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AN EXTREMAL PROBLEM ON THE CLASSICAL
CARTAN DOMAINS

By YosHIHISA KUBOTA

1. This paper is concerned with the following extremal problem: Let D be
a bounded domain in the 2n-dimensional Euclidean space C™ of n complex vari-
ables z=(z, -+, z,). Denote by (D) the family of holomorphic mappings from
D into the unit hyperball B, in C*. It is required to find the precise value

_ of
M(z,, D)= sup det(glzm (z€D),
where (%];) denotes the Jacobian matrix of f:
o o
0z 0z
a 1 n
(79.5): ............... o F=(fr s fa)-
Wa s
0z, 0z,

If w=h(z) is a biholomorphic mapping from D, onto D, and w,=h(z,), then

det(%)mo

namely, the quantity M(z, D) is a relative invariant. Hence for a bounded homo-
geneous domain D it is sufficient to find the value M(z,, D) for a fixed point z,
in D.

The automorphism of B, which transforms a point a=(a,, -+, a,) into the
origin is given in the form

M(zo, D))=M(wo, D)

’

o(z:a)=plz—a)I—a'z)"' U™,

vzhere [¢]*=(1—aga’)™* and U'U=(I—a’@)"*. Here I is the identity matrix and
A denotes the conjugate matrix of A and A’ the transposed matrix of A. Since

!det(—gf—)zsa j =(l—aa’) ™v2=1,

as far as M(z, D) is concerned, we can replace #(D) by the subfamily &, (D) of
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mappings which transform the point z, into the origin.
Carathéodory [2] proved that for the polydisc P,={(z1, ---, z.): |2;1 <1, 7=
1’ e , n}

MQ, Pp)=n""2,

We shall find the value M(0, D) for the classical Cartan domains.
By a classical Cartan domain we understand a domain of one of the follow-

ing four types:
Ri(r, s)=1{Z=(z;): I—ZZ'>0, where Z is an rXs matrix}, (r<s),

Ru(p)={Z=(z;;): I—ZZ'>0, where Z is a symmetric
matrix of order p},

Riu(q)=1{Z=(z;): [—ZZ’>0, where Z is a skew-symmetric
matrix of order ¢},

Riyv(n)={z=(zy, -, zn): 14+ ]22"|2—222'">0, 1—|zz’| >0}.
Obviously,
Ry(r, s)cC™, Ru(p)ycCre+nre,
Ru(gycCr@a b2 Ry(n)CcC™.
Instead of Ry(p) we consider the following modified domain :
Rup)={Z=(z;8): 2=~ 2 x5 Q# ), 2;=1;,

where X=(x;,)& Ryu(p)}.
We shall prove the following theorem :

THEOREM
(1.1) M, Ry(r, s)=r—T""2,
(1.2) MO, Ru(p)=2"2@P/M(0, Ru(p))=p @01,
-qlg-1/4
(13) MO, Ru()=[ 5],
where [—g—] denotes the integral part of the number -g-
(1.4 M@, Ri(n)=1.

Now, we consider the modified domains:

(1.5) Ri(r, $)={Z: v/ v Z& Ry(r, s)}
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16) RYDY={Z: VD ZERu(p),
(L7 R@=12: /[ ]2 Ruta),
18) Riy(m)=Run(n).

E. Cartan [3] proved that, if n+16, 27, every irreducible bounded symmetric
domain D in C™ is biholomorphically equivalent to a domain of one of the classi-
cal Cartan domains. Hence there exists a biholomorphic mapping f from D onto
a domain of one of the domains (1.5)~(1.8) such that f(0)=0, here we may
assume that D contains the origin. Since these four domains are contained in
the unit hyperball (see Lemma in §2) and since

MQO, R)=1  (v=[ IL 1II, IV),

it follows that f is an extremal mapping, i.e.,

(5.

2. Let D be a bounded domain in C". We denote by p(z,, D) the greatest
lower bound of the radii of hyperballs {z=(zy, .-+, za): |z1—2}[2+ -+ + | z,— 25| ?
<p%, zo=(2}, ---, z3), containing D. By appealing to methods of Hua (see [4])
we are able to compute the value of p(0, D) for the classical Cartan domains.

=M(Q, D).

LEMMA
2.1) p(0, Ri(r, s))=~'r,
(2.2) p(0, Ru(p))=p(0, Ru(p))=~"p,
23) o0, Ru@)=[[4],
(2.4) 000, Ry(n))=1.

Proof. Let Z&Ry(r, s). According to a result of Hua (see [4]) there exist
two unitary matrices U and V of orders » and s, respectively, such that

Z 00 0--0
w=uzy=|? &0 00
0 0---¢ 0---0

and WeR(r, s). Since WeR(r, s), it follows that [{;|<1 (y=1, -, r). We
arrange the elements of the matrices Z and W in the form of vectors in C”*

Z:(zlb Ry vy Brn T er)}

w:<w11: try Wasy vty Were o0 e wrs)-
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Then by the relation W=UZV we have
w=zU'XV

where U’XV is the Kronecker product of matrices U’ and V. Since U’'XV is
also a unitary matrix of order rs, we have

lzl*P=lwl*= L)+ - + 112 <r,
where [z]°=]z|*+ -+ +12151*+ - +|2n|*+ - +2x|% Hence
P(Oy Rl(r: S))é’\/?.

On the other hand, for arbitrary complex numbers {;, -+, {, such that |{;| <1
(j=1, ---, ), the point

¢ U=k

Z=(zj), ij={ )
0 (J+k)

belongs to Ri(r, s) and, therefore, (2.1) follows.
Let Ze Ry(p) and set
235 (]:k)
X=(x), xp=1 1
" 7 Ve kil GO+#k)

Then X< Ryu(p). Again, by [4], there exists a unitary matrix U of order p such
that

¢ 00
vr=uxv- "’ S
0 0--¢,

and YeRy(p). Obviously, |{;| <1 (=1, -+, p). We arrange the elements of the
matrix Z in the form of a vector in C?®+b/2

Z:(le) Tty ler Zo2y Tty Bopy T pr) .

On the other hand we arrange the elements of the matrices X and Y in the
form of vectors in C?*

x:(-xll’ ty Xapy vty Xpu v xpp);
y—_—(yu, tty ylpy Tty yply Tty ypp)~

By the relation Y=UXU’ we have y=xU’XU’. Since U’XU’ is a unitary
matrix of order p% we have

lzl*=lxlP=]ylI*= &0+ - +181°<p .
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Further, if &, ---, £, are complex numbers such that |§;|<1 (j=1, ---, p), then

the point
& =k
Z:(ij), ij:{ ! .
0 (G=#k)
belongs to Ru(p). Thus it follows that

P(O, Rn(ﬁ)): \/Tb—

Similarly we have
P(O, Rn(ﬁ))z\/?’—-
For each Z& Ry(g) there exists a unitary matrix U of order ¢ such that
0 &)\, 0 &n
W=UZU' = 4o 4 (g=2m)
-& 0 —Cm 0

or

0 Cl . . 0 Cm
W:UZU/:( )+ +( )JrO (g=2m+1),
L1 O —Cm 0

and We Ry (q) (see [4]). Hence we obtain (2.3).
The last equality (2.4) is obvious.

3. We turn now to the proof of the theorem. We first prove (1.1). For
Z=(z;;)€ Ry(r, s) we arrange the elements of Z in the form

z=(211’ A 2 le’ A ) ZTI’ T ’ ZTS)'
Let f be a mapping belonging to the family F(R(r, s)). We set
fz(fliy Tty f:ls} Uy frl: Tty frs):

fun@=a{{Pzy++afP zis+ -+ afP 2+ +afP z+(higher powers).
Then
af a,‘}”-~-a,‘§"~-a,‘}”-~~a,‘,‘,"
(52 —(;5;;:::;;}g;;:::;;si;;:::;;g;;)-
There exists a unitary matrix U of order rs such that

an  .an ... ,an
Cii” Crz Crs

U( of ) = 0 cfE?eni®

We consider the mapping g=¢-f, where ¢ is the automorphism of B,, defined
by the linear transformation w=zU’. The mapping g belongs to F(Ry(r, s)) and
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=|eei(35)..

Let ¢ be a one-to-one mapping from {1, ---, 7} into {1, ---, s}. We take a
unitary matrix V=(v,p) of order rs such that v,p=e'%7/4/7 for f=(—1)s+a(j)
(j=1, -+, r) and v,;53=0 for the other @’s, where 6, -+, 0, are arbitrary real
numbers. We denote by ¢ the automorphism of B,, defined by w=zV’. The

mapping

— | ,D ,U2),, A rs)
=|c{iVcf? eV .

3.1 ldet(—gj—;— »

h:¢°g=(h11; Ty hls: Tty h”, Tty hrs)
belongs to Fo(Ri(r, s)). We have the expansion

hu(2)=bnzu+ -+ +biszis+ -+ +braz+ -+ +brszes+(higher powers),
(3.2)

1 . o
— 4 —
brocp="m A eI+ e+ o e} =1, 7).

Let ay, -+, a, be arbitrary complex numbers such that |a;|=1 (=1, ---, 7).
If |£|<1, then the point

al (k=a(})
Z=(zjz), zZp=

0 (k#a())
belongs to Ry(r, s). Hence the function
RO =hu(2)= {brecyas+++bryrya} {4(higher powers)

is holomorphic in || <1 and satisfies the conditions |A(&)| <1, A(0)=0. Therefore,
by Schwarz lemma,

(33 [biscyast -+ +brgmar| =1.
Since @, and «, are arbitrary, we have, by (3.2) and (3.3),
|G |+ e |+ -+ + e | =V 7
Therefore we obtain
(34) e [ 4 F eI+ F e 4+ e =V r s,
Now, from (3.1) and (3.4) we have

a3,

On the other hand, it follows from the Lemma that the mapping

1 .
wip= =z =L, rg k=1 s)

ST-TS/Z

belongs to F(Ry(r, s)). Therefore, (1.1) follows.
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4. Next we prove (1.2). For Z =(z,-k)ef3n(p) we arrange the elements of Z
in the form of a vector in C?®+b/2
2=(211, =" » Zip» Zams " s Zaps s Zpp) -
Let f be a mapping in F(Ru(p)). We set
F=F1as = s Fips Foor = s Fomr = » Fon)s
fi@=a{{Pzu+ - tafPziptaiP zt - tafP zp+ - a2,

+(higher powers).

We may assume that (—%)H is a triangular matrix of order p(p+1)/2:

afv a{é‘%-a;‘;’

(12 (12

(af) _ 0 aff®-afp
0z /z=0

Hence

@1 | det(%)

— an a (22 (2p) (
o —‘Iall "'alpp)a22)"'a2pp ...ap%ﬂ)[_

We consider a modified mapping F which maps Ry(p) into Be:
F=(F11; Tty F]p’ Ty Fply ) Fpp))

1
ij=FkJ=77—fjk OU<Lk), Fiy=f,.

We first consider the case that p is even, i.e., p=2m. Denote by S, the
set of all one-to-one mappings ¢ from {1, ---, p} onto itself such that

o(N#j, 0°0()=5 (=1, -, p).
Let =S, and let j,, -+, jn be the natural numbers such that
1:j1<j2<"‘<jm<p’ jv<a(]v) (U:L <, om).

We take a unitary matrix V=(v.s) of order p® such that v,g=e'?1/4/p for
B=0G—Dp+a(j) (=1, -+, p) and v,3=0 for the other B’s, and denote by ¢ the
automorphism of B,. given by V. The mapping

G:¢°F:(GII: Tty Glpy Tty Gply ) Gpp)

maps Ry(p) into Bpe. Since

1 T i ] T
Gn: '\/2—}.)*~ {(e g“'}‘e 0U(]1))f]10(11)+ +(e 0Jm+€ ﬁawm))f]ma(]m)}r
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we have the expansion

Gu(2)=byzi+ - ‘|‘b1pz1p’|‘b22222+ +b2p22p+ +bpp2pp
-+(higher powers),

4.2)
0 ) )
ijo(]v) \/*_ {(el ;1+elﬁg<]1>)a](1j)c1,o](f))l))+ +(e10;v+ezﬁu(;1)))@](:}6]({’%,))},
(v=1, -+, m).
Let ay, -+, a, be arbitrary complex numbers such that |a,|=1 (v=1, -, m).

If ICI <1, the pOiDt Z=(ij> such that Z]vg(]v):Zg(]v)]vzvjavC for U:]., e, M
and z;,=0 for the other j, & belongs to Ryu(p). Hence the function
5(C)=Gu(Z)=«/7(bM(“>a1+ < b, e mam)st(higher powers)

is holomorphic in |{] <1 and satisfies the conditions IG(C)I<1, G~(0)=0. Thus
we have

(43) '\/7”?]10(]1)&’1“‘ +b]ma(]m)aml <I.

Since @, and a, are arbitrary, we have, by (4.2) and (4.3),

(4.4) 20| @919 | oo 4| @ Umaim) |V <A/

710G ImoGm)

Further we take a unitary matrix V,=(v%5) of order »* such that vig=
e'%:1// P for B=G—Dp+j (y=1, -+, p) and vip=0 for the other B’s, and we
consider the point

aJC (1=PF)
Z:(ij) y Rjp— »
0 (#k)

where |a;|=1 (j=1, -+, p), |{|<1. Then we have the inequality

45) |2+ e |+ - + e | SVF.

Now, the number of the elements of S, is 2m)!/2™m!, and for each fixed
pair j, k (j<k) there are (2m—2)!/2™"(m—1)! mappings ¢ =S, such that ¢(j)=*k.
Therefore from the inequalities (4.4) and (4.5) we have

2m—2)!
ot (P 1 e 0P [+ [P [+ - laly? |+ -+ o]
- @em! — @m—-2)!  — (@2m— 2)'2m(2m—|—1)
= g1V Pt gy VP = 2™ m 3
and so

(pp)l< p(p+1) .

(@6)  laff [+ +lal | +1a% |+~ +lafp [+ +lagp| = BDE
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By (4.1) and (4.6) we obtain

().

Next we consider the case that p is odd, i.e., p=2m+1. Denote by T, the
set of all one-to-one mappings = from {1, -+, p} onto itself such that z(jo)=7o
for a certain j, and z(j)#7, v°z(j)=j for all other ;. Let rT, and let j,, Ji,

, Jm be the natural numbers such that

§p—1’(ﬂ+l)/4 .

1£/:</e << Jn<p, 1o<t(w) =1, -, m), 7(70)=70.

We take a unitary matrix V=(v,z) of order p* such that Ulﬁ:elej/'\/$ for
B=G—Dp+z(j) (j=1, ---, p) and v,5=0 for the other f’s, and denote by ¢ the
automorphism of B,. given by V. Considering the mapping ¢-F and the points
Z=(zjx) such that z,,;,;=al, Zci,p=2Gp=V 2ak (v=1, -+, m) and z;;=0 for
the other j, k, where |a,|=1 (v=0, 1, -, m) and || <1, we obtain the inequality
7% | @Uor0 | 4+-2(] @UEUp) |+ oo | g Untim) N<A/ P

JoJo 717G ImtUm)

Furthermore we have
48) a1+ 1af? |+ - [e®P | =/ p.

The number of the elements of T, is 2m-+1)!/2™m! and for each fixed
pair j, & (j<k) there are 2m—1)!/2™"Y(m—1)! mappings < T, such that z(j)=k,
and further, for each fixed j there are (2m)!/2™m! mappings z< T, such that
7(j)=j. Hence, using the inequalities (4.7) and (4.8) we obtain

—_— !

Gror s a2 4 0P [+ 082+ o+ a4+ + e D)
@miD! 1 @m=D!  @ml\ . Cmi2@m)!
="gmm ‘/p+<2m-2(m—1)1—2m;n1>‘/p_ T

ie.,
p(p+1)

[adP |+ - +laiP ]+ 1?1+ - +1alP |+ - FlaFP | = o h
Therefore we have

ép'l’(l’+1)/4 .

aee( 5.
Since the mapping

1 .
wjkz\_/?zjk =1, -, p; JSR=D)

belongs to Fo(Ry(p)), we obtain
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MO, Ry(p)=pr@+vre,

By an analogous argument we can prove (1.3).

5. Finally we prove (1.4). Let f be a mapping in F(Ry(n)). We set

f:(fl’ "';fn):
f{@=ajz;+ - +a,,2z,+(higher powers).
af

We may assume that (T’TZ_> , is a triangular matrix of order »:
o=

Q11 Q12" Q1

(_2_]1) _ 0 auaon
ras = R

Hence

}det<~g£;>z=ol::lallazz~‘annl-

Let 2 be a natural number such that 1<k=<n. If |{]|<1, then the point
z=(zy, -+, 2zn) such that z,=C and z,=0 for j#k belongs to Riy(n). Hence the

function y
FO=r1(2)=a{+(higher powers)

is holomorphic in |¢| <1 and satisfies the conditions |f(&)| <1, 7(0)=0. Hence we

have
lar:| =1

and (1.4) follows. This concludes the proof of the Theorem.
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