WEAKLY NULL SEQUENCES IN JAMES SPACES ON TREES

Dedecated to Professor Goro Azumaya on his sixtieth birthday

By Ichiro Amemiya and Takashi Ito

Introduction. R. C. James [2] and J. Lindenstrauss and C. Stegall [3] gave the examples of separable Banach spaces having no subspace isomorphic to l^{1} whose duals are non-separable. We are concerned here with James' example. In [2], he constructed a Banach space having properties a) it is separable and its dual is non-separable and b) every infinite dimensional subspace contains a subspace isomorphic to l^{2}. Property a) is a direct consequence of his construction, but to see property b) requires a rather deep observation. Property b) is equivalent to
b^{\prime}) for any weakly null normalized sequence $\left\{x_{n} ; n=1,2, \cdots\right\}$ there is a sequence $\left\{y_{n} ; n=1,2, \cdots\right\}$ equivalent to an l^{2}-basis for which each y_{n} is a linear combination of x_{n} 's together with
$\mathrm{b}^{\prime \prime}$) every infinite dimensional subspace contains a weakly null normalized sequence.

In this paper we will prove a stronger property than b^{\prime}), namely that there is a subsequence, instead of linear combinations, of $\left\{x_{n} ; n=1,2, \cdots\right\}$ which is equivalent to an l^{2}-basis. In fact, we will show this under an (apparently) weaker assumption than being weakly null. It should be mentioned here that if we use H. P. Rosenthal's characterization of Banach spaces containing l^{1} [5], property $\mathrm{b}^{\prime \prime}$) is equivalent to saying that there is no subspace isomorphic to l^{1}.

In section 1, we give a definition of James spaces on trees, which are slightly more general than James' example, and we formulate our main result in Theorem. In section 2 we prove our main result.

§ 1. James Spaces and the Main Result.

Let T be a union of a countable family of pairwise disjoint non-empty finite sets $P_{n}, n=0,1,2, \cdots$. We call a point t of P_{n} a point of level n, and write $l(t)=n$. We assume there is a binary relation between points of P_{n} and points of P_{n+1}, which we call a connection, such that for every $n=0,1,2, \cdots$, each point of level n is connected to at least one point of level $n+1$ and each point of level $n+1$ is connected to only one point of level n. The following illustrates an example of connections between points of the first three levels

[^0]

We call T with connection as above an infinite tree. A finite sequence $S=$ $\left\{t_{0}, t_{1}, \cdots, t_{n}\right\}$ in T is called a segment if $t_{k} \in P_{k+n_{0}}$ for all $k=0,1, \cdots, n$, where $n_{0}=l\left(t_{0}\right)$, and t_{k} is connected to t_{k+1} for all $k=0,1, \cdots, n-1$. Any two points s and t of a tree T are called connected if there is a segment which initiates with etther s or t and terminates with the other. An infinite sequence $B=$ $\left\{t_{0}, t_{1}, t_{2}, \cdots\right\}$ in T is called a branch if $t_{k} \in P_{k+n_{0}}$ for all $k=0,1,2, \cdots$ with $n_{0}=$ $l\left(t_{0}\right)$ and t_{k} is connected to t_{k+1} for all $k=0,1,2, \cdots$. The starting point t_{0} of B is called the initial point of B and $l\left(t_{0}\right)=n_{0}$ is called the initial level of B.

The James space $J(T)$ on a tree T is defined to be the space consisting of all complex valued functions x on T such that

$$
\|x\|=\sup \left(\sum_{j=1}^{k}\left|\sum_{t \in S_{j}} x(t)\right|^{2}\right)^{1 / 2}<+\infty,
$$

where the supremum is taken over all choices of mutually disjoint segments $S_{1}, S_{2}, \cdots, S_{k}$ in T. It is not hard to see that $J(T)$ is a Banach space with respect to this norm. In particular, if every P_{n} consists of one point, than $J(T)$ is identical with the well known classical James space given in [1].

The space $J(T)$ has the natural basis $\left\{e_{t} ; t \in T\right\}$,

$$
x=\sum_{t \in T} x(t) e_{t}=\sum_{n=0}^{\infty} \sum_{t \in P_{n}} x(t) e_{t}
$$

for all $x \in J(T)$, where e_{t} is the characteristic function of $\{t\}$ and the order in the summation $\sum_{t \in T}$ follows the order of the level of t and any fixed ordering among points on the same level. It is easy to see that $\left\{e_{t} ; t \in T\right\}$ is a normalized, monotone and boundedly complete basis.

Any segment S or branch B in T gives a linear functional with norm 1 on $J(T)$ by

$$
S(x)=\sum_{t \in S} x(t) \quad \text { or } \quad B(x)=\sum_{t \in B} x(t) \quad \text { for } x \in J(T),
$$

where the order in the summation $\sum_{t \in B}$ follows the order of the level of $t \in B$.
We recall that a sequence $\left\{x_{n} ; n=1,2, \cdots\right\}$ in a Banach space is sald to be equivalent to an l^{2}-basis if for any linear combination $\sum_{n} \alpha_{n} x_{n}$ of x_{n} 's we have

$$
a\left(\sum_{n}\left|\alpha_{n}\right|^{2}\right)^{1 / 2} \leqq\left\|\sum_{n} \alpha_{n} x_{n}\right\| \leqq b\left(\sum_{n}\left|\alpha_{n}\right|^{2}\right)^{1 / 2},
$$

where a and b are fixed positive numbers.
Our main result can be stated as follows.
Theorem. Suppose $\left\{x_{n} ; n=1,2, \cdots\right\}$ is a normalized sequence in $J(T)$ satisfying $\lim _{n \rightarrow \infty} B\left(x_{n}\right)=0$ for all branches B in T. Then there is a subsequence of $\left\{x_{n} ; n=1,2, \cdots\right\}$ which is equivalent to an l^{2}-basis. More precisely, for any $\varepsilon>0$ we can choose a subsequence $\left\{x_{n_{k}} ; k=1,2, \cdots\right\}$ such that for any linear combination $\sum_{k} \alpha_{k} x_{n_{k}}$ of $x_{n_{k}}$'s with $\sum_{k}\left|\alpha_{k}\right|^{2}=1$ we have

$$
1-\varepsilon \leqq\left\|\sum_{k} \alpha_{k} x_{n_{k}}\right\| \leqq 2+\varepsilon .
$$

The constant 2 may not be best possible. We do not know the best possible constant.

§2. Lemma and Proof of Theorem.

A sequence $\left\{x_{n}, a_{n} ; n=1,2, \cdots\right\}$, where $\left\{x_{n} ; n=1,2, \cdots\right\}$ is a sequence in $J(T)$ and $\left\{a_{n} ; n=1,2, \cdots\right\}$ is an increasing sequence of levels, is called a block sequence if the support of x_{n} is located between the level a_{n}, including a_{n}, and the level a_{n+1}, excluding a_{n+1}, for all $n=1,2, \cdots$. We call it bounded or normalized if $\left\{x_{n} ; n=1,2, \cdots\right\}$ is bounded or normalized. The following Lemma is a key to the proof of our theorem. We wish to thank Tom Starbird for simplifying the original proof by suggesting the use of Ramsey's theorem. Our original proof involved more combinatorial arguments.

Lemma. Let $\left\{x_{n}, a_{n} ; n=1,2, \cdots\right\}$ be a bounded block sequence satısfying $\lim _{n \rightarrow \infty} B\left(x_{n}\right)=0$ for all branches B in T. Then for given $\varepsilon>0$ there is a subsequence $\left\{x_{n}, a_{n} ; n \in M\right\}$ of $\left\{x_{n}, a_{n} ; n=1,2, \cdots\right\}$ such that for any segment S mitrating with the level $0,\left|S\left(x_{n}\right)\right| \leqq \varepsilon$ for all $n \in M$ except at most one $n=n(S)$ in M.

Proof. For given $\varepsilon>0$, let Q_{n} be the set of all points t with $l(t)=a_{n}$ such that $\left|S\left(x_{n}\right)\right|>\varepsilon$ for some segment S initiating with t. By our definition of the norm $\left\|x_{n}\right\|$, it is clear that the number of points of Q_{n} is dominated by $\left\|x_{n}\right\|^{2} / \varepsilon^{2}$ $\leqq K^{2} / \varepsilon^{2}$, where $K=\sup _{n \approx 1}\left\|x_{n}\right\|$. Thus we may assume, by passing to a subsequence if necessary, that each Q_{n} consists of a points for all $n=1,2, \cdots$. There is nothing to prove if $a=0$, so assume $a \geqq 1$. Ramsey's theorem is applicable in the following way for choosing a subsequence $\left\{x_{n}, a_{n} ; n \in M\right\}$ of $\left\{x_{n}, a_{n} ; n=\right.$ $1,2, \cdots\}$ with property we desire. Let $t_{2, n}, 1 \leqq i \leqq a$, be all points of Q_{n}. For $1 \leqq i, j \leqq a$, let $A_{2, j}$ be the set of all pairs $\{n, m\}$ of positive integers n and m with $n<m$ such that there is a segment S initiating at $t_{2, n}$ and terminating at $t_{j, m}$ with $\left|S\left(x_{n}\right)\right|>\varepsilon$. Finally, let A be the set of all pairs $\{n, m\}$ of positive integers n and m with $n<m$ which are not in any $A_{2, \jmath}$ for $1 \leqq i, \jmath \leqq a$. It is
clear that $A_{2, \jmath}$ for $1 \leqq \imath, \jmath \leqq a$ together with A give a finite cover of the space of all pairs $\{n, m\}$ of positive integers n and m with $n<m$. By Ramsey's theorem [4], there is an infinite subset M of positive integers such that $M^{(2)}$ is contained in $A_{\imath, j}$ for some \imath and \jmath or otherwise contained in A, where $M^{(2)}$ denote the set of all pairs $\{n, m\}$ with n and m in M and $n<m$. We claim $M^{(2)} \subset A$. Suppose $M^{(2)} \subset A_{\imath, \jmath}$ for some \imath and \jmath, then we will see that for any n and m in M with $n<m$ there is a segment $S_{n, m}$ connecting $t_{2, n}$ to $t_{2 . m}$ such that $\left|S_{n m}\left(x_{n}\right)\right|>\varepsilon$. For given n and m in M with $n<m$, choose k in M with $n<m<k$. Since $\{n, k\}$ and $\{m, k\}$ are in $A_{2, j}$, there are segments S_{1} and S_{2} initiating $t_{l, n}$ and $t_{2, m}$ respectively and terminating at $t_{\partial, k}$ with $\left|S_{1}\left(x_{n}\right)\right|>\varepsilon$ and $\left|S_{2}\left(x_{m}\right)\right|>\varepsilon$. Since S_{1} and S_{2} are terminating at the same point $t_{j, k}, S_{2}$ must be a subsegment of S_{1}, thus S_{1} must contan the point $t_{2, m}$ which is the initial point of S_{2}. Let $S_{n, m}$ be the part of S_{1} between $t_{2, n}$ and $t_{2, m}$, then we have $\left|S_{n, m}\left(x_{n}\right)\right|=\left|S_{1}\left(x_{n}\right)\right|>\varepsilon$. It is clear that this property of M we have just shown implies that there is a branch B_{0} which connects all points $t_{2, n}, n \in M$, and that $\left|B_{0}\left(x_{n}\right)\right|>\varepsilon$ for all $n \in M$. However this contradicts our assumption $\lim _{n \rightarrow \infty} B\left(x_{n}\right)$ $=0$ for all branches B. Thus we have shown $M^{(2)} \subset A$.

Now we can see that this subsequence $\left\{x_{n}, a_{n} ; n \in M\right\}$ has the property we desire. Suppose there is a segment S initiatıng with level 0 such that $\left|S\left(x_{n}\right)\right|$ $>\varepsilon$ and $\left|S\left(x_{m}\right)\right|>\varepsilon$ for some n and m in M with $n<m$. Let t_{1} and t_{2} be points of S with level a_{n} and level a_{m} respectively, then we have $t_{1}=t_{2, n}$ and $t_{2}=t_{3, m}$ for some \imath and \jmath because $\left|S\left(x_{n}\right)\right|>\varepsilon$ and $\left|S\left(x_{m}\right)\right|>\varepsilon$, thus $\{n, m\}$ belongs to $A_{2, j}$, which contradicts $\{n, m\} \in M^{(2)} \subset A$ and $A \cap A_{2, j}=0$. This completes the proof.

A block sequence $\left\{x_{n}, a_{n} ; n \in M\right\}$ which satisfies the conclusion of the lemma will be called ε-separated.

Proof of Theorem. We are given an $\varepsilon>0$ and a normalized sequence $\left\{x_{n}\right.$; $n=1,2, \cdots\}$ in $J(T)$ satisfying

$$
\lim _{n \rightarrow \infty} B\left(x_{n}\right)=0 \quad \text { for all branches } B \text { in } T .
$$

Since this assumption implies that $\lim _{n \rightarrow \infty} x_{n}(t)=0$ for all $t \in T$, by the use of the standard "gliding hump" argument, we first choose a subsequence $\left\{x_{n}{ }^{\prime} ; n=1,2, \cdots\right\}$ of $\left\{x_{n} ; n=1,2, \cdots\right\}$ and a normalized block sequence $\left\{y_{n}, a_{n} ; n=1,2, \cdots\right\}$ such that
2)

$$
\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}-y_{n}\right\|^{2}<\varepsilon^{2} .
$$

It is clear that the normalized block sequence $\left\{y_{n}, a_{n} ; n=1,2, \cdots\right\}$ also satisfies 1). Using the lemma, choose a decreasing sequence of infinite subsets M_{k} of positive integers associated with a sequence of positive numbers ε_{k} tending to 0 such that
3)

$$
\left\{y_{n}, a_{n} ; n \in M_{k}\right\} \text { is } \varepsilon_{k} \text {-separated for all } k=1,2, \cdots .
$$

That is, for each $k=1,2, \cdots$ and any segment S initiating at level 0 we have $\left|S\left(y_{n}\right)\right| \leqq \varepsilon_{k}$ for all n in M_{k} except at most one $n=n(S)$ in M_{k}.

We now apply the diagonal process and choose sequence $\rho_{1}<\rho_{2}<\cdots$ and $k_{1}<k_{2}<\cdots$ such that
4)

$$
\rho_{n} \in M_{k_{n}} \quad \text { for all } n=1,2, \cdots,
$$

and
5)

$$
\sum_{n=1}^{\infty} m_{n}\left(\sum_{l=n+1}^{\infty} \varepsilon_{k_{l}}^{2}\right)<\varepsilon^{2},
$$

where m_{n} is the number of all points of the level $a_{\rho_{n}}$ for $n=1,2, \cdots$. Setting $z_{n}=y_{\rho_{n}}, b_{n}=a_{\rho_{n}}$ and $\delta_{n}=\varepsilon_{k_{n}}$ for all $n=1,2, \cdots$, we have, from 3), 4) and 5),
6) $\quad\left\{z_{n}, b_{n} ; n=k, k+1, \cdots\right\}$ is δ_{k}-separated for all $k=1,2, \cdots$,
and
7)

$$
\sum_{n=1}^{\infty} m_{n}\left(\sum_{l=n+1}^{\infty} \delta_{l}^{2}\right)<\varepsilon^{2},
$$

where m_{n} is the cardinality of $P_{b_{n}}$ for all $n=1,2, \cdots$. Property 6) tells us that for any $k=1,2, \cdots$ and any segment S initiating at level b_{k} we have $\left|S\left(z_{n}\right)\right| \leqq \delta_{k}$ for all $n=1,2, \cdots$ except at most one $n=n(S) \geqq k$.

For a segment S, we denote by $i(S)$ the smallest positive integer n with the initial level of $S \leqq b_{n}$. We call S regular if S initiates with a point of level $b_{i(S)}$. For a regular segment S we denote by $\lambda(S)$ the smallest positive integer n with $\left|S\left(z_{n}\right)\right|>\delta_{n}$, and we put $\lambda(S)=+\infty$ if there is no such n. The following inequality will be used to estimate the norm of a linear combination of z_{n} 's. For any regular segment S we have

$$
\sum_{n \neq \lambda(S)}\left|S\left(z_{n}\right)\right|^{2} \leqq \sum_{n \geq \imath(S)} \delta_{n}{ }^{2} .
$$

In fact, putting $\left\{n ;\left|S\left(z_{n}\right)\right|>\delta_{n}\right\}=\left\{n_{1}<n_{2}<\cdots\right\}$, we see that $i(S) \leqq n_{1}=\lambda(S)$. By 6), the block sequence $\left\{z_{n}, b_{n} ; n=n_{1}, n_{1}+1, \cdots\right\}$ is $\delta_{n_{1}}$-separated. Since $\left|S\left(z_{n_{1}}\right)\right|$ $>\delta_{n_{1}},\left|S\left(z_{n}\right)\right| \leqq \delta_{n_{1}}$ holds for all $n>n_{1}$, so $\left|S\left(z_{n_{2}}\right)\right| \leqq \delta_{n_{1}}$. Similarly, we see that $\left|S\left(z_{\nu+1}\right)\right| \leqq \delta_{n_{\nu}}$ for all $\nu=1,2, \cdots$. Thus we have

$$
\begin{aligned}
\sum_{n \neq \lambda(S)}\left|S\left(z_{n}\right)\right|^{2} & =\sum_{\substack{n \geq=(S) \\
n \neq n_{1}}}\left|S\left(z_{n}\right)\right|^{2}=\sum_{\nu=2}^{\infty}\left|S\left(z_{n_{\nu}}\right)\right|^{2}+\sum_{\substack{n \geq z=(S) \\
n \neq n_{\nu}}}\left|S\left(z_{n}\right)\right|^{2} \\
& \leqq \sum_{\nu=1}^{\infty} \delta_{n_{\nu}}^{2}+\sum_{\substack{n \geq z_{2}(S) \\
n \neq n_{\nu}}} \delta_{n}{ }^{2}=\sum_{n \geqq \imath(S)} \delta_{n}{ }^{2} .
\end{aligned}
$$

Now we will estimate the norm of a linear combination $\sum_{n} \alpha_{n} z_{n}$ with $\sum_{n}\left|\alpha_{n}\right|^{2}$ $=1$. We claim
9)

$$
1 \leqq\left\|\sum_{n} \alpha_{n} z_{n}\right\| \leqq 2+2 \varepsilon
$$

The first inequality is clear because $\left\{z_{n}, b_{n} ; n=1,2, \cdots\right\}$ is a normalized block sequence. To see the other inequality, suppose $\mathcal{I}=\{S\}$ is a finite family of mutually disjoint segments S. We decompose S into its initial end S_{0} and its regular part S^{\prime}, where $S_{0}=\left\{t \in S ; l(t)<b_{i(S)}\right\}$ and $S^{\prime}=\left\{t \in S ; l(t) \geqq b_{2(S)}\right\}$. S_{0} is empty if S is regular. We decompose S^{\prime} into S_{1} and $S^{\prime \prime} ; S^{\prime}=S_{1} \cup S^{\prime \prime}$, where $S_{1}=\left\{t \in S ; b_{i(S)} \leqq l(t)<b_{\imath(S)+1}\right\} \quad$ and $S^{\prime \prime}=\left\{t \in S ; b_{i(S)+1} \leqq l(t)\right\}, S^{\prime \prime}$ possibly being empty. Furthermore, we decompose $S^{\prime \prime}$ into (possibly) three segments $S_{1}{ }^{\prime \prime}, S_{2}{ }^{\prime \prime}$ and $S_{3}{ }^{\prime \prime}$ as follows

$$
\begin{aligned}
& S_{1}^{\prime \prime}=\left\{t \in S ; \quad b_{i(S)+1} \leqq l(t)<b_{\lambda\left(S^{\prime \prime}\right)}\right\}, \\
& S_{2}{ }^{\prime \prime}=\left\{t \in S ; b_{\lambda\left(S^{\prime \prime}\right)} \leqq l(t)<b_{\lambda\left(S^{\prime \prime}\right)+1}\right\}, \\
& S_{3}{ }^{\prime \prime}=\left\{t \in S ; \quad b_{\lambda\left(S^{\prime \prime}\right)+1} \leqq l(t)\right\} .
\end{aligned}
$$

We have

$$
S=S_{0} \cup S^{\prime}=S_{0} \cup S_{1} \cup S^{\prime \prime}=S_{0} \cup S_{1} \cup S_{1}{ }^{\prime \prime} \cup S_{2}{ }^{\prime \prime} \cup S_{3}^{\prime \prime} .
$$

Let $x=\sum_{n} \alpha_{n} z_{n}$ with $\sum_{n}\left|\alpha_{n}\right|^{2}=1$, and observe that

$$
\begin{aligned}
& \sum_{S \in \mathcal{J}}|S(x)|^{2}=\sum_{S \in \mathcal{J}}\left|S_{0}(x)+S_{1}(x)+S_{1}^{\prime \prime}(x)+S_{2}^{\prime \prime}(x)+S_{3}^{\prime \prime}(x)\right|^{2} \\
& \leqq 4 \sum_{S \in \mathcal{J}}\left\{\left|S_{0}(x)\right|^{2}+\left|S_{1}(x)\right|^{2}+\left|S_{2}{ }^{\prime \prime}(x)\right|^{2}+\left|S_{1}{ }^{\prime \prime}(x)+S_{3}^{\prime \prime}(x)\right|^{2}\right\} \\
&=4 \sum_{S \in \mathcal{J}}\left\{\left|S_{0}(x)\right|^{2}+\left|S_{1}(x)\right|^{2}+\left|S_{2}{ }^{\prime \prime}(x)\right|^{2}\right\}+4 \sum_{S \in \mathcal{J}}\left|S_{1}{ }^{\prime \prime}(x)+S_{3}{ }^{\prime \prime}(x)\right|^{2} .
\end{aligned}
$$

To estimate the first summation, note that $|R(x)|^{2}=\sum_{n}\left|\alpha_{n}\right|^{2}\left|R\left(z_{n}\right)\right|^{2}$ if $R=S_{0}, S_{1}$ or $S_{2}{ }^{\prime \prime}$, because we have only one non-zero term in the summation $\sum_{n} \alpha_{n} R\left(z_{n}\right)$. Thus we have

$$
\begin{aligned}
& \sum_{S \in \mathcal{J}}\left\{\left|S_{0}(x)\right|^{2}+\left|S_{1}(x)\right|^{2}+\left|S_{2}{ }^{\prime \prime}(x)\right|^{2}\right\} \\
&=\sum_{S \in \mathcal{J}} \sum_{n}\left|\alpha_{n}\right|^{2}\left\{\left|S_{0}\left(z_{n}\right)\right|^{2}+\left|S_{1}\left(z_{n}\right)\right|^{2}+\left|S_{2}{ }^{\prime \prime}\left(z_{n}\right)\right|^{2}\right\} \\
&=\sum_{n}\left|\alpha_{n}\right|^{2} \sum_{S \in \mathcal{S}}\left\{\left|S_{0}\left(z_{n}\right)\right|^{2}+\left|S_{1}\left(z_{n}\right)\right|^{2}+\left|S_{2}{ }^{\prime \prime}\left(z_{n}\right)\right|^{2}\right\} \\
& \leqq \sum_{n}\left|\alpha_{n}\right|^{2}\left\|z_{n}\right\|^{2}=\sum_{n}\left|\alpha_{n}\right|^{2}=1 .
\end{aligned}
$$

To estimate $\sum_{s \in \mathcal{J}}\left|S_{1}{ }^{\prime \prime}(x)+S_{3}{ }^{\prime \prime}(x)\right|^{2}$, we note from 8) that

$$
\begin{aligned}
& \left|S_{1}^{\prime \prime}(x)+S_{3}^{\prime \prime}(x)\right|^{2}=\left|\sum_{n \neq \lambda\left(S^{\prime}\right)} \alpha_{n} S^{\prime \prime}\left(z_{n}\right)\right|^{2} \\
& \quad \leqq\left(\sum_{n \neq \lambda\left(S^{\prime}\right)}\left|\alpha_{n}\right|^{2}\right)\left(\sum_{n \neq \lambda\left(S^{\prime}\right)}\left|S^{\prime \prime}\left(z_{n}\right)\right|^{2}\right) \leqq \sum_{n \geq \imath\left(S^{\prime}\right)} \delta_{n}{ }^{2} .
\end{aligned}
$$

Let \mathscr{I}_{k} be the set of all $S \in \mathcal{I}$ whose regular part S^{\prime} initates with a point of the level b_{k}, that is $\mathcal{J}_{k}=\{S \in \mathcal{J} ; i(S)=k\}$ for $k=1,2, \cdots$. Then we have

$$
\begin{aligned}
& \sum_{S \in \mathcal{J}}\left|S_{1}{ }^{\prime \prime}(x)+S_{3}{ }^{\prime \prime}(x)\right|^{2}=\sum_{k=1}^{\infty} \sum_{S \in \mathcal{J}_{k}} \mid S_{1}{ }^{\prime \prime}(x)+S_{3}^{\prime \prime}(x)!^{2} \\
& \leqq \sum_{k=1}^{\infty} \sum_{S \in \mathcal{J}_{k}} \sum_{n \geqq\left(S^{\prime \prime}\right)} \delta_{n}{ }^{2}=\sum_{k=1}^{\infty} \sum_{S \in \mathcal{J}_{k}} \sum_{n \geqq k+1} \delta_{n}{ }^{2} \leqq \sum_{k=1}^{\infty} m_{k}\left(\sum_{n \geq k+1} \delta_{n}{ }^{2}\right) \leqq \varepsilon^{2},
\end{aligned}
$$

where we used 7) for the last inequality above. Finally, we have

$$
\sum_{S \in \mathcal{S}}|S(x)|^{2} \leqq 4+4 \varepsilon^{2} \leqq 4(1+\varepsilon)^{2}
$$

Thus

$$
\left\|\sum_{n} \alpha_{n} z_{n}\right\|=\sup _{\mathscr{g}}\left(\sum_{S \in \mathscr{I}}|S(x)|^{2}\right)^{1 / 2} \leqq 2(1+\varepsilon) .
$$

This establishes 9).
Since $\left\{z_{n} ; n=1,2, \cdots\right\}$ is a subsequence of $\left\{y_{n} ; n=1,2, \cdots\right\}$ and $\left\{y_{n} ; n=\right.$ $1,2, \cdots\}$ satisfies 2), there is a subsequence $\left\{x_{n}^{\prime \prime} ; n=1,2, \cdots\right\}$ of the originally given sequence $\left\{x_{n} ; n=1,2, \cdots\right\}$ such that

$$
\sum_{n=1}^{\infty}\left\|x_{n}^{\prime \prime}-z_{n}\right\|^{2}<\varepsilon^{2}
$$

Now we can see that $\left\{x_{n}{ }^{\prime \prime} ; n=1,2, \cdots\right\}$ is equivalent to an l^{2}-basis. In fact, for any linear combination $\sum_{n} \alpha_{n} x_{n}^{\prime \prime}$ with $\sum_{n}\left|\alpha_{n}\right|^{2}=1$ properties 9) and 10) yield

$$
\begin{aligned}
\left\|\sum_{n} \alpha_{n} x_{n}{ }^{\prime \prime}\right\| & \geqq\left\|\sum_{n} \alpha_{n} z_{n}\right\|-\sum_{n}\left|\alpha_{n}\right|\left\|x_{n}{ }^{\prime \prime}-z_{n}\right\| \\
& \geqq\left\|\sum_{n} \alpha_{n} z_{n}\right\|-\left(\sum_{n}\left|\alpha_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n}\left\|x_{n}^{\prime \prime}-z_{n}\right\|^{2}\right)^{1 / 2} \geqq 1-\varepsilon,
\end{aligned}
$$

and

$$
\left\|\sum_{n} \alpha_{n} x_{n}^{\prime \prime}\right\| \leqq\left\|\sum_{n} \alpha_{n} z_{n}\right\|+\sum_{n}\left|\alpha_{n}\right|\left\|x_{n}^{\prime \prime}-z_{n}\right\| \leqq 2+2 \varepsilon+\varepsilon=2+3 \varepsilon .
$$

The proof of the theorem is complete.
Finally we would like to show that our theorem implies property b) mentioned in the introduction.

The following fact was proved by J. Lindenstrauss and C. Stegall (see the proof of Corollary 3 in [3]).

For any bounded sequence in $J(T)$ we can choose a subsequence $\left\{x_{n} ; n=\right.$ $1,2, \cdots\}$ such that $\lim _{n \rightarrow \infty} B\left(x_{n}\right)$ exists for all branches B in T.

From this, it is easy to see that every infinite dimensional subspace of $J(T)$ contains a normalized sequence $\left\{x_{n} ; n=1,2, \cdots\right\}$ with the property that $\lim _{n \rightarrow \infty} B\left(x_{n}\right)$ $=0$ for all branches B in T. Thus we have the following result.

Corollary. Every infinite dimensional subspace of $J(T)$ contains a subspace isomorphic to l^{2}.

References

[1] R.C. James, A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. USA, 37 (1951), 174-177.
[2] R.C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc., 80 (1974), 738-743.
[3] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l^{1} and whose duals are non-separable, Studia Math., 54 (1975), 81-105.
[4] H.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30 (1929), 264-286.
[5] H.P. Rosenthal, A characterization of Banach spaces containing l^{1}, Proc. Nat. Acad. Sci. USA, 71 (1974), 2411-2413.

Tokyo Institute of Teciinology
Tokyo, Japan

Wayne State University
Detroit, Michigan U.S.A.

[^0]: Receıved March 26, 1980

