CONNECTIONS AND f-STRUCTURES ON $T^{2} M$

By Manuel De Leon

Introduction

Grifone [11] defines a connection on M as a differentiable vector 1-form Γ on $T M$ verifying: $J \Gamma=J, \Gamma J=-J$, where J defines the canonical almost-tangent structure of $T M$. If $T^{2} M$ denotes the tangent bundle of order 2 over a C^{∞} differentiable manifold M, the existence of the vertical fiber bundles $V^{\pi_{2}}$ and $V^{\pi_{12}}$ lead us to define connections on $T^{2} M$ by means of complementary distributions. Taking into account the canonical endomorphisms J_{1} and J_{2} (J_{2} defining an almost-tangent structure of order 2 on $T^{2} M$), and following Catz [5], we introduce a non-homogeneous connection on M of type 1 as given by a vector 1 -form Γ verifying $J_{1} \Gamma=J_{1}, \Gamma J_{2}=-J_{2}$.

The connection Γ is said of type 2 if $J_{2} \Gamma=J_{2}, \Gamma J_{1}=-J_{1}$.
In $\S 5$, we express the non homogeneous character of a connection by means of its tension. Thus, a connection is said homogeneous if its tension vanishes. In §6, a semispray or a differential equation of third order, is shown to be canonically associated with any connection of the same type. Moreover, the paths of a connection are just the solutions of its associated semi-spray. The curvature of a connection is defined in $\S 8$ and Bianchi's identities are derived. In particular, if a connection is homogeneous, its curvature is homogeneous, too.

It is well known that, associated with a linear connection on M, there exists an almost-complex structure on $T M$, the integrability of which is given through the curvature and torsion of the connection [8], [12], [15]. In §9, it is shown that if Γ is a connection on M of type 1 , there exists an f-structure F associated with Γ and determined by relations

$$
F J^{\prime}=h, \quad F h=-J^{\prime}, \quad F J_{1}=0
$$

where $J^{\prime}=J_{2} h$.
In the same way, an f-structure G is associated with a connection of type 2 and defined by

$$
G J_{1}=h^{\prime}, \quad G h^{\prime}=-J_{1}, \quad G h X=0, \quad \text { if } X \notin V^{\pi_{2}}\left(T^{2} M\right)
$$

where $h^{\prime}=h J_{2}$.
Integrability conditions for both f-structures are given in Theorem 9.6, 9.12 and 9.13.

Received April 4, 1979

Finally, in § 10, prolongations of metrics given on $V^{\pi_{2}\left(\mathscr{I}^{2} M\right) \text { and } V^{\pi_{12}}\left(\mathscr{I}^{2} M\right)}$ to $\mathscr{G}^{2} M$ are defined with respect to connections of type 1 or 2 , respectively. In fact, these prolongations are shown to be hor-ehresmannian with respect to the f-structures which are canonically associated with each connection.

§ 1. Preliminaries.

Let M be a paracompact n-dimensional differentiable manifold. The tangent bundle of order $2, T^{2} M$, of M is the $3 n$-dimensional manifold of 2 -jets at $0 \in \boldsymbol{R}$ of differentiable mappings $f: \boldsymbol{R} \rightarrow M ; T^{2} M$ has the natural bundle structure over $M, \pi_{2}: T^{2} M \rightarrow M$ denoting the canonical projection. The tangent bundle $T M$ is nothing but the manifold of 1 -jets at $0 \in \boldsymbol{R}$ of differentiable mappings $f: \boldsymbol{R} \rightarrow M$.

If we denote $\pi_{12}: T^{2} M \rightarrow T M$ the canonical projection, then $T^{2} M$ has a bundle structure over $T M$ with projection π_{12}.

Let $\left\{U, x^{i}\right\}$ be a coordinate neighborhood of M, and denote by (x^{2}, y^{2}, z^{i}) the induced system of coordinates in $\pi_{2}^{-1}(U)$. The two fiber bundle structures of $T^{2} M$, over M and $T M$ respectively, lead to two exact sequences of vector bundles over $T^{2} M$:

$$
\begin{aligned}
& 0 \longrightarrow V^{\pi_{2}}\left(T^{2} M\right) \xrightarrow{i_{1}} T T^{2} M \xrightarrow{s_{1}} T^{2} M \times{ }_{M} T M \longrightarrow 0 \\
& 0 \longrightarrow V^{\pi_{12}}\left(T^{2} M\right) \xrightarrow{i_{2}} T T^{2} M \xrightarrow{s_{2}} T^{2} M \times{ }_{T M} T T M \longrightarrow 0
\end{aligned}
$$

where $V^{\pi_{2}}\left(T^{2} M\right)$ (respect. $V^{\pi_{12}}\left(T^{2} M\right)$) denotes the vector bundle of those vectors of $T T^{2} M$ which are projected to 0 by π_{2}^{T} (respect. π_{12}^{T}). These sequences are called the first and second fundamental exact sequences, respectively.

There exist two canonical isomorphisms of vector bundles

$$
\begin{aligned}
& h_{1}: T^{2} M \times{ }_{M} T M \longrightarrow V^{\pi_{12}}\left(T^{2} M\right) \\
& h_{2}: T^{2} M \times{ }_{T M} T T M \longrightarrow V^{\pi_{2}}\left(T^{2} M\right)
\end{aligned}
$$

Thus, two vector 1 -forms on $T^{2} M$ are defined:

$$
J_{1}=i_{2} \circ h_{1} \circ s_{1}, \quad J_{2}=i_{1} \circ h_{2} \circ s_{2}
$$

and they verify

$$
J_{2}^{2}=2 J_{1}, \quad J_{2}^{3}=0
$$

Moreover, J_{2} has constant rank $2 n$ and determines an almost-tangent structure of order 2 on $T^{2} M$.

With respect to the induced coordinates, J_{1} and J_{2} are locally expressed by

$$
J_{1}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\delta_{i}^{\prime} & 0 & 0
\end{array}\right), \quad J_{2}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
\delta_{i}^{\prime} & 0 & 0 \\
0 & 2 \delta_{i}^{\prime} & 0
\end{array}\right)
$$

With each fundamental exact sequence, a canonical vector field is associated; in fact, let $\alpha=i d_{T^{2} M} \times{ }_{M} \pi_{12}$ be the canonical section of the vector bundle $T^{2} M \times{ }_{M} T M$; we denote C_{1} the vector field defined on $T^{2} M$ by

$$
C_{1}=\imath_{2} \circ h_{1} \circ \alpha .
$$

Analogously, if J is the injection $T^{2} M \rightarrow T T M$, the canonical section $\beta=$ $i d_{T^{2} M} \times{ }_{T M} j$ of the vector bundle $T^{2} M \times_{T M} T T M$ permits to define the vector field C_{2} on $T^{2} M$ by

$$
C_{2}=i_{1} \circ h_{2} \circ \beta
$$

C_{1} and C_{2} are called the canonical vector fields on $T^{2} M$. Locally, in a point of coordinates (x^{2}, y^{2}, z^{i}), the components of C_{1} and C_{2} are, respectively,

$$
\left(0,0, y^{i}\right), \quad\left(0, y^{2}, 2 z^{i}\right) .
$$

The formalism of Frölicher-Nijenhuis [9] will be useful in this paper. The following identities are verified:

$$
\begin{aligned}
& J_{1} C_{1}=0 ; \quad J_{1} C_{2}=0 ; \quad J_{2} C_{1}=0 ; \quad J_{2} C_{2}=2 C_{1} \\
& {\left[C_{1}, J_{1}\right]=0 ;\left[C_{2}, J_{1}\right]=-2 J_{1} ; \quad\left[C_{1}, J_{2}\right]=-J_{1} ; \quad\left[C_{2}, J_{2}\right]=-J_{2}} \\
& {\left[J_{1}, J_{1}\right]=0 ;\left[J_{1}, J_{2}\right]=0 ; \quad\left[J_{2}, J_{2}\right]=0 .}
\end{aligned}
$$

Finally, we denote $\mathscr{I}^{2} M$ the bundle of all non-zero elements of $T^{2} M$.

§ 2. Homogeneous and semibasic forms.

Let us introduce the following definitions.
a) Homogeneous forms.

Definition 2.1. A real-valued differentiable function f on $\mathscr{I}^{2} M$ is said homogeneous of degree k if $\mathcal{L}_{C_{2}} f=k \cdot f$.

Always, \mathcal{L} denotes the Lie derivative.
Let $h_{t}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be the homothetia of ratio e^{t} and let $H_{t}: T^{2} M \rightarrow T^{2} M$ denote the fibre-preserving transformation deduced from h_{t}. Since C_{2} generates the 1-parameter group of transformation H_{t}, the condition in Definition 2.1, is equivalent to

$$
f \circ H_{t}=e^{k t} f .
$$

Definition 2.2. A scalar p-form ω on $\mathscr{\Xi}^{2} M$ is said homogeneous of degree k if

$$
\mathcal{L}_{C_{2}} \omega=k \cdot \omega .
$$

Definition 2.3. A vector l-form L on $\mathscr{I}^{2} M$ is said homogeneous of degree k if

$$
\left[C_{2}, L\right]=(k-1) L .
$$

b) Semibasic forms.

Definition 2.4. A vector l-form L on $T^{2} M$, with $l \geqq 1$, is said:

1) Semibasic of type 1 if
a) $L\left(X_{1}, \cdots, X_{l}\right) \in V^{\pi_{12}}\left(T^{2} M\right)$, for every X_{1}, \cdots, X_{l} vector fields on $T^{2} M$.
b) $L\left(X_{1}, \cdots, X_{l}\right)=0$, if X_{1} belongs to $V^{\pi_{12}}\left(T^{2} M\right)$.
2) Semibasic of type 2 if
a) $L\left(X_{1}, \cdots, X_{l}\right) \in V^{\pi_{2}}\left(T^{2} M\right)$, for every X_{1}, \cdots, X_{l} vector fields on $T^{2} M$.
b) $L\left(X_{1}, \cdots, X_{l}\right)=0$, if X_{1} belongs to $V^{\pi^{2}}\left(T^{2} M\right)$.

A vector field belonging to $V^{\pi_{12}}\left(T^{2} M\right)$ (respectively, $V^{\pi_{2}}\left(T^{2} M\right)$) is said semibasic of type 1 (respect. semibasic of type 2).

Local expressions

1) If L is a semibasic vector l-form of type 1 , in an induced local system of coordinates, it is expressed by

$$
L=L_{\imath_{1} \cdots \cdots^{2} r_{1} \cdots \cdots_{s}}^{\alpha} d x^{\imath_{1}} \otimes \cdots \otimes d x^{\imath} r \oplus d y^{\imath_{1}} \otimes \cdots \otimes d y^{\jmath_{s}} \otimes \frac{\partial}{\partial z^{\alpha}}
$$

where $r+s=l$, and i 's, j 's and α running over the set $\{1,2, \cdots, n\}$.
2) If L is semibasic of type 2 , it is locally expressed by

$$
L=L_{\imath_{1} \cdots \varkappa_{l}}^{\alpha} d x^{\imath_{1}} \otimes \cdots \otimes d x^{\imath} \imath \otimes \frac{\partial}{\partial y^{\alpha}}+M_{\jmath_{1} \cdots \jmath_{l}}^{\alpha} d x^{\jmath_{1}} \otimes \cdots \otimes d x^{\jmath_{l}} \otimes \frac{\partial}{\partial z^{\alpha}} .
$$

Proposition 2.5. Let L be a vector l-form. Then:

1) L is semibasic of type 1 if and only if

$$
J_{2} L=0 \quad \text { and } \quad i_{J_{1} X} L=0, \quad \forall X \in \mathscr{X}\left(T^{2} M\right)
$$

2) L is semibasic of type 2 if and only if

$$
J_{1} L=0 \quad \text { and } \quad i_{J_{2} X} L=0, \quad \forall X \in \mathscr{X}\left(T^{2} M\right) .
$$

§ 3. Semi-sprays and potentials.

Ddfinition 3.1. Let S be a vector field on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$. Then:

1) S is said a semi-spray over M of type 1 if, for every integral curve α of S, one has

$$
\left(\pi_{2} \circ \alpha\right)^{\prime}=\pi_{12} \circ \alpha
$$

where $\left(\pi_{2} \circ \alpha\right)^{\prime}$ denotes the canonical lift of ($\pi_{2} \circ \alpha$) to $T M$.
2) S is said a semi-spray over M of type 2 if, for every integral curve α of S, one has

$$
\left(\pi_{2} \circ \alpha\right)^{\prime \prime}=\alpha
$$

where $\left(\pi_{2} \circ \alpha\right)^{\prime \prime}$ denotes the canonical lift of ($\pi_{2} \circ \alpha$) to $T^{2} M$.
The following proposition is easily shown.
Proposition 3.2. Let S be a vector field on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$. Then

1) S is a semi-spray of type 1 if and only if

$$
\pi_{2}^{T} \circ S=\pi_{12}
$$

2) S is a semi-spray of type 2 if and only if

$$
\pi_{12}^{T}{ }^{\circ} S=\jmath
$$

\jmath being the canomical injection $T^{2} M \rightarrow T T M$.

Local expressions

With respect to an induced local system of coordinates, we have:

1) if S is a semi-spray of type 1 , it is expressed by

$$
S:\left(y^{2}, S_{1}^{2}(x, y, z), S_{2}^{2}(x, y, z)\right)
$$

where the functions $S_{1}^{2}, S_{2}^{2}, \imath=1,2, \cdots, n$, are differentiable C^{∞} on $\mathscr{I}^{2} M$.
2) if S is a semi-spray of type 2 , then

$$
S:\left(y^{2}, z^{2}, S^{2}(x, y, z)\right)
$$

where the functions $S^{\imath}, \imath 1,2, \cdots, n$, are as above.
Using these local expressions, we can easily prove
Proposition 3.3. Let S be a vector field on $T^{2} M$, differentrable C^{∞} on $\mathscr{I}^{2} M$. Then S is a semispray of type 1 (respectuvely, of type 2) if and only if $J_{1} S=C_{1}$ (respect. $J_{2} S=C_{2}$).

Remark. Evidently, any semi-spray of type 2 is also of type 1 .
We shall now express the non-homogeneity of a semi-spray.
Definition 3.4. Let S be a semi-spray over M (indistinctiy of type 1 or 2). We shall call deviation of S the vector field

$$
S^{*}=\left[C_{2}, S\right]-S
$$

Then, using local components, we have

Proposition 3.5. 1) If S is of type $1, S^{*}$ belongs to $V^{\pi_{2}}\left(T^{2} M\right)$.
2) If S is of type $2, S^{*}$ belongs to $V^{\pi_{12}}\left(T^{2} M\right)$.

Definition 3.6. A semi-spray which has zero deviation, and of class C^{2} on the zero cross-section, is said a spray.

From this definition on, it is easily deduced that a semi-spray of type 1 is a spray if and only if the functions S_{1}^{2}, S_{2}^{2} are homogeneous of degree 2 and 3 respectively; analogously, a semi-spray of type 2 is a spray if and only if the function S^{2} are homogeneous of degree 3 .

Definition 3.7. Let L be a semibasic vector l-form on $T^{2} M$, of type 1 (respectively, of type 2). We call potential of L the semibasic vector ($l-1$)-form, of type 1 (respect. of type 2) given by $L^{0}=\imath_{S} L, S$ being an arbitrary semi-spray of type 2 .

The fact that L^{0} is independent of the election of S and that L^{0} is semibasic and of the same type as L is easily verified.

This terminology is justified by the following
Proposition 3.8. Let L be a semibasic vector l-form on $T^{2} M$, of type 2 and homogeneous of degree k, with $l+k \neq 1$. Then

$$
L=\frac{1}{l+k-1}\left(\left[J_{2}, L\right]^{0}+\left[J_{2}, L^{0}\right]\right) .
$$

Proof. Let S be an arbitrary semi-spray of type 2. We have

$$
\left[i_{S}, d_{J_{2}}\right]=d_{J_{2} \wedge S}-i_{\left[S, J_{2}\right]}=\mathcal{L}_{C_{2}}-l_{\left[S, J_{2}\right]} .
$$

But

$$
\begin{aligned}
& \left(\imath_{\left[S, J_{2}\right]} L\right)\left(X_{1}, \cdots, X_{l}\right)=\left(L \text { त }\left[S, J_{2}\right]\right)\left(X_{1}, \cdots, X_{l}\right) \\
& =\sum_{\imath=1}^{i} L\left(X_{1}, \cdots, X_{\imath-1},\left[S, J_{2}\right] X_{\imath}, X_{\imath+1}, \cdots, X_{l}\right)
\end{aligned}
$$

for any $X_{1}, \cdots, X_{l} \in \mathscr{X}\left(\mathscr{I}^{2} M\right)$. On the other hand,

$$
J_{1}\left[S, J_{2} X_{2}\right]=-J_{1} X_{2}, \quad \imath=1,2, \cdots, n
$$

or, equivalently,

$$
J_{1}\left(\left[S, J_{2} X_{2}\right]+X_{2}\right)=0, \quad \imath=1,2, \cdots, n .
$$

Then, taking into account that

$$
\left[S, J_{2}\right] X_{2}=\left[S, J_{2} X_{2}\right]-J_{2}\left[S, X_{2}\right]
$$

and the fact that L is semibasic, we deduce

$$
\begin{aligned}
\left(i_{\left[S, J_{2}\right]} L\right)\left(X_{1}, \cdots, X_{l}\right) & =\sum_{\imath=1}^{l} L\left(X_{1}, \cdots,-X_{\imath}, \cdots, X_{1}\right) \\
& =-l \cdot L\left(X_{1}, \cdots, X_{\imath}, \cdots, X_{1}\right)
\end{aligned}
$$

Hence,

$$
\imath_{\left[S, J_{2}\right]} L=-l \cdot L
$$

and then

$$
\left[i_{S}, d_{J_{2}}\right] L=\mathcal{L}_{C_{2}} L-i_{\left[S, J_{2}\right]} L=(k-1) L+l \cdot L=(l+k-1) L .
$$

Finally,

$$
\begin{aligned}
L=\frac{1}{l+k-1}\left[i_{S}, d_{J_{2}}\right] L & =\frac{1}{l+k-1}\left(i_{S} d_{J_{2}} L+d_{J_{2}} l_{S} L\right) \\
& =\frac{1}{l+k-1}\left(\left[J_{2}, L\right]^{0}+\left[J_{2}, L^{0}\right]\right) .
\end{aligned}
$$

Corollary 3.9. Let L be a semibasic vector l-form of type 2 and homogeneous of degree k, with $l+k \neq 1$. Then, if L is J_{2}-closed,

$$
L=\frac{1}{l+k-1}\left[J_{2}, L^{0}\right]
$$

i.e., if L is J_{2}-closed, then L is expressed as a function of the derivatives of its potential.

§4. Connections on M.

Following Catz [5], we introduce
Definition 4.1. We shall call non-homogeneous connection on $T^{2} M$ of type 1, or simply, connection on M of type 1, a vector 1 -form Γ on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$, such that

1) $J_{1} \Gamma=J_{1}$,
2) $\Gamma J_{2}=-J_{2}$.

Definition 4.2. We shall call non-homogeneous connection on $T^{2} M$ of type 2, or simply, connection on M of type 2, a vector 1-form Γ on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$, such that

1) $J_{2} \Gamma=J_{2}$,
2) $\Gamma J_{1}=-J_{1}$.

Proposition 4.3. A vector 1-form Γ on $T^{2} M$ is a connection on M of type 1 if and only if Γ defines an almost-product structure over $T^{2} M$, differentrable C^{∞} on $\mathfrak{I}^{2} M$, such that, for every point $\omega \in T^{2} M$, the eigenspace corresponding to the eigenvalue -1 of Γ_{ω} is the subspace $V_{\omega}^{\pi_{2}}\left(T^{2} M\right)$.

Proof. Let Γ be a connection on M of type 1 , then

$$
J_{1} \Gamma=J_{1} \quad \text { if and only if } \quad J_{1}(\Gamma-I)=0
$$

$$
\Gamma J_{2}=-J_{2} \quad \text { if and only if }(\Gamma+I) J_{2}=0 .
$$

But

$$
J_{1}=l_{2} \circ h_{1} \circ s_{1}, \quad J_{2}=l_{1} \circ h_{2} \circ s_{2}
$$

hence

$$
\imath_{2} \circ h_{1} \circ s_{1} \circ(\Gamma-I)=0 \quad \text { if and only if } s_{1} \circ(\Gamma-I)=0
$$

because \imath_{2} is a monomorphism and h_{1} is an isomorphism; analogously,

$$
(\Gamma+I) \circ \imath_{1} \circ h_{2} \circ s_{2}=0 \quad \text { if and only if }(\Gamma+I) \circ \iota_{1}=0
$$

because s_{2} is an epimorphism and h_{2} is an isomorphism.
Thus, we obtain

$$
\operatorname{Im}(\Gamma-I) \subset \operatorname{Ker} s_{1}=\operatorname{Im} \imath_{1}, \quad \operatorname{Im} \imath_{1} \subset \operatorname{Ker}(\Gamma+I)
$$

i.e.

$$
\operatorname{Im}(\Gamma-I) \subset \operatorname{Ker}(\Gamma+I)
$$

and, consequently

$$
(\Gamma+I)(\Gamma-I)=\Gamma^{2}-I=0 .
$$

On the other hand, if $X \in T\left(T^{2} M\right)$ is such that

$$
X=-\Gamma X
$$

we have

$$
J_{1} X=-J_{1} \Gamma X=-J_{1} X
$$

and thus $X \in V_{\omega}^{\pi_{2}}\left(T^{2} M\right)$. Conversely, if $X \in V_{\omega}^{\pi_{2}}\left(T^{2} M\right)$, there exists $Y \in T_{\omega}\left(T^{2} M\right)$ such that $X=J_{2} Y$; hence

$$
\Gamma X=\Gamma J_{2} Y=-J_{2} Y=-X
$$

and X is associated with the eigenvalue -1 .
The sufficiency of the condition is shown as follows; let $X \in \mathfrak{X}\left(T^{2} M\right)$, then $J_{2} X \in V^{\pi_{2}}\left(T^{2} M\right)$ and $\Gamma J_{2} X=-J_{2} X$, and thus $\Gamma J_{2}=-J_{2}$. Moreover, $X-\Gamma X \in$ $V^{\pi_{2}}\left(T^{2} M\right)$ since $\Gamma(X-\Gamma X)=-(X-\Gamma X)$, and consequently

$$
0=J_{1}(X-\Gamma X)=J_{1} X-J_{1} \Gamma X
$$

and so $J_{1} \Gamma=J_{1}$.
By similar devices, we also have
Proposition 4.4. A vector 1 -form Γ on $T^{2} M$ is a connection on M of type 2 if and only if Γ defines an almost-product structure over $T^{2} M$, differentrable C^{∞} on $\mathbb{T}^{2} M$, such that, for every point $\omega \in T^{2} M$ the elgenspace corresponding to the eigenvalue -1 of Γ_{ω} is the subspace $V_{\omega}^{\pi_{12}}\left(T^{2} M\right)$.

To each connection Γ on M (of type 1 or 2) there are canonically associated two projection operators

$$
h=\frac{1}{2}(I+\Gamma), \quad v=\frac{1}{2}(I-\Gamma)
$$

which are called the horizontal and vertical projectors of Γ, respectively.
Therefore, we have a decomposition of the tangent bundle of $T^{2} M$,

$$
T\left(T^{2} M\right)=\operatorname{Im} v \oplus \operatorname{Im} h
$$

and, since

$$
\operatorname{Im} v=\operatorname{Ker} h=\left\{X \in T\left(T^{2} M\right) / \Gamma X=-X\right\}
$$

and accordingly with Propositions 4.3 and 4.4, we obtain:
$\operatorname{Im} v=V^{\pi_{2}}\left(T^{2} M\right)$, if Γ is of type $1 ; \operatorname{Im} v=V^{\pi_{12}}\left(T^{2} M\right)$, if Γ is of type 2.
Let us denote $\operatorname{Im} h=H\left(T^{2} M\right)$; then, we have the following decompositions:
a) for Γ of type 1: $T\left(T^{2} M\right)=V^{\pi_{2}}\left(T^{2} M\right) \oplus H\left(T^{2} M\right)$
b) for Γ of type 2: $T\left(T^{2} M\right)=V^{\pi_{12}}\left(T^{2} M\right) \oplus H\left(T^{2} M\right)$

Conversely, decompositions of $T\left(T^{2} M\right)$ as in (I) or (II) determine connections on M of type 1 or 2 , respectively.

If Γ is a connection of type 1 , we have

$$
\begin{array}{ll}
J_{1} h=J_{1}, & h J_{2}=0 \\
J_{1} v=0, & v J_{2}=J_{2}
\end{array}
$$

and, if Γ is of type 2 ,

$$
\begin{array}{ll}
J_{2} h=J_{2}, & h J_{1}=0 \\
J_{2} v=0, & v J_{1}=J_{1} .
\end{array}
$$

Proposition 4.5. A connection Γ on M of type 1 defines a splitting, differentiable C^{∞} on $\mathscr{T}^{2} M$, of the exact sequence of vector bundles

$$
0 \longrightarrow V^{\pi_{2}}\left(T^{2} M\right) \xrightarrow{l_{1}} T\left(T^{2} M\right) \xrightarrow{s_{1}} T^{2} M \times{ }_{M} T M \longrightarrow 0
$$

Conversely, such a splitting determines a connection Γ on M of type 1.
Proof. Let Γ be a connection on M of type 1, with horizontal projector h, and let j be an arbitrary splitting of the exact sequence above, i.e.

$$
j: T^{2} M \times{ }_{M} T M \longrightarrow T T^{2} M
$$

and $s_{1} \circ j=i d_{T^{2} M \times M^{T M}}$.
Put $\gamma=h \circ j$; then γ is well-defined, since if j^{\prime} is another splitting, $s_{1}\left(\jmath-j^{\prime}\right)=0$ and then $j-j^{\prime} \in \operatorname{Ker} s_{1}=V^{\pi_{2}}\left(T^{2} M\right)$; hence, $h\left(j-j^{\prime}\right)=0$, i. e. $h \circ j=h \circ j^{\prime}$. Moreover, γ is a splitting, since

$$
J_{1} \circ h=l_{2} \circ h_{1} \circ S_{1} \circ h=l_{2} \circ h_{1} \circ S_{1}
$$

and taking into account the fact that \imath_{2} is a monomorphism and h_{1} is an isomorphism, we deduce $s_{1} \circ h=s_{1}$, and, thus,

$$
s_{1} \circ \gamma=s_{1} \circ h \circ \jmath=s_{1} \circ \jmath=\imath d_{T 2 M \times M_{M} T M} .
$$

Conversely, let γ be a splitting of the exact sequence and put $\Gamma=2 \gamma \circ s_{1}-I$, then

$$
\begin{aligned}
& J_{1} \Gamma=2 \imath_{2} \circ h_{1} \circ s_{1} \circ \gamma \circ s_{1}-J_{1}=J_{1} \\
& \Gamma J_{2}=2 \gamma \circ s_{1} \circ i_{1} \circ h_{2} \circ s_{2}-J_{2}=-J_{2}
\end{aligned}
$$

and so Γ is a connection in M of type 1.
A similar Proposition is obtained for connections of type 2.
Proposition 4.6. A connection Γ on M of type 2 defines a splitting, differentiable C^{∞} on $\mathscr{I}^{2} M$, of the exact sequence of vector bundles

$$
0 \longrightarrow V^{\pi_{12}}\left(T^{2} M\right) \xrightarrow{i_{2}} T\left(T^{2} M\right) \xrightarrow{s_{2}} T^{2} M \times_{T M} T T M \longrightarrow 0
$$

Conversely, such a splitting determines a connection Γ on M of type 2.

Local expressions

Let (U, x^{i}) be a coordinate neighborhood of M, and (x^{2}, y^{2}, z^{i}) the induced coordinates in $\pi_{2}^{-1}(U)$. If $X \in \mathscr{X}\left(T^{2} M\right)$, in $\pi^{-1}(U)$ the local components of X are ($x^{2}, y^{2}, z^{2} ; a^{2}, b^{2}, c^{i}$). We shall separately discuss the case of a connection Γ of type 1 or of type 2 .
a) Connections of type 1 .

In this case, h being the horizontal projector of Γ, we have

$$
h X=\left(x^{2}, y^{2}, z^{2} ; \alpha^{2}, \beta^{2}, \gamma^{i}\right)
$$

where $\alpha^{j}, \beta^{\nu}, \gamma^{\jmath}$ are functions of ($x^{2}, y^{2}, z^{2} ; a^{2}, b^{2}, c^{2}$). The linearity of h implies that $\alpha^{\nu}, \beta^{j}, \gamma^{\nu}$ are also linear on a^{2}, b^{2}, c^{2}.

Since $J_{1} h=J_{1}$, we deduce $\alpha^{2}=a^{2}$. Moreover, $h J_{2}=0$, and, therefore, $\beta^{j}\left(0, a^{2}, 2 b^{i}\right)$ $=\gamma^{j}\left(0, a^{2}, 2 b^{i}\right)=0$; thus β^{\jmath} and γ^{\jmath} do not depend on b^{2} and c^{2}.

We denote

$$
\beta(x, y, z, a)=-\Gamma_{i}^{j}(x, y, z) a^{2}, \quad \gamma(x, y, z, a)=-\bar{\Gamma}_{\imath}^{\jmath}(x, y, z) a^{2}
$$

where $\Gamma_{\imath}^{\jmath}, \bar{\Gamma}_{2}^{\jmath}$ are functions on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$; then, we have

$$
h(x, y, z ; a, b, c)=\left(x, y, z ; a^{j},-\Gamma_{i}^{j} a^{2},-\bar{\Gamma}_{i}^{j} a^{i}\right)
$$

and, consequently

$$
\begin{aligned}
\Gamma(x, y, z ; a, b, c) & =(2 h-I)(x, y, z ; a, b, c) \\
& =\left(x, y, z ; a^{\jmath},-2 \Gamma_{\imath}^{\jmath} a^{2}-b^{\jmath},-2 \bar{\Gamma}_{2}^{3} a^{2}-c^{\jmath}\right)
\end{aligned}
$$

and, thus, Γ can be represented by the matrix

$$
\Gamma:\left(\begin{array}{ccc}
\delta_{i}^{\jmath} & 0 & 0 \\
-2 \Gamma_{\imath}^{\jmath} & -\delta_{i}^{\jmath} & 0 \\
-2 \bar{\Gamma}_{i}^{\jmath} & 0 & -\delta_{\imath}^{\jmath}
\end{array}\right)
$$

b) Connections of type 2 .

By similar devices, we obtain the following expression for a connection Γ of type 2

$$
\Gamma:\left(\begin{array}{ccc}
\delta_{\imath}^{\jmath} & 0 & 0 \\
0 & \delta_{\imath}^{\jmath} & 0 \\
-2 \Gamma_{2}^{j} & -2 \bar{\Gamma}_{2}^{\jmath} & -\delta_{2}^{\jmath}
\end{array}\right)
$$

§ 5. The tension of a connection.

We shall now express the non-homogeneity of a connection.
Definition 5.1. Let Γ be a connection on M (indistinctly of type 1 or 2). We shall call tension of Γ the vector 1 -form on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$, given by

$$
H=\frac{1}{2}\left[C_{2}, \Gamma\right] .
$$

Note that, if h is the horizontal projector of Γ, then

$$
H=\left[C_{2}, h\right] .
$$

Local expressions

1) Suppose Γ of type 1 . Then

$$
\begin{aligned}
H= & \left(\Gamma_{\imath}^{j}-y^{k} \frac{\partial \Gamma_{\imath}^{\jmath}}{\partial y^{k}}-2 z^{k} \frac{\partial \Gamma_{\imath}^{\jmath}}{\partial z^{k}}\right) d x^{2} \otimes \frac{\partial}{\partial y^{\jmath}} \\
& +\left(2 \bar{\Gamma}_{\imath}^{\jmath}-y^{k} \frac{\partial \bar{\Gamma}_{2}^{\jmath}}{\partial y^{k}}-2 z^{k} \frac{\partial \bar{\Gamma}_{\imath}^{\jmath}}{\partial z^{k}}\right) d x^{\imath} \otimes \frac{\partial}{\partial z^{j}}
\end{aligned}
$$

or, in a matrix form

$$
H=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\Gamma_{i}^{\jmath}-y^{k} \frac{\partial \Gamma_{i}^{j}}{\partial y^{k}}-2 z^{k} \frac{\partial \Gamma_{2}^{j}}{\partial z^{k}} & 0 & 0 \\
2 \bar{\Gamma}_{2}^{\jmath}-y^{k} \frac{\partial \bar{\Gamma}_{2}^{j}}{\partial y^{k}}-2 z^{k} \frac{\partial \bar{\Gamma}_{i}^{j}}{\partial z^{k}} & 0 & 0
\end{array}\right)
$$

2) Suppose Γ of type 2. Then

$$
\begin{aligned}
H= & \left(2 \Gamma_{\imath}^{j}-y^{k} \frac{\partial \Gamma_{\imath}^{\jmath}}{\partial y^{k}}-2 z^{k} \frac{\partial \Gamma_{\imath}^{\jmath}}{\partial z^{k}}\right) d x^{2} \otimes \frac{\partial}{\partial z^{j}} \\
& +\left(\bar{\Gamma}_{\imath}^{\jmath}-y^{k} \frac{\partial \bar{\Gamma}_{\imath}^{j}}{\partial y^{k}}-2 z^{k} \frac{\partial \bar{\Gamma}_{\imath}^{\jmath}}{\partial z^{k}}\right) d y^{\imath} \otimes \frac{\partial}{\partial z^{j}}
\end{aligned}
$$

or, in a matrix form

$$
H=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 \Gamma_{\imath}^{j}-y^{k} \frac{\partial \Gamma_{\imath}^{\jmath}}{\partial y^{k}}-2 z^{k} \frac{\partial \Gamma_{\imath}^{\jmath}}{\partial z^{k}} & \bar{\Gamma}_{\imath}^{\jmath}-y^{k} \frac{\partial \bar{\Gamma}_{\imath}^{j}}{\partial y^{k}}-2 z^{k} \frac{\partial \bar{\Gamma}_{\imath}^{\jmath}}{\partial z^{k}} & 0
\end{array}\right) .
$$

From these local expressions, we deduce the following
Proposition 5.2. Let Γ be a connection on M of type 1 (respect. of type 2). Then, the tension H of Γ is a semibasic vector 1 -form of type 2 (respect. of type 1).

Definition 5.3. A connection Γ on M is said homogeneous if its tension vanishes.

Thus, a connection Γ on M is homogeneous if Γ is an homogeneous vector 1-form.

Once more, from the local expressions above for H, we deduce that a connection Γ on M of type 1 is homogeneous if and only if the functions Γ_{z}^{j} and Γ_{2}^{\prime} are also homogeneous of degree 1 and 2 ; respectively. In the same way, Γ of type 2 is homogeneous if and only if Γ_{\imath}^{\jmath} and $\bar{\Gamma}_{2}^{\jmath}$ are homogeneous of degree 2 and 1 , respectively.

Definition 5.4. An homogeneous connection on M (indistinctly of type 1 or 2) is said linear if it is of class C^{2} on the zero cross-section.

§6. Semi-spray associated to a connection.

Proposition 6.1. To any connection Γ on M of type 1 (respect. of type 2) and tension H, there is canonically assocuated a semi-spray S of type 1 (respect. of type 2) such that the devation S^{*} of S is equal to the potentral H^{0} of H, i.e. $S^{*}=H^{0}$.

Proof. We shall discuss the case of a connection of type 1; the case of type 2 is shown by a similar device.

Let S^{\prime} be an arbitrary semi-spray of type 1 and let h denote the horizontal
projector of Γ. Let us consider the semi-spray of type 1 given by $S=h S^{\prime}$. Note that S is independent of S^{\prime}, since if $S^{\prime \prime}$ is another semi-spray of type $1, S^{\prime \prime}-S^{\prime}$ $\in V^{\pi_{2}}\left(T^{2} M\right)$, and, therefore, $h S^{\prime}=h S^{\prime \prime}$.

Thus, the semi-spray S of type 1 is canonically associated with Γ. Now, we shall prove $S^{*}=H^{0}$.

In fact

$$
H^{0}=i_{S} H=H(S)=\frac{1}{2}\left(\left[C_{2}, \Gamma S\right]-\Gamma\left[C_{2}, S\right]\right) .
$$

But

$$
\begin{aligned}
& \Gamma S=\Gamma h S^{\prime}=h S^{\prime}=S, \\
& \Gamma\left[C_{2}, S\right]=\Gamma\left(h\left[C_{2}, S\right]+v\left[C_{2}, S\right]\right)=h\left[C_{2}, S\right]-v\left[C_{2}, S\right]
\end{aligned}
$$

and

$$
0=h S^{*}=h\left(\left[C_{2}, S\right]-S\right)=h\left[C_{2}, S\right]-S .
$$

Consequently

$$
\begin{aligned}
H^{0} & =\frac{1}{2}\left(\left[C_{2}, S\right]-S+v\left[C_{2}, S\right]\right) \\
& =\frac{1}{2}\left(\left[C_{2}, S\right]-S-h\left[C_{2}, S\right]+h\left[C_{2}, S\right]+v\left[C_{2}, S\right]\right) \\
& =\left[C_{2}, S\right]-S=S^{*} .
\end{aligned}
$$

Remark. The semi-spray associated with an homogeneous connection is a spray of the same type.

Local expressions
If Γ is a connection of type 1 , its associated semi-spray S is locally expressed by

$$
S=\left(y^{\jmath},-y^{\imath} \Gamma_{\imath}^{\jmath},-y^{\imath} \bar{\Gamma}_{i}^{j}\right) .
$$

If Γ is of type 2,

$$
S=\left(y^{\jmath}, z^{j},-y^{i} \Gamma_{\imath}^{\jmath}-z^{2} \bar{\Gamma}_{2}^{j}\right) .
$$

Theorem 6.2. Let S be a semi-spray of type 2 and let us define

$$
\Gamma_{1}=\frac{1}{3}\left\{2\left[J_{2}, S\right]+2\left[\left[J_{1}, S\right], S\right]-I\right\}, \quad \Gamma_{2}=\frac{1}{3}\left\{2\left[J_{2}, S\right]+I\right\} .
$$

Then, we have:

1) Γ_{1} is a connection on M of type 1 , its associated semi-spray being

$$
\frac{1}{3}\left\{2 S+S^{*}+\left[\left[C_{1}, S\right], S\right]\right\} .
$$

2) Γ_{2} 亿s a connection on M of type 2, its assoczated semi-spray being $S+\frac{1}{3} S^{*}$.
3) If S is a spray, then
a) Γ_{1} is homogeneous and its associated spray is reduce to

$$
\frac{1}{3}\left\{2 S+\left[\left[C_{1}, S\right], S\right]\right\}
$$

b) Γ_{2} is homogeneous and its associated spray is exactly S.

Proof. 1) For every $X \in \mathscr{X}\left(T^{2} M\right)$, we have

$$
\begin{aligned}
& \Gamma_{1} X=\frac{1}{3}\left\{2 J_{2}[S, X]-2\left[S, J_{2} X\right]+2 J_{1}[S,[S, X]]-4\left[S, J_{1}[S, X]\right]\right. \\
&\left.+2\left[S,\left[S, J_{1} X\right]\right]-X\right\} .
\end{aligned}
$$

But $J_{1}\left[S, J_{2} X\right]=-J_{1} X$, hence

$$
\Gamma_{1} J_{2} X=\frac{1}{3}\left\{2 J_{2}\left[S, J_{2} X\right]+2 J_{1}\left[S,\left[S, J_{2} X\right]\right]-J_{2} X\right\}
$$

Moreover

$$
\begin{aligned}
& J_{2} X=2 J_{1}[S, X]-J_{2}\left[S, J_{2} X\right]-2 J_{1}\left[S,\left[S, J_{2} X\right]\right], \\
& J_{2}\left[S, J_{2} X\right]+2 J_{1}[S, X]=-J_{2} X
\end{aligned}
$$

and consequently

$$
\begin{aligned}
\Gamma_{1} J_{2} X & =\frac{1}{3}\left\{J_{2}\left[S, J_{2} X\right]+2 J_{1}[S, X]-2 J_{2} X\right\} \\
& =\frac{1}{3}\left(-J_{2} X-2 J_{2} X\right)=-J_{2} X
\end{aligned}
$$

On the other hand

$$
J_{1} \Gamma_{1} X=\frac{1}{3}\left\{-2 J_{1}\left[S, J_{2} X\right]-4 J_{1}\left[S, J_{1}[S, X]\right]+2 J_{1}\left[S,\left[S, J_{1} X\right]\right]-J_{1} X\right\}
$$

and, since

$$
J_{1} X=J_{1}\left[S,\left[S, J_{1} X\right]\right]-2 J_{1}\left[S, J_{1}[S, X]\right]
$$

we deduce $J_{1} \Gamma_{1} X=J_{1} X$ and, thus, Γ_{1} is a connection of type 1 .
The semi-spray associated with Γ can be calculated as follows; let h_{1} be the horizontal projector of Γ_{1}; then

$$
\begin{aligned}
h_{1} S & =\frac{1}{2}\left(I+\Gamma_{1}\right) S=\frac{1}{3}\left(S-\left[S, J_{2} S\right]+\left[S,\left[S, J_{1} S\right]\right]\right) \\
& =\frac{1}{3}\left(S-\left[S, C_{2}\right]+\left[S,\left[S, C_{1}\right]\right]\right)=\frac{1}{3}\left(S^{*}+2 S+\left[\left[C_{1}, S\right], S\right]\right)
\end{aligned}
$$

2) For Γ_{2} we have

$$
\Gamma_{2} X=\frac{1}{3}\left(2 J_{2}[S, X]-2\left[S, J_{2} X\right)+X\right)
$$

and therefore

$$
J_{2} \Gamma_{2} X=\frac{1}{3}\left\{4 J_{1}[S, X]-2 J_{2}\left[S, J_{2} X\right]+J_{2} X\right\}
$$

But

$$
4 J_{1}[S, X]-2 J_{2}\left[S, J_{2} X\right]=2 J_{2} X
$$

and, consequently,

$$
J_{2} \Gamma_{2} X=J_{2} X
$$

On the other hand

$$
\Gamma_{2} J_{1} X=\frac{1}{3}\left\{2 J_{2}\left[S, J_{1} X\right]+J_{1} X\right\}=\frac{1}{3}\left\{-4 J_{1} X+J_{1} X\right\}=-J_{1} X
$$

and, thus, Γ_{2} is a connection of type 2 .
If h_{2} denotes the horizontal projector of Γ_{2}, we obtain its associated semispray as given by

$$
\begin{aligned}
h_{2} S & =\frac{1}{2}\left(I+\Gamma_{2}\right) S=\frac{1}{2}\left(S-\frac{2}{3}\left[S, J_{2} S\right]+\frac{1}{3} S\right)=\frac{2}{3} S+\frac{1}{3}\left[C_{2}, S\right] \\
& =\frac{2}{3} S+\frac{1}{3} S+\frac{1}{3}\left[C_{2}, S\right]-\frac{1}{3} S=S+\frac{1}{3} S^{*} .
\end{aligned}
$$

3) Suppose now that S is a spray of type 2. From Jacobi's identity

$$
\left[C_{2},\left[J_{1}, S\right]\right]+\left[J_{1},\left[S, C_{2}\right]\right]+\left[S,\left[C_{2}, J_{1}\right]\right]=0
$$

from which we find

$$
\left[C_{2},\left[J_{1}, S\right]\right]+\left[J_{1}, S\right]=0
$$

and, consequently, if $H_{1}=1 / 2\left[C_{2}, \Gamma_{1}\right]$ is the tension of Γ_{1}, we obtain

$$
\begin{aligned}
6 H_{1} & =2\left[C_{2},\left[J_{2}, S\right]\right]+2\left[C_{2},\left[\left[\left[J_{1}, S\right], S\right]\right]-\left[C_{2}, I\right]\right. \\
& =2\left[C_{2},\left[\left[J_{1}, S\right], S\right]\right] .
\end{aligned}
$$

Applying once more Jacobi's identity we have

$$
\left[C_{2},\left[\left[J_{1}, S\right], S\right]\right]+\left[\left[J_{1}, S\right],\left[S, C_{2}\right]\right]+\left[S,\left[C_{2},\left[J_{1}, S\right]\right]\right]=0
$$

and thus

$$
\left[C_{2},\left[\left[J_{1}, S\right], S\right]=0\right.
$$

Analogously, if $H_{2}=1 / 2\left[C_{2}, \Gamma_{2}\right]$ is the tension of Γ_{2}, we deduce

$$
6 H_{2}=\left[C_{2}, 2\left[J_{2}, S\right]\right]+\left[C_{2}, I\right]=2\left[C_{2},\left[J_{2}, S\right]\right]
$$

and, from Jacobi's identity

$$
\left[C_{2},\left[J_{2}, S\right]\right]+\left[J_{2},\left[S, C_{2}\right]\right]+\left[S,\left[C_{2}, J_{2}\right]\right]=0
$$

or, equivalently

$$
\left[C_{2},\left[J_{2}, S\right]\right]-\left[J_{2}, S\right]-\left[S, J_{2}\right]=0 \text { i. e. }\left[C_{2},\left[J_{2}, S\right]\right]=0 .
$$

§ 7. Paths of semi-sprays and connections.

Definition 7.1. A path of a semi-spray S is a parametric curve $f: I \rightarrow M$ such that $\left(f^{\prime \prime}\right)^{\prime}=S \circ f^{\prime \prime}$ i. e., such that the canonical lift $f^{\prime \prime}$ of f to $T^{2} M$ is an integral curve of S.

If S is a spray, its paths are called geodesics.
If S is a semi-spray of type 1 , its paths are the solutions of the system of differential equations

$$
\begin{aligned}
& \frac{d^{2} x^{2}}{d t^{2}}-S_{1}^{i}\left(x, \frac{d x}{d t}, \frac{d^{2} x}{d t^{2}}\right)=0 \\
& \frac{d^{3} x^{2}}{d t^{3}}-S_{2}^{i}\left(x, \frac{d x}{d t}, \frac{d^{2} x}{d t^{2}}\right)=0
\end{aligned}
$$

The paths of a semi-spray of type 2 are the solutions of the system of differential equations

$$
\frac{d^{3} x^{2}}{d t^{3}}-S^{i}\left(x, \frac{d x}{d t}, \frac{d^{2} x}{d t^{2}}\right)=0, \quad \imath=1,2, \cdots, n .
$$

Definition 7.2. A parametric curve f in M is said path of a connection Γ on M if

$$
v^{\circ}\left(f^{\prime \prime}\right)^{\prime}=0
$$

v being the vertical projector of Γ.
If Γ is homogeneous, its paths are called geodesics.
The paths of a connection Γ of type 1 satisfy the system of differential equations

$$
\frac{d^{2} x^{3}}{d t^{2}}=-\Gamma_{i}^{3} \frac{d x^{2}}{d t}, \quad \frac{d^{3} x^{j}}{d t^{3}}=-\bar{\Gamma}_{2}^{3} \frac{d x^{2}}{d t}
$$

and if Γ is of type 2 , they satisfy

$$
\frac{d^{3} x^{3}}{d t^{3}}=-\Gamma_{2}^{3} \frac{d x^{2}}{d t}-\bar{\Gamma}_{2}^{\prime} \frac{d^{2} x^{2}}{d t^{2}} .
$$

Proposition 7.3. The paths of a connection Γ are the paths of 2 ts associated semi-spray.

The proof is an immediate consequence of the local expressions previously obtained.

§ 8. Curvature.

Definition 8.1. Let Γ be a connection on M (indistinctly of type 1 or 2). The curvature of Γ is the vector 2 -form R, differentiable C^{∞} on $\mathscr{I}^{2} M$, defined by $R=-1 / 2[h, h], h$ being the horizontal projector of Γ.

Local expressions

Let $X, Y \in x\left(T^{2} M\right)$ be locally expressed by

$$
X=\left(x^{i}, y^{2}, z^{2} ; a^{2}, b^{2}, c^{i}\right), \quad Y=\left(x^{2}, y^{2}, z^{2} ; \alpha^{2}, \beta^{2}, \gamma^{i}\right) .
$$

Then, if Γ is of type 1 , we find

$$
\begin{aligned}
R(X, Y)= & a^{2} \alpha^{j}\left(\frac{\partial \Gamma_{i}^{k}}{\partial x^{2}}-\frac{\partial \Gamma_{j}^{k}}{\partial x^{\jmath}}+\Gamma_{\partial}^{l} \frac{\partial \Gamma_{l}^{k}}{\partial y^{l}}-\Gamma_{\partial}^{l} \frac{\partial \Gamma_{j}^{k}}{\partial y^{l}}+\bar{\Gamma}_{j}^{l} \frac{\partial \Gamma_{l}^{k}}{\partial z^{l}}-\bar{\Gamma}_{i}^{l} \frac{\partial \Gamma_{j}^{k}}{\partial z^{l}}\right) \frac{\partial}{\partial y^{k}} \\
& +a^{2} \alpha^{j}\left(\frac{\partial \bar{\Gamma}_{j}^{k}}{\partial x^{2}}-\frac{\partial \bar{\Gamma}_{2}^{k}}{\partial x^{\jmath}}+\Gamma_{\jmath}^{l} \frac{\partial \bar{\Gamma}_{2}^{k}}{\partial y^{l}}-\Gamma_{\imath}^{l} \frac{\partial \bar{\Gamma}_{j}^{k}}{\partial y^{l}}+\bar{\Gamma}_{j}^{l} \frac{\partial \bar{\Gamma}_{l}^{k}}{\partial z^{l}}-\bar{\Gamma}_{\imath}^{l} \frac{\partial \bar{\Gamma}_{j}^{k}}{\partial z^{l}}\right) \frac{\partial}{\partial z^{k}} .
\end{aligned}
$$

If Γ is of type 2 , we find

$$
\begin{aligned}
R(X, Y)= & {\left[a^{\imath} \alpha^{j}\left(\frac{\partial \Gamma_{j}^{k}}{\partial x^{2}}-\frac{\partial \Gamma_{i}^{k}}{\partial x^{j}}+\Gamma_{j}^{l} \frac{\partial \Gamma_{i}^{k}}{\partial z^{l}}-\Gamma_{2}^{l} \frac{\partial \Gamma_{j}^{k}}{\partial z^{l}}\right)\right.} \\
& +b^{\imath} \beta^{j}\left(\frac{\partial \bar{\Gamma}_{j}^{k}}{\partial y^{2}}-\frac{\partial \bar{\Gamma}_{j}^{k}}{\partial y^{j}}+\bar{\Gamma}_{j}^{l} \frac{\partial \bar{\Gamma}_{i}^{k}}{\partial z^{l}}-\bar{\Gamma}_{\imath}^{l} \frac{\partial \bar{\Gamma}_{j}^{k}}{\partial z^{l}}\right) \\
& \left.+\left(a^{2} \alpha^{j}-b^{\jmath} \beta^{i}\right)\left(\frac{\partial \Gamma_{i}^{k}}{\partial y^{j}}+\frac{\partial \Gamma_{j}^{k}}{\partial x^{2}}+\Gamma_{j}^{l} \frac{\partial \Gamma_{i}^{k}}{\partial z^{l}}+\bar{\Gamma}_{j}^{l} \frac{\partial \Gamma_{i}^{k}}{\partial z^{l}}\right)\right] \cdot \frac{\partial}{\partial z^{k}} .
\end{aligned}
$$

The following proposition is easily deduced from the local expressions of the curvature.

Proposition 8.2. If Γ is a connection on M of type 1 (respectively, of type 2), the curvature of Γ is a semibasic form of type 2 (respect. of type 1).

Proposition 8.3. (Bianchi's identities) Let Γ be a connection on M (indistınctly of type 1 or 2). Then, the following identitues are verified
I. $\left[J_{1}, R\right]=\left[h,\left[J_{1}, h\right]\right]$
II. $[h, R]=0$.
$\left[J_{2}, R\right]=\left[h,\left[J_{2}, h\right]\right]$

Proof. Let us recall Jacobi's identity for vector 1-forms L, M, N :

$$
[L,[M, N]]+[M,[N, L]]+[N,[L, M]]=0 .
$$

If we put $L=J_{1}, M=N=h$, we obtain

$$
\left[J_{1},[h, h]\right]+\left[h,\left[h, J_{1}\right]\right]+\left[h,\left[J_{1}, h\right]\right]=0
$$

i. e.

$$
\left[J_{1},[h, h]\right]=-2\left[h,\left[J_{1}, h\right]\right]
$$

or, equivalently $\left[J_{1}, R\right]=\left[h,\left[J_{1}, h\right]\right]$.
In the same way, if we put $L=J_{2}, M=N=h$, we obtain $\left[J_{2}, R\right]=\left[h,\left[J_{2}, h\right]\right]$. Finally, if $M=N=L=h$, we have $[h,[h, h]]=0$, and thus $[h, R]=0$.

Proposition 8.4. Let Γ be a connection on M. Then $\left[C_{2}, R\right]=-[h, H]$.
Proof. From Jacobi's identity we obtain

$$
\left[C_{2},[h, h]\right]+\left[h,\left[h, C_{2}\right]\right]-\left[h,\left[C_{2}, h\right]\right]=0
$$

and, thus $\left[C_{2},[h, h]\right]=2\left[h,\left[C_{2}, h\right]\right]$. But $\left[C_{2}, h\right]=H$, hence $\left[C_{2}, R\right]=-[h, H]$.
Corollary 8.5. If Γ is an homogeneous connection, its curvature R is also an homogeneous vector form.

§ 9. f-structure associated with a connection.

Proposition 9.1. Let Γ be a connection on M of type 1 , with horizontal projector h. Then, there exists one and only one vector 1 -form F on $T^{2} M$, differentiable C^{∞} on $\mathscr{I}^{2} M$, such that

$$
F J^{\prime}=h, \quad F h=-J^{\prime}, \quad F J_{1}=0
$$

where $J^{\prime}=J_{2} h$.
In fact, F is well defined from these identities, and it is uniquely determined by its action on vertical and horizontal vector fields.

Local expression of F.

Let U be a coordinate neighborhood of M and (x^{2}, y^{3}, z^{i}) the induced coordinate functions on $\pi_{2}^{-1}(U)$. Then, we have

$$
\begin{aligned}
& F\left(\frac{\partial}{\partial z^{\imath}}\right)=F J_{1}\left(\frac{\partial}{\partial x^{2}}\right)=0, \\
& F\left(\frac{\partial}{\partial y^{2}}\right)=F\left(J^{\prime}\left(\frac{\partial}{\partial x^{2}}\right)+2 \Gamma_{i}^{\jmath} \frac{\partial}{\partial z^{\jmath}}\right)=F J^{\prime}\left(\frac{\partial}{\partial x^{\imath}}\right)+2 \Gamma_{i}^{j} F\left(\frac{\partial}{\partial z^{\jmath}}\right) \\
& \quad=F J^{\prime}\left(\frac{\partial}{\partial x^{2}}\right)=h\left(\frac{\partial}{\partial x^{2}}\right)=\frac{\partial}{\partial x^{2}}-\Gamma_{i}^{\jmath} \frac{\partial}{\partial y^{\jmath}}-\bar{\Gamma}_{i}^{\prime} \frac{\partial}{\partial z^{\jmath}} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
-J^{\prime}\left(\frac{\partial}{\partial x^{2}}\right) & =F h\left(\frac{\partial}{\partial x^{2}}\right)=F\left(\frac{\partial}{\partial x^{2}}-\Gamma_{i}^{\jmath} \frac{\partial}{\partial y^{\jmath}}-\bar{\Gamma}_{i}^{j} \frac{\partial}{\partial z^{j}}\right) \\
& =F\left(\frac{\partial}{\partial x^{2}}\right)-\Gamma_{\imath}^{\jmath} F\left(\frac{\partial}{\partial y^{\jmath}}\right)=F\left(\frac{\partial}{\partial x^{2}}\right)-\Gamma_{i}^{j}\left(\frac{\partial}{\partial x^{\jmath}}-\Gamma_{J}^{k} \frac{\partial}{\partial y^{k}}-\bar{\Gamma}_{j}^{k} \frac{\partial}{\partial z^{k}}\right) \\
& =F\left(\frac{\partial}{\partial x^{2}}\right)-\Gamma_{i}^{\jmath} \frac{\partial}{\partial x^{j}}+\Gamma_{\imath}^{j} \Gamma_{j}^{k} \frac{\partial}{\partial y^{k}}+\Gamma_{\imath}^{\jmath} \Gamma_{j}^{k} \frac{\partial}{\partial z^{k}}
\end{aligned}
$$

and then

$$
F\left(\frac{\partial}{\partial x^{\imath}}\right)=\Gamma_{\imath}^{\jmath} \frac{\partial}{\partial x^{\jmath}}-\left(\delta_{\imath}^{\jmath}+\Gamma_{\imath}^{k} \Gamma_{k}^{\jmath}\right) \frac{\partial}{\partial y^{\jmath}}+\left(2 \Gamma_{\imath}^{j}-\Gamma_{\imath}^{k} \bar{\Gamma}_{k}^{j}\right) \frac{\partial}{\partial z^{\jmath}} .
$$

In a matrix form, F is given by

$$
F:\left(\begin{array}{ccc}
\Gamma_{\imath}^{j} & \delta_{\imath}^{j} & 0 \\
-\delta_{i}^{j}-\Gamma_{k}^{j} \Gamma_{2}^{k} & -\Gamma_{i}^{\jmath} & 0 \\
2 \Gamma_{i}^{j}-\Gamma_{k}^{j} \Gamma_{2}^{k} & -\Gamma_{i}^{j} & 0
\end{array}\right)
$$

Proposition 9.2. The vector 1 -form F defines on $T^{2} M$ an f-structure of constant rank $2 n$, which we call the f-structure associated with connection Γ of type 1.

Proof. From the local expression above for F, it is easily derived that rank $F=2 n$ and $F^{3}+F=0$.

We shall now study the integrability of this f-structure F, following YanoIshihara [20].

Let $l=-F^{2}, m=F^{2}+I$ be the projection operators of F and $L=\operatorname{Im} l, M=\operatorname{Im} m$ denote the complementary distributions associated with l and m; they have dimension $2 n$ and n respectively.

Since $\boldsymbol{M}=V^{\pi_{12}}\left(T^{2} M\right)$, the distribution \boldsymbol{M} is always completely integrable.
Before proceeding further, we shall prove the following three lemmas.
Lemma 9.3. The vector 2 -form $\left[J^{\prime}, h\right]$ is semibasic of type 2 .
Proof. If $X, Y \in \mathscr{X}\left(T^{2} M\right)$, we have

$$
\begin{aligned}
{\left[J^{\prime}, h\right]\left(J_{2} X, Y\right) } & =J^{\prime}\left[J_{2} X, Y\right]-J^{\prime}\left[J_{2} X, h Y\right] \\
& =J^{\prime}\left[J_{2} X, h Y+v Y\right]-J^{\prime}\left[J_{2} X, h Y\right]=J^{\prime}\left[J_{2} X, v Y\right]=0
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
J_{1}\left[J^{\prime}, h\right](X, Y) & =J_{1}\left[J^{\prime} X, h Y\right]+J_{1}\left[h X, J^{\prime} Y\right]-J_{1}\left[J^{\prime} X, Y\right]-J_{1}\left[X, J^{\prime} Y\right] \\
& =J_{1}\left(\left[J^{\prime} X, h Y\right]-\left[J^{\prime} X, Y\right]\right)+J_{1}\left(\left[h X, J^{\prime} Y\right]-\left[X, J^{\prime} Y\right]\right)=0 .
\end{aligned}
$$

Lemma 9.4. The vector 2 -form $N_{J^{\prime}}=1 / 2\left[J^{\prime}, J^{\prime}\right]$ is semibasic of type 2.

Proof. If $X, Y \in \mathscr{X}\left(T^{2} M\right)$, we have

$$
N_{J^{\prime}}\left(J_{2} X, Y\right)=-J^{\prime}\left[J_{2} X, J^{\prime} Y\right]=0
$$

since $\left[J_{2} X, J^{\prime} Y\right.$] is vertical. Moreover,

$$
J_{1} N_{J^{\prime}}(X, Y)=J_{1}\left[J^{\prime} X, J^{\prime} Y\right]=0
$$

LEMMA 9.5. $\quad J_{2} \circ\left[J^{\prime}, h\right]=N_{J^{\prime}}$.
Proof. We have, for every $X, Y \in \mathscr{X}\left(T^{2} M\right)$,
$\left[J^{\prime}, h\right](X, Y)=\left[J^{\prime}, h\right](h X, h Y)$

$$
=\left[J^{\prime} X, h Y\right]+\left[h X, J^{\prime} Y\right]-J^{\prime}[h X, h Y]-h\left[J^{\prime} X, h Y\right]-h\left[h X, J^{\prime} Y\right]
$$

and then

$$
\begin{aligned}
\left(J_{2} \circ\left[J^{\prime}, h\right]\right)(X, Y)= & J_{2}\left[J^{\prime} X, h Y\right]+J_{2}\left[h X, J^{\prime} Y\right]-2 J_{1}[h X, h Y] \\
& -J^{\prime}\left[J^{\prime} X, h Y\right]-J^{\prime}\left[h X, J^{\prime} Y\right] .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
N_{J^{\prime}}(X, Y)= & N_{J^{\prime}}(h X, h Y)=\left[J^{\prime} X, J^{\prime} Y\right]-J_{2}\left[J^{\prime} X, h Y\right]-J_{2}\left[h X, J^{\prime} Y\right] \\
& +2 J_{1}[h X, h Y] .
\end{aligned}
$$

Moreover, since J_{2} is integrable

$$
0=N_{J_{2}}(h X, h Y)=\left[J^{\prime} X, J^{\prime} Y\right]-J_{2}\left[J^{\prime} X, h Y\right]-J_{2}\left[h X, J^{\prime} Y\right]+2 J_{1}[h X, h Y]
$$

and we obtain

$$
J_{2^{\circ}}\left[J^{\prime}, h\right]=N_{J^{\prime}}
$$

Theorem 9.6. Let Γ be a connection on M of type 1, with curvature form R. If the distribution L is completely integrable, $R=0$ and $\left[J^{\prime}, h\right]=0$, then the f-structure F associated with Γ is partially integrable.

Proof. For every $X, Y \in \mathscr{X}\left(T^{2} M\right)$, taking into account Lemma 9.3, we have

$$
\begin{aligned}
& {\left[J^{\prime}, h\right](X, Y)=\left[J^{\prime}, h\right](h X, h Y)} \\
& \quad=\left[J^{\prime} X, h Y\right]+\left[h X, J^{\prime} Y\right]-J^{\prime}[h X, h Y]-h\left[J^{\prime} X, h Y\right]-h\left[h X, J^{\prime} Y\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(F \circ\left[J^{\prime}, h\right]\right)(h X, h Y)= & F\left[J^{\prime} X, h Y\right]+F\left[h X, J^{\prime} Y\right]+J^{\prime}\left[J^{\prime} X, h Y\right] \\
& +J^{\prime}\left[h X, J^{\prime} Y\right]-h[h X, h Y] .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(h^{*} N_{F}\right)(X, Y) & =N_{F}(h X, h Y) \\
& =\left[J^{\prime} X, J^{\prime} Y\right]+F\left[J^{\prime} X, h Y\right]+F\left[h X, J^{\prime} Y\right]+F^{2}[h X, h Y]
\end{aligned}
$$

and

$$
N_{J^{\prime}}(X, Y)=N_{J^{\prime}}(h X, h Y)=\left[J^{\prime} X, J^{\prime} Y\right]-J^{\prime}\left[J^{\prime} X, h Y\right]-J^{\prime}\left[h X, J^{\prime} Y\right] .
$$

Since $R=0$, it follows

$$
h[h X, h Y]=[h X, h Y]
$$

and then

$$
F^{2}[h X, h Y]=-[h X, h Y] .
$$

Thus

$$
\begin{aligned}
\left(h^{*} N_{F}\right)(X, Y) & =\left[J^{\prime} X, J^{\prime} Y\right]+F\left[J^{\prime} X, h Y\right]+F\left[h X, J^{\prime} Y\right]-[h X, h Y] \\
& =\left(F_{\circ}\left[J^{\prime}, h\right]\right)(X, Y)+N_{J^{\prime}}(X, Y)=\left(F_{0}\left[J^{\prime}, h\right]+N_{J^{\prime}}\right)(X, Y)
\end{aligned}
$$

i. e.

$$
h^{*} N_{F}=F \circ\left[J^{\prime}, h\right]+N_{J},
$$

and, by using Lemma 9.5 , we deduce $h^{*} N_{F}=0$.
We also have

$$
\left(J^{\prime}\right)^{*} N_{F}(X, Y)=[h X, h Y]-F\left[h X, J^{\prime} Y\right]-F\left[J^{\prime} X, h Y\right]+F^{2}\left[J^{\prime} X, J^{\prime} Y\right]
$$

and, since $N_{J^{\prime}}=0,\left[J^{\prime} X, J^{\prime} Y\right] \in \operatorname{Im} J^{\prime}$; thus

$$
\begin{aligned}
\left(J^{*}\right) N_{F}(X, Y) & =[h X, h Y]-F\left[h X, J^{\prime} Y\right]-F\left[J^{\prime} X, h Y\right]-\left[J^{\prime} X, J^{\prime} Y\right] \\
& =-\left(h^{*} N_{F}\right)(X, Y)
\end{aligned}
$$

i. e.

$$
\left(J^{\prime}\right)^{*} N_{F}=-h^{*} N_{F}=0 .
$$

Finally, taking into account the integrability of L, and by a similar device, we obtain

$$
N_{F}\left(J^{\prime} X, h Y\right)=\left(F \circ h^{*} N_{F}\right)(X, Y)=0 .
$$

We shall now consider the case of connections of type 2 .
Proposition 9.7. Let Γ be a connection on M of type 2, with horizontal projector h. Then, there exists one and only one vector 1 -form G on $T^{2} M$, differentiable C^{∞} on $\Im^{2} M$, such that

$$
G J_{1}=h^{\prime}, \quad G h^{\prime}=-J_{1}, \quad G h(X)=0, \quad \text { if } X \oplus V^{\pi_{2}}\left(T^{2} M\right)
$$

where $h^{\prime}=h J_{2}$.

In fact, G is well defined from these identities, and it is uniquely determined by its action on vertical and horizontal vector fields.

Local expression of G.
As in the case of a connection of type 1, and by similar devices, the following expression of G in a matrix form is obtained

$$
G:\left(\begin{array}{ccc}
0 & 0 & 0 \\
\Gamma_{z}^{j} & \bar{\Gamma}_{z}^{j} & \delta_{z}^{z} \\
-\Gamma_{2}^{k} \bar{\Gamma}_{k}^{\prime} & -\delta_{2}^{\prime}-\bar{\Gamma}_{2}^{k} \bar{\Gamma}_{k}^{\prime} & -\bar{\Gamma}_{z}^{\prime}
\end{array}\right) .
$$

Proposition 9.8. The vector 1 -form G defines on $T^{2} M$ an f-structure of constant rank $2 n$, which we call the f-structure associated with connection Γ of type 2.

Proof. It is easily derived from the local expression of G above.
As before, let $l=-G^{2}, m=G^{2}+I$ be the projection operators of G and $L=\operatorname{Im} l$, $\boldsymbol{M}=\operatorname{Im} m$ denote the complementary distributions associated with l and m; they have dimension $2 n$ and n, respectively.

Lemma 9.9.
$J_{2} G=2 v$,
v being the vertical projector of Γ.
Proof. It is easily checked since

$$
J_{2} G J_{1}=J_{2} h^{\prime}=2 J_{1}, \quad J_{2} G h^{\prime}=0
$$

Lemma 9.10. The vector 2 -form $R^{\prime}=1 / 2\left[h^{\prime}, h^{\prime}\right]$ is semibasic of type 1 .
Proof. Obviously, $\left(h^{\prime}\right)^{2}=0$; then, for every $X, Y \in \mathscr{X}\left(T^{2} M\right)$,

$$
R^{\prime}(X, Y)=\left[h^{\prime} X, h^{\prime} Y\right]-h^{\prime}\left[h^{\prime} Y, Y\right]-h^{\prime}\left[X, h^{\prime} Y\right]
$$

and, hence, $R^{\prime}\left(J_{1} X, Y\right)=0$.
Moreover

$$
J_{2} R^{\prime}(X, Y)=J_{2}\left[h^{\prime} X, h^{\prime} Y\right]-2 J_{1}\left[h^{\prime} X, Y\right]-2 J_{1}\left[X, h^{\prime} Y\right]
$$

and, a simple calculation involving local coordinates leads us to

$$
J_{2} R^{\prime}(X, Y)=0 .
$$

Lemma 9.11. The vector 2 -form $\left[J_{1}, h^{\prime}\right]$ is semibasic of type 1 .
Proof. For every $X, Y \in \mathscr{X}\left(T^{2} M\right)$, we have

$$
\left[J_{1}, h^{\prime}\right]\left(J_{1} X, Y\right)=-J_{1}\left[J_{1} X, h^{\prime} Y\right]-h^{\prime}\left[J_{1} X, J_{1} Y\right]=0
$$

and, moreover,

$$
\begin{aligned}
\left(J_{2}\left[J_{1}, h^{\prime}\right]\right)(X, Y) & =J_{2}\left[J_{1} X, h^{\prime} Y\right]+J_{2}\left[h^{\prime} X, J_{1} Y\right]-2 J_{1}\left[X, J_{1} Y\right]-2 J_{1}\left[J_{1} X, Y\right] \\
& =J_{2}\left[J_{1} X, h^{\prime} Y\right]+J_{2}\left[h^{\prime} X, J_{1} Y\right]-2\left[J_{1} X, J_{1} Y\right]=0
\end{aligned}
$$

THEOREM 9.12. If the f-structure G is integrable, then $R^{\prime}=0$ and $\left[J_{1}, h^{\prime}\right]=0$.
Proof. Putting $N_{G}=1 / 2[G, G]$, we have, for every $X, Y \in \mathfrak{X}\left(T^{2} M\right)$

$$
\begin{aligned}
\left(h^{\prime}\right)^{*} N_{G}(X, Y) & =\left[J_{1} X, J_{1} Y\right]+G\left[J_{1} X, h^{\prime} Y\right]+G\left[h^{\prime} X, J_{1} Y\right]+G^{2}\left[h^{\prime} X, h^{\prime} Y\right] \\
& =\left[J_{1} X, J_{1} Y\right]+G\left[J_{1} X, h^{\prime} Y\right]+G\left[h^{\prime} X, J_{1} Y\right]-\left[h^{\prime} X, h^{\prime} Y\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
{\left[J_{1}, h^{\prime}\right](X, Y)=} & {\left[J_{1} X, h^{\prime} Y\right]+\left[h^{\prime} X, J_{1} Y\right]-J_{1}\left[X, h^{\prime} Y\right] } \\
& -J_{1}\left[h^{\prime} X, Y\right]-h^{\prime}\left[X, J_{1} Y\right]-h^{\prime}\left[J_{1} X, Y\right]
\end{aligned}
$$

and, therefore,

$$
\begin{aligned}
G\left[J_{1}, h^{\prime}\right](X, Y)= & G\left[J_{1} X, h^{\prime} Y\right]+G\left[h^{\prime} X, J_{1} Y\right]-h^{\prime}\left[X, h^{\prime} Y\right] \\
& -h^{\prime}\left[h^{\prime} X, Y\right]+\left[J_{1} X, J_{1} Y\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\left(h^{\prime}\right) * N_{G}-G \circ\left[J_{1}, h^{\prime}\right]\right)(X, Y)= & -\left[h^{\prime} X, h^{\prime} Y\right]+h^{\prime}\left[X, h^{\prime} Y\right] \\
& +h^{\prime}\left[h^{\prime} X, Y\right]=-R^{\prime}(X, Y)
\end{aligned}
$$

i. e.

$$
\left(h^{\prime}\right)^{*} N_{G}=G \circ\left[J_{1}, h^{\prime}\right]-R^{\prime}
$$

Operating J_{2} on both sides of this identity, we obtain

$$
J_{2}\left(h^{\prime}\right)^{*} N_{G}=2 v\left[J_{1}, h^{\prime}\right]=2\left[J_{1}, h^{\prime}\right]
$$

since $\left[J_{1}, h^{\prime}\right]$ and R^{\prime} are semibasic forms.
Now, the result follows from the fact that G is integrable if and only if $N_{G}=0$.

A partial converse of this theorem can be stablished as follows:
THEOREM 9.13. If $R^{\prime}=0$ and $\left[J_{1}, h^{\prime}\right]=0$, then the f-structure G is partially integ rable.

Proof. Firstly, from the proof of Theorem 9.12, we have

$$
\left(h^{\prime}\right)^{*} N_{G}=G \circ\left[J_{1}, h^{\prime}\right]=R^{\prime}
$$

and, thus

$$
\left(h^{\prime}\right) * N_{G}=0 .
$$

Secondly, for every $X, Y \in \mathscr{X}\left(T^{2} M\right)$,

$$
\begin{aligned}
N_{G}\left(h^{\prime} X, J_{1} Y\right) & =-\left[J_{1} X, h^{\prime} Y\right]-G\left[h^{\prime} X, h^{\prime} Y\right]+G\left[J_{1} X, J_{1} Y\right]-\left[h^{\prime} X, J_{1} Y\right] \\
& =\left(G \circ\left(h^{\prime}\right)^{*} N_{G}\right)(X, Y)
\end{aligned}
$$

and, then

$$
N_{G}\left(h^{\prime} X, J_{1} Y\right)=0 .
$$

Thirdly,

$$
\begin{aligned}
N_{G}\left(J_{1} X, J_{1} Y\right) & =\left[h^{\prime} X, h^{\prime} Y\right]-G\left[h^{\prime} X, J_{1} Y\right]-G\left[J_{1} X, h^{\prime} Y\right]-\left[J_{1} X, J_{1} Y\right] \\
& =-\left(h^{\prime}\right)^{*} N_{G}(X, Y)=0
\end{aligned}
$$

These three identities together imply the partial integrability of G.
Remark. Note that the vanishing of curvature R of Γ implies that of R^{\prime}; in fact

$$
\begin{aligned}
R^{\prime}(X, Y) & =R^{\prime}(h X, h Y)=\left[h^{\prime} X, h^{\prime} Y\right]-h^{\prime}\left[h^{\prime} X, h Y\right]-h^{\prime}\left[h X, h^{\prime} Y\right] \\
& =\left[h J_{2} X, h J_{2} Y\right]-h J_{2}\left[h J_{2} X, h Y\right]-h J_{2}\left[h X, h J_{2} Y\right] \\
& =h\left[J_{2} X, J_{2} Y\right]-h J_{2}\left[J_{2} X, Y\right]-h J_{2}\left[X, J_{2} Y\right]=h\left(-2 J_{1}[X, Y]\right)=0 .
\end{aligned}
$$

§ 10. Prolongation of metrics on the vertical bundles to $\mathscr{I}^{2} M$.

Let \bar{g} be a Riemannian metric on the vertical bundle $V^{\pi_{2}}\left(\mathscr{I}^{2} M\right)$. Then, fixed a point $\omega \in \mathscr{I}^{2} M$, we can define a metric \bar{g}_{ω} on $T M$ as follows:

$$
\bar{g}_{\omega}(u, v)=\bar{g}\left(h_{2}(\omega, u), h_{2}(\omega, v)\right), \quad \forall u, v \in T_{\pi_{12}(\omega)}(T M)
$$

where h_{2} is the canonical isomorphism introduced in $\S 1$.
Therefore, a Riemannian metric on the vertical bundle $V^{\pi^{2}}\left(\mathscr{G}^{2} M\right)$ can be considered as a Riemannian metric on $T M$, the latter depending not only on the point but also on a previously fixed point $\omega \in T^{2} M$, with ω non belonging to the zero cross-section.

Given on M a connection Γ of type 1 , it is possible to extend \bar{g} to the whole fibre bundle $T\left(\mathcal{E}^{2} M\right)$, that is, to a Riemannian metric g_{Γ} on $\mathscr{I}^{2} M$, by putting

$$
g_{\Gamma}(X, Y)=\bar{g}\left(J^{\prime} X, J^{\prime} Y\right)+\bar{g}(v X, v Y), \quad \forall X, Y \in \mathscr{X}\left(\mathscr{I}^{2} M\right)
$$

being h, v and J^{\prime} as defined in the previous sections.
Proposition 10.1. g_{Γ} is a Riemannian metric on $\mathscr{I}^{2} M$, which will be called the prolongation of \bar{g} along the connection Γ.

Proof. Bilinearity and symmetry of g_{Γ} are immediate. Moreover, g_{Γ} is positive definite, since

$$
g_{\Gamma}(X, X)=\bar{g}\left(J^{\prime} X, J^{\prime} Y\right)+\bar{g}(v X, v Y)
$$

and because $J^{\prime} X$ and $v X$ are simultaneously zero if and only if X is zero.
Finally, g_{Γ} extends \bar{g}, since $g_{\Gamma}\left(J_{2} X, J_{2} Y\right)=\bar{g}\left(J_{2} X, J_{2} Y\right)$ as consequence of the fact that $J^{\prime} J_{2}=J_{2} h J_{2}=0$.

Proposition 10.2. A Riemannian metric g on $\mathscr{I}^{2} M$ is the prolongation of a
 only if

1) $g(h X, v Y)=0$
2) $g(h X, h Y)=g\left(J^{\prime} X, J^{\prime} Y\right)=\bar{g}\left(J^{\prime} X, J^{\prime} Y\right), g\left(J_{2} X, J_{2} Y\right)=\bar{g}\left(J_{2} X, J_{2} Y\right)$
for every $X, Y \in \mathscr{X}\left(\mathscr{I}^{2} M\right)$.
Proof. Let g_{Γ} be the prolongation of \bar{g} along a connection Γ of type 1. Then,

$$
g_{\Gamma}(h X, v Y)=\bar{g}\left(J^{\prime} h X, J^{\prime} v Y\right)=0
$$

since $J^{\prime} v=0$. Moreover

$$
g_{\Gamma}(h X, h Y)=\bar{g}\left(J^{\prime} h X, J^{\prime} h Y\right)=\bar{g}\left(J^{\prime} X, J^{\prime} Y\right)
$$

and

$$
g_{\Gamma}\left(J_{2} X, J_{2} Y\right)=\bar{g}\left(J_{2} X, J_{2} Y\right)
$$

The converse is immediate.
Proposition 10.3. Let Γ be a connection on M of type 1 and \bar{g} a Rremannian metruc on the vertical bundle $V^{\pi_{2}}\left(\mathscr{I}^{2} M\right)$, such that $\bar{g}\left(J_{1} X, J_{2} Y\right)=0, \forall X, Y \in \mathfrak{X}\left(\mathscr{I}^{2} M\right)$. Then, the prolongation g_{Γ} of g along Γ is a hor-ehresmannian metric with respect to the f-structure F associated to Γ.

Proof. Let $l=-F^{2}, m=F^{2}+I$ be the projection operators of F. It is easily verified that

$$
g_{\Gamma}(l X, m Y)=0, \quad \forall X, Y \in \mathscr{X}\left(\mathscr{I}^{2} M\right)
$$

that is, the distribution L and \boldsymbol{M} are mutually orthogonal with respect to g_{Γ}.
Moreover,

$$
g_{\Gamma}(X, F X)=0, \quad \forall X \in \mathscr{X}\left(\mathscr{I}^{2} M\right)
$$

and, thus, g_{Γ} is hor-ehresmannian with respect to F. Note that there exist Riemannian metrics on $\mathscr{T}^{2} M$ verifying

$$
g\left(J_{1} X, J_{2} Y\right)=0, \quad \forall X, Y \in \mathscr{X}\left(\mathscr{I}^{2} M\right)
$$

In fact, given a Riemannian metric g on M, the second canonical lift g^{π} of g to $\mathscr{I}^{2} M,[20]$, makes mutually orthogonal $V^{\pi_{2}}\left(\mathscr{I}^{2} M\right)$ and $V^{\pi_{12}}\left(\mathscr{I}^{2} M\right)$.

Under the hypothesis of Proposition 10.3., g_{Γ} permits to define the fundamental form K_{Γ} by putting

$$
K_{\Gamma}(X, Y)=g_{\Gamma}(F X, Y), \quad \forall X, Y \in \mathscr{X}\left(\Im^{2} M\right)
$$

We then have
Proposition 10.4. Under the hypothesis of Proposition 10.3., the fundamental form K_{Γ} verifies

$$
K_{\Gamma}(X, Y)=g_{\Gamma}\left(X, J^{\prime} Y\right)-g_{\Gamma}\left(J^{\prime} X, Y\right), \quad \forall X, Y \in \mathfrak{X}\left(\mathscr{I}^{2} M\right)
$$

Proof. From previous definitions, we have

$$
\begin{aligned}
K_{\Gamma}(X, Y) & =g_{\Gamma}(F X, Y)=g_{\Gamma}(F h X+F v X, h Y+v Y) \\
& =g_{\Gamma}(F h X, h Y)+g_{\Gamma}(F v X, h Y)+g_{\Gamma}(F h X, v Y)+g_{\Gamma}(F v X, v Y) \\
& =-g_{\Gamma}\left(J^{\prime} X, h Y\right)+g_{\Gamma}(F v X, h Y)-g_{\Gamma}\left(J^{\prime} X, v Y\right)+g_{\Gamma}(F v X, v Y)
\end{aligned}
$$

for every $X, Y \in \mathfrak{X}\left(\mathscr{I}^{2} M\right)$.
On the other hand

$$
g_{\Gamma}\left(J^{\prime} X, h Y\right)=0
$$

since v and h are mutually orthogonal with respect to g_{Γ}. But $F v=h F$, hence

$$
g_{\Gamma}(F v X, v Y)=g_{\Gamma}(h F X, v Y)=0
$$

and, therefore

$$
K_{\Gamma}(X, Y)=g_{\Gamma}(h F X, h Y)-g_{\Gamma}\left(J^{\prime} X, v Y\right) .
$$

But

$$
g_{\Gamma}(h F X, h Y)=\bar{g}\left(J^{\prime} F X, J^{\prime} Y\right)=\bar{g}\left(v X, J^{\prime} Y\right)=g_{\Gamma}\left(v X, J^{\prime} Y\right)
$$

and, consequently,

$$
\begin{aligned}
K_{\Gamma}(X, Y) & =g_{\Gamma}\left(v X, J^{\prime} Y\right)-g_{\Gamma}\left(J^{\prime} X, v Y\right)=g_{\Gamma}\left(h X+v X, J^{\prime} Y\right)-g_{\Gamma}\left(J^{\prime} X, v Y+h Y\right) \\
& =g_{\Gamma}\left(X, J^{\prime} Y\right)-g_{\Gamma}\left(J^{\prime} X, Y\right)
\end{aligned}
$$

We shall now consider the case of the vertical bundle $V^{\pi_{12}(}\left(\mathscr{I}^{2} M\right)$. Let \bar{g} be a Riemannian metric on $V^{\pi_{12}}\left(\mathscr{G}^{2} M\right)$; as before, for a fixed point $\omega \in \mathscr{I}^{2} M$, we can define a metric \bar{g}_{ω} on M by putting

$$
\bar{g}_{\omega}(u, v)=\bar{g}\left(h_{1}(\omega, u), h_{1}(\omega, v)\right), \quad \forall u, v \in T_{\pi_{2}(\omega)}(M)
$$

where h_{1} is the canonical isomorphism introduced in §1. Thus, a Riemannian metric on the vertical bundle $V^{\pi 12}\left(\mathscr{I}^{2} M\right)$ can be considered as a Riemannian
metric on M, the latter depending not only on the point but also on a previously fixed point $\omega \in T^{2} M$, with ω non belonging to the zero cross-section.

If Γ is a connection on M of type 2, we can extend \bar{g} to the whole fibre bundle $T\left(\mathscr{I}^{2} M\right)$, that is, to a Riemannian metric g_{Γ} on $\mathscr{I}^{2} M$ by putting

$$
g_{\Gamma}(X, Y)=\bar{g}\left(J_{1} X, J_{1} Y\right)+\bar{g}(v X, v Y), \quad \forall X, Y \in \mathfrak{X}\left(\mathscr{I}^{2} M\right)
$$

Proposition 10.5. g_{Γ} is a Riemannaan metric on $\mathscr{G}^{2} M$, which will be called the prolongation of \bar{g} along the connection Γ.

We omit the proof, which is analogous to that of Proposition 10.1.
The following Propositions are all similar to those in the case of metrics on $V^{\pi_{2}}\left(\mathscr{I}^{2} M\right)$.

Proposition 10.6. A Riemannan metric g in $\mathscr{T}^{2} M$ is the prolongation of a Riemannian metric \bar{g} on the vertical bundle $V^{\pi_{12}}\left(\mathscr{I}^{2} M\right)$ along a connection Γ on M of type 2 if and only if

1) $g(h X, v Y)=0$,
2) $g(h X, h Y)=\bar{g}\left(J_{1} X, J_{1} Y\right)=g\left(J_{1} X, J_{1} Y\right)$
for every $X, Y \in \mathfrak{X}\left(\mathscr{I}^{2} M\right)$.
Proposition 10.7. Let Γ be a connection on M of type 2 and \bar{g} a Riemannian
 Γ is a hor-ehresmannian metric with respect to the f-structure G associated to Γ.

Once more, under the hypothesis of Proposition 10.7., g_{Γ} permits to define the fundamental form K_{Γ} by putting

$$
K_{\Gamma}(X, Y)=g_{\Gamma}(G X, Y), \quad \forall X, Y \in \mathscr{X}\left(\mathscr{G}^{2} M\right)
$$

We then have
Proposition 10.8. Under the hypothesis of Proposition 10.7, the fundamental form K_{Γ} verifies

$$
K_{\Gamma}(X, Y)=g_{\Gamma}(G h X, Y), \quad \forall X, Y \in \mathscr{X}\left(\mathscr{I}^{2} M\right)
$$

In partıcular,

$$
K_{\Gamma}\left(h^{\prime} X, Y\right)=-g_{\Gamma}\left(J_{1} X, Y\right), \quad K_{\Gamma}\left(J_{1} X, Y\right)=0
$$

Proof. It is proved by a similar calculation to that in the proof of Proposition 10.4.

References

[1] Ambrose-Palais-Singer, Sprays. Anais. Acad. Brasileira Ciencia, 32 (1960), 163-170.
[2] M. Berger, Lectures on geodesics in riemannian geometry. Tata Institute, Bombay (1965).
[3] F. Brickell and R.S. Clark, Differentiable Manifolds. Van Nostrand, London (1970).
[4] G. Catz, Sur le fibré tangent d'ordre 2. C. R. A. S. Parıs, 278 (1974), 277-280.
[5] G. Catz, Gerbes et connexions sur le fibré tangent d'ordre 2. C.R.A.S. Paris, 278 (1974), 347-349.
[6] L.A. Clark and M.R. Bruckheimer, Sur les estructures presque-tangentes. C. R. A. S. Parıs, 251 (1960), 627-629.
[7] P. Dazord, Sur une généralisation de la notion de spray. C. R. A. S. Parıs, 263 (1966), 543-546.
[8] P. Dombrowski, On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73-88.
[9] A. Frolicher and A. Nijenhuis, Theory of vector-valued differential forms. Proc. Kon. Ned. Akad. A, 59 (1956), 338-359.
[10] C. Godbillon, Géometrie differentiable et mecanıque analytique. Hermann, Parıs (1969).
[11] J. Grifone, Structure presque-tangente et connexions, I. Ann. Inst. Fourier, Grenoble, 22, 1, (1972), 287-334.
[12] A. Kandatu, Tangent bundle of a manifold with a non-linear connection. Koda1 Math. Sem. Rep. 18 (1966), 250-270.
[13] J. Klein, Operateurs differentiels sur les varıétés presque-tangentes. C.R.A.S. Parıs, 257 (1963), 2392-2394.
[14] S. Lang, Introduction to differentiable manifolds. Interscience Publishers. New York (1962).
[15] S. Tachibana and M. Okumura, On the almost-complex structure of tangent bundles of riemannian spaces. Tohoku Math. Jour, 14 (1962), 156-161.
[16] I. Vaisman, Connexions remarquables sur les variétés hor-ehresmanniennes. C. R. A. S. Paris, 273 (1971), 1253-1256.
[17] J. Vilms, Connections on tangent bundles. J. Differential Geometry 1 (1967), 235-243.
[18] J. Vilms, Curvature of non-linear connections. Proc. of Amer. Math. Soc. 19 (1968), 1125-1129.
[19] K. Yano and S. Ishihara, On integrability conditions of a structure f satisfying $f^{3}+f=0$. Quart. Jour. Math., Oxford, 2nd Ser., 15 (1964), 217-222.
[20] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New York (1973).

Departamento de Geometría y Topología
Facultad de Matemáticas
Universidad de Santiago de Compostela
España

