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AFFINE KILLING VECTORS IN THE TANGENT BUNDLES

BY ICHIRO YOKOTE

Recently, by defining the (*)-Lie derivative, the present author [12] studied
vector fields in fibred Riemannian spaces with higher dimensional fibre.

Let M be a Riemannian manifold and T(M) its tangent bundle. For an
arbitrary vector field X in M, we denote by XH, Xv and Xc the horizontal lift
of X, the vertical lift of X and the complete lift of X respectively.

The theory of these lifts in T{M) has been studied by many authors and
has been investigated systematically by Yano-Ishihara [8].

The main purpose of the present paper is to study the conditions that these
lifts are affine Killing, by applying the (*)-Lie derivative to T(M).

In Section 1, we first recall definitions and properties concerning T(M) fol-
lowing [8]. In Section 2 and Section 3, we obtain in T(M) the results corre-
sponding to those obtained in [12]. Section 4 and Section 5 are devoted to the
study of these lifts, affine Killing and projective Killing respectively.

1. Preliminaries in tangent bundles.

In this section, we shall recall definitions and properties concerning tangent
bundles following Yano-Ishihara [8].

Let M be an n-dimensional differentiate manifold and TP(M) the tangent
space at a point P of M. Then the set

T(M)= U TF(M)
P<EM

is, by definition, the tangent bundle over M. Throughout the paper, the differ-
entiability of manifolds, mappings and geometric objects we discuss are assumed
to be of C°°. For any point P of T{M) such that P^TP{M), there exists a
mapping π : T(M) 3 P - * P e M, which is onto and maximal rank n everywhere.
The set π~1(P), that is, TP{M) is called the fibre over P and M the base space.

Let {U, x*} be a coordinate neighborhood of the base space M υ , where (x*)
is a system of local coordinates defined in the neighborhood U. Let (y1) be the
system of cartesian coordinates in each tangent space TP(M) of M at P with
respect to the natural frame di=d/dxι, where P is an arbitrary point belonging
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1) The indices h,i,j,k,-~ run over the range {1,2, ••-,n}. The summation conven-

tion will be used with respect to this system of indices.
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to U. Then, in the open set π~\U) of T(M) we can introduce local coordinates
(x\ yι), which are called the coordinates induced in π~\U) from (xι) or, simply,
the induced coordinates in π~\U). From now on, we denote by (x1) the induced
coordinates (x\ yl)P We also denote by dj—d/dx1 the natural frame (dif dι) in
π~ι{U), and by dxJ the coframe dual to the frame 3 7 in π~\U), where dί=d/dx'1

and dϊ=d/dyι.
Let there be given a function φ=φ(χ) in £/. Then its vertical lift φv and

its complete lift φc are respectively represented by

(1.1) φv=φ and 0 C = 9 ^

in π~\U) with respect to the induced coordinates (xI)={xι, yι), where the
symbol 9 denotes the operator

If a vector field X has components X1 in £/, then its vertical lift Xv and
its complete lift Xc have respectively components of the form

(1.2) * " : ( £ ) and * '

in π~\U) with respect to the induced coordinates (x 7 )=(x ι , 3;').
Let there be given a Riemannian metric g in M which has components g jj

in ί/. We denote by {/J the Christoffel symbols constructed with g3%. If we
put

(1.3)

then we see that the tensor g having components

(1.4)

with respect to the induced coordinates (x / )=(x ί , yι) in T(M), defines a Rieman-
nian metric in T(M) (see Sasaki [3]). Then contravariant components of g are
given by

(1.5)

with respect to (xI)=(xι, yι), where gji denote contravariant components of
in M, and

1) Putting xι=yι, the indices H,I,J,K,» run over the range {1, 2, ••• , n 1, 2, •••, n}

and the indices h,i,j,k, - the range {T, 2, •••,«} The summation convention will be used

in relation to this system of indices.
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(1.6) Λ^

From now on, we restrict ourselve to a Riemannian manifold M. The vertical
distribution, i. e., the distribution formed of the tangent spaces of fibres is locally
spanned by n independent local vector fields Cb with componentsυ

(1.7) (CH

b)

in π~\U).
Let us consider n local vector fields Eb with components

in π~\U). Then £ δ span a distribution defined globally in T{M), which is
called the horizontal distribution. The vertical and horizontal distributions are
complementary and orthogonal with respect to the metric g. The set (Eb, Cb)
forms a frame in π~\U), which is called the adapted frame, and has components

(1.9) { B H B )

The inverse of the matrix (BH

B) is given by

(1.10) (β/)=(£Λ C/),

Eja and C^ being defined by

(1.11) (Eja)=(δΐ, 0), (C7

f i)=(Γf, a?).

If we put

(1.12) Ea = EI

adxI, Ca=CI

adxI,

then the set (£ α , Cώ) forms a coframe dual to the adapted frame (Eb, C-b) in

π-^ί/).
We now consider local vector fields DB and local 1-forms ΘΛ defined in

π~\U) by

(1.13) DB^B'BΘJ, θΛ=BjAdxJ,

where dI—d/dxI. Then we see that

1) The indices a,b,c,d,e,- run over the range {1, 2, * ,n} and the indices a,b,c,d,

e,~- the range {1,2, •••, n}, and indicate the indices with respect to the adapted frame. The

summation convention will be used with respect to this system of indices.

2) The indices A, B, C, D, E, ••• run over the range {1, 2, •••, n I, 2, •••, ϊi} and indicate

the indices with respect to the adapted frame. The summation convention will be used

in relation to this system of indices.
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Db—db—rbd-a—Eby Db=d
(1.14)

θa = dxa = Ea , θd=Γidx

We often use DB as differential operators in π " 1 ^ ) if there is no fear of con-
fusion.

Let there be given an arbitrary tensor field in T(M), say f of type (1, 2)
with local expression

(1.15) T=TjI

HdxJ®dxI®dH

in π~\U). Taking account of (1.11) and (1.12), we see that T is also represented
as followings:

(1.16) f=T

where

In the right-hand side of (1.16), the first term Tcb

aEc®Eb®Ea and the last term
Tc5aC*(S)Cb®Ca are called the horizontal part of f and the vertical part of T,

respectively. A tensor field, say T of type (1, 2) with local expression (1.15),
in T(M) is said to be projectable if Tcb

a satisfy

(1.17) DdTcb

a=0.

Then, for a projectable tensor field f of this type, we can define a tensor T in
M having components Tcb

a with respect to {U, x1}. T is called the projection
of f and denoted by T^pf.

Conversely, given a tensor field T in M, there is a unique horizontal and
projectable tensor field t in T(M) such that pT=T. This f is called the
horizontal lift of T and denoted by T=TH.

If a vector field X has components X1 in U, then its horizontal lift XH has
components

(1.18) XH

with respect to the induced coordinates (x/) = (x1, y ) in π-1(/7).
Let 7 and 7 be the Riemannian connections determined by the metric g in

M and the metric g in T(M) respectively, and denote by \ j Λ the Christoffel

symbols constructed with gJΣ in π~\U).
If we put

(1.19) 1 jBH

 B—ΓC

A

 BB j c BH A
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in π~\U), where ΓC

A

B are local functions defined in π~ι(U), then we have

(1.20)

Rewriting Γc

a

b and Γc

a

b(ϊ=Γb

a

c) into hcb

a and ha

cb respectively, we see that

pa ί a I pa_^p_a _ U ___!
1 c b l ^ . LΓ > L c b •*• b c — n cb— r>

pa ί a \ pa Q Γα___Q
c b \c b) ' c b ' c b~υ'

where Kkn

h denote components of the curvature tensor of M with the metric
g. The elements

\±'6£) flcb — ^Ty ^cbd j "> cb—~n y ^dbc

play an important role in later sections, and we see that

(1.23) λ c 6

β +A 6 c β =0, ha

cb=gaehec

dgdb.

2. Operators 77 and "1 of T(M).

In this section, we shall recall definitions and properties concerning two
covariant derivative operators 'V and "V of T{M), following our previous results
(see the section 2, [12]).

Let srg(TM) be the space of all tensor fields of type (/>, q) in T(M). Let
SΓs(hTM) (resp. SΓKvTM)) be the space of all horizontal (resp. vertical) tensor
fields of type (r, s) (resp. type (£, u)) in T(M). We now consider the formal
tensor product in T(M) such as (3;v{TM)%<Ers(hTM)$'3:t

u(vTM). We call an

element f of this space a (ίsu)'Partml t e n s o r i n ? W ) a n d denote by 3ξϊί(TM)

the space of all ( ^ ) - p a r t i a l tensors in T(M). We may identify £Γξ88(TM),

ΞΓ0

o

rsoo(TM) and ΞΓSSWTM) with T%{TM), ΞΓr

s(hTM) and SΓ^vTM), respectively.
For any element of STξs

rί(TM)f say an element f of Ξr\\\(TM) with components
Tj\a^ in π~\U), we define the (*)-covaήant derivative V*T of f as a partial
tensor with components of the form

(2.1)

in π~\U), where Γ's are given by (1.21).
If we define two covariant derivations r 7 and "V acting on elements of
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a SΪ(TM) by

(2.2) Ίe=E\l\, 'Ί-e=Cκ,l*κ,

respectively, then we have the following results:
(a) For any elements of 2$;i(TM), say an element f of 2\\\(TM) with

components 7 V δ V in π'\U), 'if and "if are respectively elements of 3\\\{TM)
and 3\\l(TM), and have respectively components of the forms

(2.3) >leTJ\^^DcT:::.

(2.4) *l»Tj\αiΈ=DiT-

+ΓSfT±+Γ,'fT::!.-TγΓ,'b-T:: fΓSa.

(b) For any projectable element f of ΞΓr

s(hTM), we have

(2.5) 7T=ί(/7f),

where T=pT.
We call 77 and "7 the van der Waerden-Bortoloth covanant derivations of

T(M) for the base space M and for the fibre respectively. From the definition,
we easily obtain the following two results.

PROPOSITION 2.1. The equations

V%gji=0, V*κgcb=0, "7agji=0, Ίagcb=0,

"lag J i=Q and "Vffi£cβ=0

hold in T(M).

PROPOSITION 2.2. The equations

(2.10) Ίihcb* = -jy*VdKcbe

a,

(2.11) fldh
a

b-c=^yeldKecb\

(2.12) "Vdh

and

(2.13) "7,/z

hold in T(M).

cb

a-~

1
α6c-2
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3. The (*)-Lie derivative.

In this section, we shall recall definitions and properties concerning the
(*)-Lie derivative, following to our previous results (see the section 3, [12]).

Let there be given a projectable vector field X in T(M), which has compo-
nents X1 with respect to the induced coordinates (x7) —UΛ yl) in π~\U). Then
we have an expression of the form

(3.1) XI = BI

AX
Λ=EI

aX
a+CI

aX
ά, D-bX

a=0,

where Xa=EjaXJ and Xa=CjaXJ.
For an arbitrary element of S'SiL(TM), say an element f of £Γ8ίi(TM) with

components Tb

a

 d

c in π"1^), we define the (*)-Lιe derivative x/Γ of T with
respect to X as a partial tensor with components of the form

(3.2) XχTb\'

Taking account of (2.3) and (2.4), we see that the relation (3.2) is equivalent to

(3.3) 2jtTb

a

a

e=Xe/lβTb

a f

From this definition, we see the following results:
(a) Denoting by X and by X the horizontal part of X and the vertical

part of X respectively, we have

(b) Denoting by Xγ the Lie derivation with respect to the vector field Y
in M, we have for an arbitrary projectable element T of ΞΓr

s(hTM)

in M, where X=pX and T = pT.
For an arbitrary element f of ^TsίiTM), we say that X leaves f (*)-ιnvanant

if the equation

Xχf=0
holds in T(M).

We shall now give some identities obtained from (3.3) for later use. In the
first, for the elements hcb

d and ha

b-c, we have

(3.4) & ά χ - \ ' l X X d
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(3.5)

If we put

(3.6)

then we have

The elements Zb

a play an important role in the following sections.
Let there be given a vector field X in M, which has components X1 with

respect to {U, xl). Then its horizontal lift XH, vertical lift Xv and complete
lift Xc have respectively components

(3.8)

with respect to the induced coordinates {xI)^={x%

J yι) in π~ι{U). Then their
components

'XΛ=BjΛ'XJ, rXA=BjA"XJ, XA=BjAXJ

with respect to the adapted frame are given respectively by

(3.9)

where !Xa=yI>τ7t)X
a. Thus, we see that these three lifts are all projectable.

Now let us consider the (*)-Lie derivative with respect to these lifts.
In the first, if X=XH, then, taking account of (1.22), (2.3), (2.4), (2.10), (2.11),

(2.12), (2.13), (3.4), (3.5), (3.6) and (3.9), we have

(3.10) l ^

(3.11)

(3.12)

(3.13)
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(3.14)

Similarly, if X=XV, then we have

(3.15) lxvhcb*=-jKcb

* 1

(3.16) - ' "

(3.17)

(3.18)

(3.19)

and if X~XC, then we have

(3.20) ii^/—|/XA/

(3.21) Xxch\-c^\ydXxKdch

a,

(3.22)

(3.23)

(3.24) »\

4. Affine Killing vectors in T(M).

Let X be a projectable affine Killing vector field in T(M) such that X has
components X1 of the form (3.1). Then we see that the condition

(4.1)

holds in π~\U), where KKJI

H denote components of the curvature tensor of
T(M) with the metric g.

We find that the condition (4.1) is equivalent to the following equations (see
the section 5, [12]),

(4.2) XX{C\

(4.3)

(4.4)

(4.5)
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where X=pX and

Let there be given a vector field X in M, which has components X1 with
respect to {U, x1}.

We now consider the conditions in order that the horizontal lift XH, the
vertical lift Xv and the complete lift Xc to T(M) of a vector field X in M be
an affine Killing vector field in T{M), respectively.

In the first, suppose that X=XΠ is an affine Killing vector field in T(Λί).
Taking account of (3.14) and (4.5), we easily obtain

(4.6) XdKdcb

a=0.

Taking account of (3.12) and (4.6), we find

(4.7) Z β

f i = 0 .

Taking account of (4.2) and (4.7), we have

(4.8)

which implies that X is an affine Killing vector field in M. Moreover, we have

(4.9) j:xKdcb° = 0,

because of (4.8). Taking account of (3.11), (4.3), (4.6) and (4.9), we have

X h a d ( K a 7 X e + K a ^ X e )

from which we have

(4.10) XeVeKdcb

a=0.

Conversely, suppose that the relations (4.6), (4.8) and (4.10) hold in M.
Taking account of (3.12) and (4.6), we have the equation (4.7), i. e.,

Zb*=0,

from which we see that the equations (4.4) and (4.5) hold. Furthermore, taking
account of (4.7) and (4.8), we see that the equation (4.2) holds. Similarly, taking
account of (4.9) and (4.10), we see that the equation (4.3) holds. Thus, XH is an
affine Killing vector field in T(M). Thus we have

LEMMA 4.1. The horizontal lift XH to T(M) of a vector field X in M is an
affine Killing vector field in T(M) if and only if the following three relations
hold in M.
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(4.6) XdKdcb
a=0.

(4.8) -£x{c
a
b}=0, that is, X is an affine Killing vector field in M.

(4.10) XeVeKdcb
a=0.

Applying Bianchi identities, we easily have

LEMMA 4.2. If X is a parallel vector field in M which satisfies (4.6), then
X satisfies (4.10).

The following result is well-known (see Yano [5]):

LEMMA 4.3. In a compact Riemannian manifold M, an affine Killing vector
field in M is a Killing vector field.

Applying Green's theorem, we easily have

LEMMA 4.4. In a compact Riemannian manifold M, if X satisfies (4.6), that
is XdKdcb

a = 0, then X is a parallel vector field in M.

Taking account of lemma 4.1, lemma 4.2, lemma 4.3 and lemma 4.4, we have

THEOREM 4.5. Let M be a compact Riemannian manifold. The horizontal
lift XH to T(M) of a vector field X in M is an affine Killing vector field in
T(M) if and only if X is a parallel Killing vector field in M. Moreover, if M
is irreducible, then an affine Killing vector field XH other than zero does not
exist in T(M).

In the next, suppose that X—Xv is an affine Killing vector field in T(M).
Taking account of (3.16), (3.19), (4.3) and (4.5), we have

(4.11) XdKdcb
a=0,

(4.12) Kdcb
eVeX

a=0.

The equation (4.11) is the same one as (4.6). Taking account of (1.22), (3.17)
and (4.2), we have

from which we have

(4.13)

(4.14) Kedb
a

The equation (4.13) implies that X is an aflfine Killing vector field in M, and
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moreover, taking account of (4.11), we see that (4.14) reduces to

(4.15) ( V c ^ / + 7 A e c

α ) I ^ 0 .

If (4.11) and (4.13) hold, then, from (3.18) we have

(4.16) fΊcZb

Λ + fΊbZc

Λ=Ίeia

which implies that the equation (4.4) holds.
Conversely, if the relations (4.11), (4.12), (4.13) and (4.15) hold in M, then,

we easily see that the relations (4.2), (4.3), (4.4) and (4.5) hold. Therefore, Xv

is an affine Killing vector field in T(M). Thus we have

LEMMA 4.6. The vertical lift Xv to T(M) of a vector field X in M is an
affine Killing vector field in T{M) if and only if the following four relations
hold in M.

(4.11) XdKdcb

a=0.

(4.12) Kdcb*leX
a=0.

(4.13) JJx{c

a

b}=0, that is, X is an affine Killing vector field in M.

(4.15) Id(Ud/+7A/)=0.

Applying Bianchi identities, we easily have

LEMMA 4.7. // X is a parallel vector field in M which satisfies (4.11), then
X satisfies (4.12) and (4.15).

Taking account of lemma 4.3, lemma 4.4, lemma 4.6 and lemma 4.7, we have

THEOREM 4.8. Let M be a compact Riemannian manifold. The vertical lift
Xv to T(M) of a vector field X in M is an affine Killing vector field in T(M)
if and only if X is a parallel Killing vector field in M. Moreover, if M is
irreducible, then an affine Killing vector field Xv other than zero does not exist
in T(M).

In the last, suppose that X=XC is an affine Killing vector field in T(M).
Taking account of (1.22), (3.22) and (4.2), we have

xx{c

 a

 b}+\y^(κ^xx{/ c}+κdec«xx{/ b})=o,

from which we have

(4.17) -

which implies that X is an affine Killing vector field in M.
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Conversely, if (4.17) holds, then, taking account of (3.21) and (3.22), we
easily see that the relations (4.2), (4.3), (4.4) and (4.5) hold. Therefore, Xc is
an affine Killing vector field in T(M). Thus we have

THEOREM 4.9. The complete lift Xc to T(M) of a vector field X in M is
an affine Killing vector field in T(M) if and only if X is an affine Killing vector
field in M.

5. Projective Killing vectors in T(M).

Let I be a projectable projective Killing vector field in T(M) such that X
has components X1 of the form (3.1). Then we see that the condition

(5.1)

holds in π'KU), φΣ being the components of a certain 1-form φ in T(M). Then
we have an expression of the form

(5.2) $i = BI

ΛφΛ=EI

aφa+CI*φa,

where φa=EI

aφJ and φa^C1

 &<j>i.
We find that the condition (5.1) is equivalent to the following equations (see

the section 6, [12])

(5.3) X

(5.4)

(5.5)

(5.6)

(5.7) δtφ-b+δξφs=O,

where X—pX and

Contracting with respect to the indices a and c in (5.7), we have

(5.8) φB=0.

Therefore, taking account of (5.4) and (5.8), we have

(5.4)' 2χh\b=0.

Let there be given a vector field X m M, which has components X1 with
respect to {U, x1}.

We now consider the conditions in order that the horizontal lift XH, the
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vertical lift Xv and the complete lift Xc to T{M) of a vector field X in M be
a projective Killing vector field in T(M), respectively.

In the first, suppose that X—XH is a projective Killing vector field in T(M).
Contracting with respect to the indices ά and b in (5.6), and taking account of
(3.14), we have

(5.9) φc=^"VaZϊ = -^Kfac'Kedg

aXdy'y8.

Taking account of (3.14) and substituting (5.9) into (5.6), we have

from which we have

(5.10) X*Kdeb

a=0.

Substituting (5.10) into (5.9), we have

(5.11) φe=0.

From (5.8) and (5.11), we see that $=0. Thus we obtain

LEMMA 5.1. // the horizontal lift Xπ to T(M) of a vector field X in M is
a projective Killing vector field in T(M), then it is necessarily an affine Killing
vector field in T(M).

Taking account of theorem 4.5 and lemma 5.1, we have

THEOREM 5.2. Let M be a compact Riemannian manifold. The horizontal
lift XH to T(M) of a vector field X in M is a projective Killing vector field in
T(M) if and only if X is a parallel Killing vector field in M. Moreover, if M
is irreducible, then a projective Killing vector field XH other than zero does not
exist in T(M).

Next, suppose that X—Xv is a projective Killing vector field in T(M).
Contracting with respect to the indices a and b in (5.6), we have

(5.12) φe=λ^sZea=__^_yΛKdfceVeXfu

Substituting (1.22), (3.17) and (5.12) into (5.3), we have

(5.13) χ

(5.14) Kdfb

a ^

Contracting with respect to the indices a and c in (5.14), we have
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from which we have

(5.15) Kdfb

eVeX
f=0.

Substituting (5.15) into (5.12), we have

(5.16) φc=0.

From (5.8) and (5.16), we see that φ=0. Thus we have

LEMMA 5.3. // the vertical lift Xv to T{M) of a vector field X in M is a
projective Killing vector field in T(M), then it is necessarily an affine Killing
vector field in T{M).

Taking account of theorem 4.8 and lemma 5.3, we have

THEOREM 5.4. Let M be a compact Riemannian manifold. The vertical lift
Xv to T(M) of a vector field X in M is a projective Killing vector field in
T(M) if and only if X is a parallel Killing vector field in M. Moreover, if M
is irreducible, then a projective Killing vector field Xv other than zero does not
exist in T(M).

In the last, suppose that X—Xc is a projective Killing vector field in T(M).
Substituting (1.22) and (3.22) into (5.3), and contracting with respect to the
indices a and b, we have

(5.17) X

On the other hand, taking account of (3.24) and contracting with respect to the
indices a and b in (5.6), we have

(5.18) xAaa

Adding (5.17) to (5.18), we have

(5.19) ^

On the other hand, eliminating (5.18) from (5.17), we also have

(5.20) Φc=ydyfκdec'
1x

From (5.19) and (5.20), we conclude that

(5.21) φe=0.
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From (5.8) and (5.21), we have # = 0 . Thus we have

LEMMA 5.5. // the complete lift Xc to T(M) of a vector field X in M is a

projective Killing vector field in T{M), then it is necessarily an ajfine Killing

vector field in T(M).

Taking account of theorem 4.9 and lemma 5.5, we have

THEOREM 5.6. The complete lift Xc to T(M) of a vector field X in M is a

projective Killing vector field in T(M) if and only if X ts an ajfine Killing

vector field in M.
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