72. The follow-
ing inequality will be used to estimate the norm of a linear combination of zn's.
For any regular segment S we have

8) Σ |S(z») | 2 ^ Σ δn\

In fact, putting {n \S(zn)\ >δn}^={nί<n2< •••}, we see that *(S)^ni=Λ(S). By
6), the block sequence {zn, bn; n = nlt Wi+1, •••} is 5ni-separated. Since \S(zni)\
>δni, \S(zn)\^δni holds for all n>nlf so \S(zn2)\^δni. Similarly, we see that
\S(zv+1)\^δnv for all p = l , 2, •••. Thus we have

Σ \S(zn)\2= Σ |S(* n ) | 2 =ΣIS(z n i ; ) | 2 + Σ |5(^J | 2

ύΈS*«v+ Σ δn*= Σ δn*.
v=l J nZι(S) nzι(S)

nψnv

Now we will estimate the norm of a linear combination Σ ^ T A with Σ
n n

= 1. We claim
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9)

The first inequality is clear because {zn, bn\ n — ly 2, •••} is a normalized block
sequence. To see the other inequality, suppose Λ—{S} is a finite family of
mutually disjoint segments S. We decompose 5 into its initial end So and its
regular part S', where S0={t^S', l(t)<biCsΛ and S'={t^S; l(t)^bιCS)} So is
empty if S is regular. We decompose S' into Sλ and S" S'=SiWS", where
S i = { f e S ; &<(5)^/(0<6tc5)+i} a n d S"={teS', bi(iS)+1^l(J)}, S" possibly being
empty. Furthermore, we decompose S" into (possibly) three segments S/', S2"
and S3" as follows

We have

Let x=^Σanzn with Σ | α n l 2 = l , and observe that

Σ |S(.τ)|2= Σ \S0(x)+S1(x)+S1"(x)+S/(x)+S!i"(x)\i

S<ΞJ S<EJ

^ 4 Σ {I SO(JE) 12+ I S,(x) 12+1 S/(x) 12+1 S / ( Λ : ) + S , * ( X ) |2}

= 4 Σ {I So(x) 12+ I SXx) 12+1 S/(x) 12} +4 Σ I S1"(x)+S3"(x) | 2 .

To estimate the first summation, note that \R(x)\2=Σ,\an\
2\R(zn)\2 if R=S0, S,

or S2", because we have only one non-zero term in the summation J^anR(zn).
n

Thus we have

Σ {\SoW\2+\Sί(x)\2+\S/(χ)\ 2}
SϊΞJ

= Σ Σ I «n I 2 { I So(zn) I 2 + I S1(zn) I 2-f I Sί^Un) | 2}

= Σ I α» 12 Σ {I So(zn) 12+1 SAzJ 12+1 S,»(z,,) 12}

< y i / y | 2 i | - | | 2 — y^ ^ 12 — i
n n

To estimate Σ \S1

//(x)+S3

//(x)\2, we note from 8) that
S<ΞJ

\S1'(x)+Si'(x)\t=\ Σ αnS'(zB)l»

^( Σ Σ )^ Σ
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Let Sk be the set of all S^S whose regular part S' initiates with a point of
the level bk, that is Jk—{S^J; i(S)=k] for k = l, 2, ••• . Then we have

Σ |Si"(*)+S8"(*)l2=Σ Σ |S/(x)+S/(*)!2

S<EJ k = l S<EJ k

< V ^ V ri 2 — V T1 V ^ 2 < V m Λ V n

where we used 7) for the last inequality above. Finally, we have

Σ

Thus

| | Σ α n * n l l = s u p ( Σ |
n £ S(ΞJ

This establishes 9).
Since {zn n = l , 2, •••} is a subsequence of {j/n ?2 = 1, 2, •••} and {yn w~

1, 2, •••} satisfies 2), there is a subsequence {x/7 n — 1, 2, •••} of the originally
given sequence {xn n — 1, 2, •••} such that

10)

Now we can see that {xn" \ n = l, 2, •••} is equivalent to an /2-basis. In fact,
for any linear combination ^anxn" with Σ l ^ n l 2 — 1 properties 9) and 10) yield

n n

I v " -7 II

and

The proof of the theorem is complete.
Finally we would like to show that our theorem implies property b) men-

tioned in the introduction.
The following fact was proved by J. Lindenstrauss and C. Stegall (see the

proof of Corollary 3 in [3]).
For any bounded sequence in J(T) we can choose a subsequence {xn; n~

1, 2, •••} such that \imB{xn) exists for all branches B in T.

From this, it is easy to see that every infinite dimensional subspace of J(T)

contains a normalized sequence {xn n=l, 2, •••} with the property that lim B(xn)

= 0 for all branches B in T. Thus we have the following result.
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COROLLARY. Every infinite dimensional subspace of J(T) contains a subspace
tsomorphtc to I2.
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