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AFFINE KILLING VECTORS IN THE TANGENT BUNDLES
By ICHIRO YOKOTE

Recently, by defining the (*)-Lie derivative, the present author [12] studied
vector fields in fibred Riemannian spaces with higher dimensional fibre.

Let M be a Riemannian manifold and 7(M) its tangent bundle. For an
arbitrary vector field X in M, we denote by X¥, XV and X¢ the horizontal lift
of X, the vertical lift of X and the complete lift of X respectively.

The theory of these lifts in T(M) has been studied by many authors and
has been investigated systematically by Yano-Ishihara [8].

The main purpose of the present paper is to study the conditions that these
lifts are affine Killing, by applying the (¥*)-Lie derivative to T'(M).

In Section 1, we first recall definitions and properties concerning 7(M) fol-
lowing [8]. In Section 2 and Section 3, we obtain in T(M) the results corre-
sponding to those obtained in [12]. Section 4 and Section 5 are devoted to the
study of these lifts, affine Killing and projective Killing respectively.

1. Preliminaries in tangent bundles.

In this section, we shall recall definitions and properties concerning tangent
bundles following Yano-Ishihara [8].

Let M be an n-dimensional differentiable manifold and T (M) the tangent
space at a point P of M. Then the set

T(M)Zpgl T (M)

is, by definition, the fangent bundle over M. Throughout the paper, the differ-
entiability of manifolds, mappings and geometric objects we discuss are assumed
to be of C*. For any point P of T(M) such that ﬁETP(M), there exists a
mapping 7 : T(M)aﬁﬁPEM, which is onto and maximal rank »n everywhere.
The set =~(P), that is, Tp(M) is called the fibre over P and M the base space.

Let {U, x%} be a coordinate neighborhood of the base space M?, where (x?)
is a system of local coordinates defined in the neighborhood U. Let (y%) be the
system of cartesian coordinates in each tangent space Tp(M) of M at P with
respect to the natural frame 0,=0d/0x*, where P is an arbitrary point belonging
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1) The indices h,4,7,%,--- run over the range {1,2,---,n}. The summation conven-
tion will be used with respect to this system of indices.
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to U. Then, in the open set 7z~ %(U) of T(M) we can introduce local coordinates
(x*, %), which are called the coordinates induced in z~*(U) from (x?*) or, simply,
the induced coordinates in =~*(U). From now on, we denote by (%?) the induced
coordinates (x%, y*).” We also denote by 9,=0/0%! the natural frame (3;, 9;) 1n
z Y (U), and by d%’ the coframe dual to the frame 0, in z~%(U), where 0;=0/0x*

and 0;=0/dy".
Let there be given a function ¢=¢(x) in U. Then its vertical lift ¢” and
its complete lift ¢° are respectively represented by

(LL) ¢'=¢ and ¢°=dgp
in #7'(U) with respect to the induced coordinates (X!)=(x%, y*), where the
symbol 0 denotes the operator

0=1y'0;=y'0/0x".

If a vector field X has components X* in U, then its vertical lift X" and
its complete l1ft X© have respectively components of the form

(1.2) XV:()({)1> and XC:(aXX.:)

in z=YU) with respect to the induced coordinates (¥7)=(x*, y%).
Let there be given a Riemannian metric g in M which has components g;;
in U. We denote by {,*;} the Christoffel symbols constructed with g,,. If we

put
(1.3) I''=y*{,"y, Adu=I"%g.,
then we see that the tensor g having components
N giitgud Y, A,
(14) &s0=
AJl y i

with respect to the induced coordinates (¥/)=(x*, y%) in T(M), defines a Rieman-
nian metric in T(M) (see Sasaki [3]). Then contravariant components of g are

given by

gji , — A
(1.5) (é“):( )

— A, gt gyl

with respect to (¥7)=(x*, y*), where g’¢ denote contravariant components of g
in M, and

1) Putting x'=y?, the indices H,1,J, K, run over the range {1,2,-,n; 1,2, -, 7}
and the indices i{,z_,]—, k,--- the range {1,2,--,%} The summation convention will be used
in relation to this system of indices.
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(1.6) Ari=git ]}

From now on, we restrict ourselve to a Riemannian manifold M. The vertical
distribution, i.e., the distribution formed of the tangent spaces of fibres is locally
spanned by n independent local vector fields C; with components®

an =)

in z=XU).
Let us consider n local vector fields F, with components

18) (E")=( _5513 )

in z7'(U). Then E, span a distribution defined globally in T(M), which is
called the horizontal distribution. The vertical and horizontal distributions are
complementary and orthogonal with respect to the metric g. The set (E,, C;)
forms a frame in z~!(U), which is called the adapted frame, and has components

1.9) <BHB>:(55;)”.

The inverse of the matrix (B¥) is given by

(1.10 (B=(E,* C"),

E;* and C;® being defined by

(1.11) (EM=0¢, 0), (CH)=U"7, 7).
If we put

(1.12) E“=E,*dx", C*=C,*d*",

then the set (E% C% forms a coframe dual to the adapted frame (E,, C;) 1n

x~Y(U).
We now consider local vector fields Dy and local 1-forms 64 defined in

z~'(U) by
(1.13) Dy=DB"p0,, 0*=B,*dx’,

where 0,=0/0%7. Then we see that

1) The indices @,b,c,d, e, run over the range {1,2,--,n} and the indices a,b,¢, d,
g,--- the range {I,2,---,7}, and indicate the indices with respect to the adapted frame. The
summation convention will be used with respect to this system of indices.

2) The indices 4,B,C,D, E, --- run over the range {1,2,---,n;1,2,---,7} and indicate
the indices with respect to the adapted frame. The summation convention will be used
in relation to this system of indices.
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Db:ab—rgaE:Eby D,;:az,:Cg,
0°=dx*=E®*, 0°=I%dx*+dy*=C’.

(1.14)

We often use Djp as differential operators in z~}(U) if there is no fear of con-
fusion.

Let there be given an arbitrary tensor field in T(M), say T of type (1, 2)
with local expression

(1.15) T=T,/7d# " QRd42 Ry

in z73(U). Taking account of (1.11) and (1.12), we see that T is also represented
as followings:

(1.16) T=TEQE'QE +T o  EXQE'QC 4+ -

+ T CRCQE .+ T C'RC'RQCs
where N N
cha:EJcEleHaTJIH; chd:EJcEleHéTuH,

T =C'.CHE* T /", Tas*=C/ClCuy®T /7.

In the right-hand side of (1.16), the first term T ,*E‘QE*RE, and the last term
T5°C*RCRC, are called the horizontal part of T and the vertical part of T,
respectively. A tensor field, say T of type (1, 2) with local expression (1.15),
in T(M) is said to be projectable if T.* satisfy

(L17) DaTof=0.

Then, for a projectable tensor field T of this type, we can define a tensor 7T in
M having components T,.,* with respect to {U, x%}. T is called the projection
of 7" and denoted by T=pT.

Conversely, given a tensor field T in M, there is a unique horizontal and
projectable tensor field 7' in T(M) such that pT=T. This T is called the
horizontal lift of T and denoted by T=T%.

If a vector field X has components X® in U, then its horizontal lift X¥ has
components

(118) X7 (_l)f;XJ)

with respect to the induced coordinates (#7)=(x*, y") in = }U).
Let V and V be the Riemannian connections determined by the metric g in
A~

M and the metric & in T(M) respectively, and denote by { jH I} the Christoffel

symbols constructed with g,; in == *(U).
If we put

(1.19) VyBHy=I*3B,°B"
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in #-'(U), where ;45 are local functions defined in = }(U), then we have
A H /}\{/ J K A

(1.20) Ty =(DoBs+{ M} B/ B 0Bt

Rewriting 1.%, and I,%3(=13%%) into h,% and h®g; respectively, we see that

1
['cab:{c a 1)} ’ ['caﬁzrﬁac:hacsz“z‘yd[(dbca ,
(121) L0, Lo=haf=— 7y Kaut,

re={.%,}, ra=o, rs=o,

where K,,,” denote components of the curvature tensor of A/ with the metric
g. The elements

_ 1 1
(1.22) hcba:—‘z_ychbda ’ haclS:—z—ydebca

play an important rdle in later sections, and we see that

(1.23) heo®+Fhp®=0, h%%;=g%hegus.

2. Operators 'V and "V of T(M).

In this section, we shall recall definitions and properties concerning two
covariant derivative operators 'V and ”V of T(M), following our previous results
(see the section 2, [12]).

Let g2(TM) be the space of all tensor fields of type (p, ¢) in T(M). Let
IYhTM) (resp. TL(wTM)) be the space of all horizontal (resp. vertical) tensor
fields of type (r, s) (resp. type (¢, u)) in T(M). We now consider the formal
tensor product in T(M) such as I2(TM)# ay(hTM)% g,(wTM). We call an

element 7' of this space a (g;”i)-partml tensor in T(M) and denote by TELT M)

the space of all (g:ﬁ)-partial tensors in T(M). We may identify I20(TM),
TH(TM) and gRL(TM) with TATM), 95(hTM) and T4L,@wT M), respectively.
For any element of IZri(TM), say an element T of gHNTM) WiNth components
T,5%% in #73(U), we define the (*)-covariant derivative V*T of T as a partial
tensor with components of the form

@.1) AT ;1,0 °= KT::::+{K[H}T’.’.::—T,‘,‘::{KHJ}
F (T T4 T Tt~ T Tt — T T Bx®

in z=Y(U), where I’} are given by (1.21).
If we define two covariant derivations ‘V and ”V acting on elements of
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TEATM) by
2.2) Ne=EX V%, "V =C¥ %,

respectively, then we have the following results:

(@) For any elements of T&(TM), say an element T of JH(TM) with
components 7';7,%;% in z~Y(U), 9T and "VT are respectively elements of TH(T M)
and 91T M), and have respectively components of the forms

@3) VT =D A ({ =T e
+ 0 T+ LT =T =T g,
@24) T =D T ({ g =T e
+ 0 T AT T =Tl Tl
(b) For any projectable element 7" of IYATM), we have
(2.5) VT =p(NT),
where T=pT.
We call 'V and ”V the van der Waerden-Bortolott: covariant derivations of

T(M) for the base space M and for the fibre respectively. From the definition,
we easily obtain the following two results.

PrROPOSITION 2.1. The equations
ViGsi=0, Vigs=0, Vud,;=0, "V.g,=0,
"Velrr=0 and "Vgg,=0
hold wn T(M).

PROPOSITION 2.2. The equations

(2.10) Naheo=— %yEVde“ ,
, 1

2.11) Vah®ye= 7yevdKecba B

” a 1 a l e a e a I
(212) vzihcb :—"7ch1> _{"Z(K/dc Kebg _—deb Kecg )y )’g,
and

1 1

(213) ”v(zhabg:?chba‘l‘Z(KfdeaKgcbe_]{fcea](gdbe)yfyg

hold in T(M).
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3. The (*)-Lie derivative.

In this section, we shall recall definitions and properties concerning the
(*)-Lie derivative, following to our previous results (see the section 3, [12]).

Let there be given a projectable vector field X in T (M), which has compo-
nents X! with respect to the induced coordinates (¥%)=(x?, y% in z~'(U). Then
we have an expression of the form

(3.1 X'=BI X4=FE1,X°+C1, X%, D;X°=0,
where X=E,2X’ and X°=C,%X". B
For an arbitrary element of g$L(T M), say an element T of g3ii(T M) with

_ ¥ A ~
componentsNTb“d" in #7Y(U), we define the (*)-Lie derivatve LT of T with

respect to X as a partial tensor with components of the form
(3.2) aL ¢T3 =XEDT " — T a* DX+ T "D, X°¢
—Ty (DXt —{, © FXN+T s Dax—{ ) }X7).
Taking account of (2.3) and (2.4), we see that the relation (3.2) is equivalent to
3.3) j’fTb",f:X‘”VeT,,“,f—l—Xé”VéT,,“f—T,,”f(’VeX“qL hee; X7
T (VXA he; X)) =T, 3% VU X+ Ty "V X
From this definition, we see the following results : N
(a) penoting by X and by X the horizontal part of X and the vertical
part of X respectively, we have
}f::‘Z’X‘*‘j‘X .
(b) Denoting by £y the Lie derivation with respect to the vector field Y
in M, we have for an arbitrary projectable element 7' of g7(hTM)
L£xT=p(LsT)

in M, where X=pX and T=p7.
For an arbitrary element T of g$i,(T M), we say that X leaves T (¥)-tnvariant
if the equation

j.';?'[N‘:O
holds in T'(M).
We shall now give some identities obtained from (3.3) for later use. In the
first, for the elements A.,% and h%; we have

34 .L’ thes?=X"Vehey®+ X" Vsheo® + heoe? (VX 0+ h%a X 9)
_i_heba( che_'_ hecEXd)—hcbe”véXa ’
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ES -
(3.5) Lih%e=X"Noh®:+ X Veh%— (Ve X e X )
H (X A h%a X )4 h% VX"
If we put
(3.6) Zy* =" X +2h, " X¢ ’

then we have
37) U Z =", 2, =2 T heyt

The elements Z,* play an important réle in the following sections.

Let there be given a vector field X in M, which has components X* with
respect to {U, x%). Then its horizontal lift X%, vertical lift X” and complete
lift X¢ have respectively components

(38) (’X’>=(_,)f§;{])” <"X'>:<;?z)’ &n=( 8))(()

with respect to the induced coordinates (X¥7)=(x* y*®) in z~'(U). Then their
components

'X4=B,M X7, 'XA=B,"X7, X*=BAX’
with respect to the adapted frame are given respectively by

3.9) exn=(%g" ), exn=(.) 9= gxe )

where VX%=7y"V,X® Thus, we see that these three lifts are all projectable.
Now let us consider the (*)-Lie derivative with respect to these lifts.

In the first, if X=X¥, then, taking account of (1.22), (2.3), (2.4), (2.10), (2.11),
(2.12), (2.13), (3.4), (3.5), (3.6) and (3.9), we have

G10)  Fanhat=— gy (XK + K TX KT

1 7’ € a
:_?yd(oEXchda_cheavdXe‘:_]\cbd V. X%,

3.11) L= Y KT K e Koo T X4 e T, X0
= UL K~ Ko T X o K gV X,
(3.12) Zi=—Kped® Xy¢,

(3.13) /vacd:ydvb(KecdaXe> s
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_ 1

(3.14) ”VEan:<chba+?beceKedgayfyg)Xd .
Similarly, if X=XV, then we have
(3.15) L yvhot=— %KmﬂX ¢,

o a 1 d
(3.16) Lxvh bé:7X Kao®,
(3.17) Z,*=Y, X2,
(3.18) /VDZC&:vbcha s
(3.19) Wiz y K VX",
and if X=X°¢, then we have
(3.20) .-f*XChcb&:_%yd-fXchda ’

ot a ]' a
(3.21) Lxch I;e:?y LxKge®,
@__.c a
(3.22) Zi=y {2},
(3.23) VZy=y Vs, },
VA a@— a 1 fad e a

(3.24) Vezyt= sl = g vy Kawr L 2}

4. Affine Killing vectors in T(M).

Let X beNa projectable affine Killing vector field in 7(M) such that X has
components X’ of the form (3.1). Then we see that the condition

(4.1) _Ej{jH]}:ﬁJvIXH_l_XKJIH)?K:O

holds in z~*(U), where I?KJ,H denote components of the curvature tensor of
T(M) with the metric g.

We find that the condition (4.1) is equivalent to the following equations (see
the section 5, [12]),

42) IX{C a b}+habézcé+hacéz;:0,
(4.3) I*)zh“cz'):(),
(4.4) N7, T, 2 =0 |

(4.5) ":Z.°=0,
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where X=pX and
ba:,vad _}_Zhbchc .

Let there be given a vector field X in M, which has components X' with
respect to {U, x%}.

We now consider the conditions in order that the horizontal lift X¥, the
vertical lift XV and the complete lift X¢ to T(M) of a vector field X in M be
an affine Killing vector field inN T(M), respectively.

In the first, suppose that X=X¥ is an affine Killing vector field in T(M).

Taking account of (3.14) and (4.5), we easily obtain

4.6) X Kq"=0.
Taking account of (3.12) and (4.6), we find
4.7 Zy"=0.
Taking account of (4.2) and (4.7), we have
“8) rx{, =0,
which implies that X is an affine Killing vector field in M. Moreover, we have
4.9) L x K0 =0,
because of (4.8). Taking account of (3.11), (4.3), (4.6) and (4.9), we have

Lrnhym— o y K VX KT, X0)

= —%—ydXe(Vde,“—l-VCKM,a): %y’lXcVede“ =0 y

from which we have
(4.10) XeVechb“ZO .

Conversely, suppose that the relations (4.6), (4.8) and (4.10) hold in M.
Taking account of (3.12) and (4.6), we have the equation (4.7), i.e.,

Zbd:() >

from which we see that the equations (4.4) and (4.5) hold. Furthermore, taking
account of (4.7) and (4.8), we see that the equation (4.2) holds. Similarly, taking
account of (4.9) and (4.10), we see that the equation (4.3) holds. Thus, X¥ is an
affine Killing vector field in T(M). Thus we have

LEMMA 4.1. The horizontal lift X® to T(M) of a vector field X mn M 1s an
affine Killing vector field in T(M) if and only if the following three relations
hold n M.
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(46) Xdecba:O.
(4.8) Lx{.%}=0, that 1s, X s an affine Killing vector field in M.
(4.10) XN Kqe*=0.

Applying Bianchi identities, we easily have

LEMMA 4.2. If X s a parallel vector field in M which satisfies (4.6), then
X satisfies (4.10).

The following result is well-known (see Yano [5]):

LEMMA 4.3. In a compact Riemanwmian manifold M, an affine Killing vector
field in M 15 a Killing vector field.

Applying Green’s theorem, we easily have

LEMMA 44. In a compact Riemanman manifold M, 1f X satisfies (4.6), that
18 XK 4:°=0, then X 1s a parallel vector field in M.

Taking account of lemma 4.1, lemma 4.2, lemma 4.3 and lemma 4.4, we have

THEOREM 4.5. Let M be a compact Riemanman manifold. The horizontal
lift X7 to T(M) of a vector field X in M is an affine Killing vector field wmn
T(M) of and only 1f X is a parallel Killing vector field in M. Moveover, if M
s irreducible, then an affine Killing vector field X* other than zero does not
exist in T(M).

In the next, suppose that X=XV is an affine Killing vector field in T'(M).
Taking account of (3.16), (3.19), (4.3) and (4.5), we have

(4.11) XK =0,
(4.12) Kge'V X2=0.

The equation (4.11) is the same one as (4.6). Taking account of (1.22), (3.17)
and (4.2), we have

1
IX{C ‘ b}+ —2_ye(Kc‘“avCXd+Ke(lcavad):0 ,
from which we have
A
e Lxe b}*oy

(4.14) Keap® Ve X4 K,q®V, X 4=0.

The equation (4.13) implies that X is an affine Killing vector field in M, and
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moreover, taking account of (4.11), we see that (4.14) reduces to
(4.15) (VeKgep®+Vp K e ) X =0

If (4.11) and (4.13) hold, then, from (3.18) we have

(4.16) NeZy+"NWZ A=V Ny X4V X = — X UK g0+ K5 *)=0,

which implies that the equation (4.4) holds.

Conversely, if the relations (4.11), (4.12), (4.13) and (4.15) hold in M, then,
we easily see that the relations (4.2), (4.3), (4.4) and (4.5) hold. Therefore, X"
is an affine Killing vector field in T(M). Thus we have

LEMMA 4.6, The vertical lift XV to T(M) of a vector field X i M 1s an
affine Killing vector field in T(M) if and only if the following four relations
hold in M.

(4.11) X Kq4e"=0.

(4.12) KoV, X=0.

(4.13) Lx{.%} =0, that 1s, X 1s an affine Killing vector field in M.
(4.15) XUV Ko+ VoK aee®)=0.

Applying Bianchi identities, we easily have

LEMMA 4.7. If X is a parallel vector field in M which satisfies (4.11), then
X satisfies (4.12) and (4.15).

Taking account of lemma 4.3, lemma 4.4, lemma 4.6 and lemma 4.7, we have

THEOREM 4.8. Let M be a compact Riemannian manifold. The vertical lift
XV to T(M) of a vector field X in M is an affine Killing vector field in T(M)
of and only if X 1s a parallel Killing vector field in M. Moreover, if M 1s
irreducible, then an affine Killing vector field XV other than zero does not exist
in T(M).

In the last, suppose that X=XC¢ is an affine Killing vector field in T(M).
Taking account of (1.22), (3.22) and (4.2), we have

PHRRES RN 5 BORTR ) =
from which we have
@.17) {4 }=0,

which implies that X is an affine Killing vector field in M.
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Conversely, if (4.17) holds, then, taking account of (3.21) and (3.22), we
easily see that the relations (4.2), (4.3), (4.4) and (4.5) hold. Therefore, X¢ is
an affine Killing vector field in T'(M). Thus we have

THEOREM 4.9. The complete lift X¢ to T(M) of a vector field X m M s
an affine Killing vector field in T(M) 1f and only if X s an affine Killing vector
field in M.

5. Projective Killing vectors in T(M).

Let X be a projectable projective Killing vector field in T(M) such that X
has components X? of the form (3.1). Then we see that the condition

~~?_~~ VH | K HYK_ % SH_ X SI

(5.1) "["{] ]}~VJV1X + Ky P XE =007 +¢ 07
holds in 7~*(U), &, being the components of a certain 1-form ¢ in T(M). Then
we have an expression of the form
(5-2) $1:BIA¢A:E1'Z¢«L+C1@¢@:

where ¢,=E7,3, and ¢,=C?:¢,.
We find that the condition (5.1) is equivalent to the following equations (see
the section 6, [12])

(53) R A A T
(5.4) Lih®s=0%g;

(5.5) N Zy+'N,Z . 2=0,

(5.6) "5 Z =05,

6.7) 085 +026:=0,

where X= p/\w’ and
Zy ="V X+2hp " XC.

Contracting with respect to the indices @ and ¢ in (5.7), we have
(5.8) ¢5=0.
Therefore, taking account of (5.4) and (5.8), we have
(54 Lhe=0.

Let there be given a vector field X in M, which has components X* with
respect to {U, x%}.
We now consider the conditions in order that the horizontal lift X#, the
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vertical lift X7 and the complete lift X¢ to T(M) of a vector field X in M be
a projective Killing vector field in T'(M), respectively.

In the first, suppose that X=X"is a projective Killing vector field in T'(M).
Contracting with respect to the indices @ and & in (5.6), and taking account of
(3.14), we have

1
2n

Taking account of (3.14) and substituting (5.9) into (5.6), we have

1 ] .
(5.9) pe=—"VaZi= 5 ~KracKeas" X dylye.

XKo"+ —Z%yfng"(nKﬂ,ceKedg“—5§Kf,w“1(edg”):0 ,
from which we have
(5.10) XK q0"=0.
Substituting (5.10) into (5.9), we have
(5.11) 0.=0.
From (5.8) and (5.11), we see that ¢=0. Thus we obtain

LEMMA 5.1. If the horizontal lift X to T(M) of a vector field X in M 1s
a projective Killing vector field in T(M), then it 1s necessarily an affine Killing
vector field in T(M).

Taking account of theorem 4.5 and lemma 5.1, we have

THEOREM 5.2. Let M be a compact Riemannian manifold. The horizontal
lift X¥ to T(M) of a vector field X in M is a projective Killing vector field in
T(M) if and only 1f X is a parallel Killing vector field in M. Moreover, 1f M
is irreducible, then a projective Killing vector field X® other than zero does not
exist in T(M).

Next, suppose that X=X"is a projective Killing vector field in T(M).
Contracting with respect to the indices @ and & in (5.6), we have

1, a 1 .
(5.12) ¢C:; VEZC :——-én—ydefc VeXf .
Substituting (1.22), (3.17) and (5.12) into (5.3), we have

(5.13) 5], b0,

(5.14) KooV X!+ K o2V, X = — %(55debeve)<f 58K g 1L X)L

Contracting with respect to the indices a and ¢ in (5.14), we have
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Kup VX =— "Lk, y9.x0,

from which we have

(5.15) KoV X =0.
Substituting (5.15) into (5.12), we have

(5.16) $.=0.

From (5.8) and (5.16), we see that $=0. Thus we have

LEMMA 5.3. If the vertical lift XV to T(M) of a vector field X in M s a

projective Killing vector field in T(M), then 1t 1s necessarily an affine Killing
vector field in T(M).

Taking account of theorem 4.8 and lemma 5.3, we have

THEOREM 54. Let M be a compact Riemannian manifold. The vertical [ift
X" to T(M) of a vector field X in M is a projective Killing vector field n
T(M) if and only if X is a parallel Killing vector field in M. Moreover, 1f M
is irrveducible, then a projective Killing vector field XV other than zero does not
exist in T(M).

In the last, suppose that X=X is a projective Killing vector field in T(M).

Substituting (1.22) and (3.22) into (5.3), and contracting with respect to the
indices a and b, we have

517) o8 Jr gy Kt o] £ f =t g

On the other h_and, taking account of (3.24) and contracting with respect to the
indices @ and b in (5.6), we have

1
(5.18) £e{,® Jm gy Katrx{ [0 g =nge.
Adding (5.17) to (5.18), we have
1
519 b= g1l -

On the other hand, eliminating (5.18) from (5.17), we also have
(5.20) b=y Kuo"Lx{ 1}

From (5.19) and (5.20), we conclude that

(5.21) ¢.=0.
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From (5.8) and (5.21), we have $=0. Thus we have

LEMMA 55. If the complete lift XC to T(M) of a vector field X i M 1s a
projectwve Killing vector field in T(M), then it 1s necessarily an affine Killing
vector field in T(M).

Taking account of theorem 4.9 and lemma 5.5, we have

THEOREM 5.6. The complete lift X to T(M) of a vector field X in M 1s a
projectve Killing vector field m T(M) if and only 1f X 1s an affine Killing
vector field in M.
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