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THE SPECTRUM OF THE LAPLACE OPERATOR FOR A

SPECIAL RIEMANNIAN MANIFOLD

BY GRIGORIOS TSAGAS

1. Introduction. Let (M, g) be a compact orientable Riemannian manifold
of dimension n. Let Λq(M) be the vector space of exterior g-forms on M, where
q=0, 1, ••• , n. We denote by S%(M, g) the spectrum of Δ on Λq(M).

It was the following open problem. Does S%{M, g) determine the geometry
of the Riemannian manifold (M, g) ? The answer to this problem in general
case is negative. This is a consequence of the counter example which is given
in ([3]). If the Riemannian manifold (M, g) is a special one, then problem
remains open.

It has been proved ([4]) that the three spectrums Sp(Sn, g0), Sp(Sn, g0) and
Sp(Sn, go) determine completely the geometry of the standard sphere (Sn, go)

One of the results of the present paper is to prove that for each standard
sphere (Sn, g0) there is at least one integer q^[0, n~] such that the spectrum
Sq

p(Sn, go) determines completely the geometry on the sphere (Sn, g0).
In the second paragraph we give some known results for the spectrum

of the Laplace operator Δ which acts on the vector space Λ\M), where
q=0, 1, •••, n.

The spectrum of the Laplace operator on the Λq(M), when the Riemannian
manifold (M, g) has constant sectional curvature different from zero, is studied
in the third paragraph.

2. We consider a compact, orientable Riemannian manifold (M, g) of dimen-
sion n. Let Λq(M) be the vector space of all exterior #-forms on M, where
q—0, 1, •••, n. For #=0, we obtain the set Λ\M) of all differentiate functions
on M.

Let Δ=—(dδ-{~δd) be the Laplace operator which acts on the exterior algebra
of M

)= φ Λq{M)
g = 0

as follows
Δ : Λ(M) — > Λ(M), Δ : Λq(M) #—> Λ\M),

Δ : a —
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If the exterior (/-form is such that Δa—λa, where λ^R, then a is called a
g-eigenform, (or simply a g-form), and λ the eigenvalue associated with a.

The set of eigenvalues associated with the exterior g-forms is called the
spectrum of Δ on Λq(M), and is denoted by S%(M, g). Thus

Sq

P(M, g ) = { 0 ' ^ λ 1 , q = ••• = λ h q > λ 2 , q = ••• = λ 2 , q > λ s , q > ••• > - ° o } ,

where each eigenvalue is repeated as many times as its multiplicity, which is
finite and the spectrum S%(M, g) is discrete, since Δ is an elliptic operator.

The spectrum S%(M, g) exerts an influence on the geometry of (M, g). The
aim of the present paper is to show that S%(M, g) determines the geometry on
(M, g), when (M, g) is a special Riemannian manifold and q has a special value
which depends on the dimension of the manifold.

In order to study the influence of Sq

p(M, g) on the geometry of (M, g) we
need the Minakshisundarum-Pleijel-Gaffney asymptotic expansion given by

Σ e**.*^ Σ (4:πt)-n/\ao>q+a1,qt+ - +am,qt
m) + O(tm~n/2),

1=1 ί>0

where ao,q, altQ, a2,q'~ are numbers which can be expressed by

at,q=\ ux,qdM, z=0, 1, 2, ••• ,
J M

where dM is the volume element of M and

Uι,q: M — > R , ι = 0 , 1, 2 , •••

are functions which are local Riemannian invariants. These can be expressed
by the curvature tensor, its associated tensors, and their covariant derivatives.

Some of these have been computed ([5])

α 0 . β = ( n ) V o l ( M ) , (2.1)

α l ι β =( C{n,q)SdM, (2.2)

(2.3)

where
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in, <?)=—• " W o " " ' + 4 " " : , (2.7)

and i?, £ and 5 are the curvature tensor field, the Ricci curvature, and the
scalar curvature of (M, g), respectively, and \R\, \E\ are the norms of R, E
with respect to g.

Problem 2.1. Let (M, g), (M', g') be two compact onentable Rtemannian
manifolds. If S%{M, g)=Sq

p(M', gf), is (M, g) isometric to {h'Γ, g') ?

The answer to this problem is negative. This is a consequence of the fol-
lowing counter example (J. Milnor [3)].

There exist two lattices L and U in R1G such that

S°P(R1B/L, gJL)=S»p{R™/U, gJU), (2.8)

where gQ is the Euclidean metric in i216.
Relation (2.8) implies that

SKR'VL, go/L)=Sl(R16/L', gJL').

But (R1Q/L, go/L) is not isometric to (Rl6/Lf, gjL').
From the relation

S%(M, g)=S%(M',g'),

we conclude that

(i) dim(Λ/)=dim(M'), (ϋ) Vol(M)=Vol(M0, (in) bq(M)=bq(M').

That is, the q Betti numbers are equal, since bq(M) is the multiplicity of 0 in
S%(M, g).

3. We consider two compact, orientable, Riemannian manifolds (M, g) and
(M', gf)y for which we further assume that

Sl(M, g)=Sp(M', g'). (3.1)

We study special conditions, which taken with (3.1), determine the geometry
on (M, g).

THEOREM 3.1. Let (M, g), (M', g') be two compact, orientable Riemannian
manifolds. If n is given, then we can find at least one integer q {one of them is

q=\γ\ if n^8, or q=2, if n^{6,7} or q=0 if n^{2, 3, 4, 5} such that

Spq(M, g)=Spq(M', g') implies that (M, g) has constant sectional curvature k, if
and only if (M\ g') has constant sectional curvature k'', and k~kr.
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Proof. Let C, G be the Weyl conformal curvature tensor field and the
Einstein tensor field respectively, on (M, g). The components (Cιjkι) and (Gl3)
of d and G, respectively, with respect to a local coordinate system (x\ •••, xn)
on the manifold (M, g) are given by

(3.2)

where α = l / ( n - l ) , β=l/(n-iXtt-2), and

Gtj=EtJ-rgtJS, (3.3)

where γ=l/n.
From (3.2) and (3.3) we obtain

|C | 2 - | i e | 2 -4 |£ : | 2 /(n-2)+2S 2 /^- lXH-2) , (3.4)

| G | 2 = | £ | 2 - S 2 / " . (3.5)

The formula (2.3) by virtue of (3.4) and (3.5) becomes

α 2 , 5 = ί IΛ1\C\2 + Λ2\G\2-]- ΛsS
22dMt (3.6)

where

i^;) (3.7)

(3.8)

(3-9)

The expressions P^n, q), P2(n, q) and P3(n, q) in the formulas (3.7), (3.8) and
(3.9) are given by

(n, q)=%q(q-ϊ)(n-q)(n-q-l)-15q(n-qXn-2)(7i-3)

+ n(n-lXn-2X?7-3), (3.10)

(3.11)

(3.12)

By assumption, the Riemannian manifold (M', g') has constant sectional
curvature k'. Therefore for (Mf, g') we have ^ = 0 , G'=0, and formula (3.6)
in this case takes the form
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αί. ,= ( A-lS'fdM'. (3.13)

From (3.1), (3.6) and (3.13) we have

\2+A*S^dM=^MSydM'. (3.14)

If g=[n/3], then we have

Λi>0, Λ 2 >0, Λ 3 ^0, if n^Ί. (3.15)

From the relation α 1 ) 5 =αί ) ί Z by virtue of (2.2) yields

ί SdM=f S'dM', (3.16)
Jjlί JJ/'

which, since S/=constant, implies

^\ (S')2dM'. (3.17)

From (3.14), (3.15) and (3.17) we obtain | C | 2 = | G | 2 = 0 , which gives C = G = 0 .
Hence the Riemannian manifold (M, g) has constant sectional curvature k. Finally,
the relation (3.16) implies k—k'.

If the dimension of the manifold is between 2 and 5 we take as q=0, ([1]).
If the dimension of the manifold is 6 or 7, then we take q=2, ([7]).
This completes the proof of the theorem. More details of this will be pub-

lished later.
A consequence of the theorem (3.1) is the following corollary

COROLLARY 3.2. Let {Sn, q0) be the standard Euclidean sphere. If n^6 then
the Spίn/*\Sn, go) determines completely the geometry on (Sn, gQ). Finally if
n e [2, 5], then the Sp°(Sn, q0) determines completely the geometry on (Sn, gQ).
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