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A-SUBMANIFOLDS IN EUCLIDEAN SPACE

BY B. ROUXEL

§0. Introduction. In this paper we give a geometrical characterization of
v4-submanifolds Mn of a Euclidean space En+P using the (p—2)th polar hypersur-
face K™ of the characteristic hypersurf ace K of the normal space T^M71, m^Mn.
This leads us to other characterizations involving Lipschitz-Killing curvature and
second mean curvature. Several examples of ^4-submanifolds in E* are given.
Finally we extend the notion of ^4-submanifold in a natural way to /U-submani-
fold according to the position of the mean curvature vector with respect to K{%.

§ 1. Preliminaries.

Let Mn be an n-dimensional submanifold immersed in an (n+£)-dimensional
Euclidean space En+P. At m^Mn we choose an orthonormal frame (elf e2, •••,
en+p) such that the vectors elf •••, en span the tangent space TmMn and en+1,
•••, en+p span the normal space T^Mn. Then we have

dm=ω1e1

Jr ••• -\-ωnen,

n + p

k = l

The second fundamental form is given by

h=Έϊkιj(oιcϋJek i, 7 = 1, 2 , •••, n , k — n + l, ••• , n + p ,

and the mean curvature vector by

1 n+P

(1) H=- Σ
n fe=w+

With any normal vector e at m^Mn we associate the symmetric transformation
A(e) of TTOMπ into itself defined by

<A(eXX), Y>=<e, h(X, Y)>
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K(m, e). Mn is said to be pseudo-umbilical if M-τ-=yγ-)=λI. 74-submanifolds of
\ /I /

for all tangent vectors X, Y at m. Λ(e) is the second fundamental tensor asso-

ciated with e. The determinant of Λ(e) is the Lipschitz-Killing curvature

H

\H\

gn+p a r e ^ efln e (i a s follows [2] we consider a normal vector field u and a local

frame field such as

u=\u\en+1, | W | = < M , u>1/2.

Then the allied vector field of u is given by [2]

1 P
(2) α(tt)=— I u I Σ trace (Λ(en+1)Λ(en+r))en+r.

Π r=2

The allied mean curvature vector is α(//). If the allied mean curvature vector
a(H)=0, then M n is called an A-subrnanifold of £ n + p . (Minimal submnanifolds,
pseudo-umbilical submanifolds and hypersurfaces are v4-submanifolds of En+P).

§ 2. Polar hyperquadric of an A-submanif old.

In the case of a surface M2 in E4 the locus of the points N in which T^M2

is cut by the neighboring normal plane of M2 is a conic, which is called the
Kommerell conic. In the case of a general Mn is En+P we obtain an algebraic
hypersurface of T^Mn, denoted by K. This was studied by Perepelkine [8].
The coordinates Xr(r=l, •••, p) of a point Af belonging to T^M71 and to a neigh-
boring normal space are such that

-ωι+ Σ Xrωΐ+r=0 , z = l , ••• , n ,

and hence the equation of K is

(3) det I
r=l

(3) defines an algebraic hypersurface of degree n in T^Mn. We associate in an
intrinsic way to the couple (K, m) the successive polar hypersurfaces of K with
respect to m. Let FiX1, X2, •••, XP+1)=Q be the homogeneous equation of K.
Then the equation of the (p-s)th polar hypersurface K^ is

where the values of the partial derivatives are taken at the point m(0, 0, •••, 1).
For the (p—2)th polar hypersurface /£^ we obtain
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r, s = l , 2, '- , p,
(4) •• - 2 ( n - l ) Σ ^ r ( Σ r ? / r ) + n ( n - l ) = 0 , where

λ . μ=l, 2, •••, n .

Further the allied vector field a(en+1) is

1 P
a(en+1)=—Σl Trace ίΛ(en+1)A(en+r)3en+r >

and Trace CΛ(e n + 1 )A(e n + r ) ]=Σr2ι + 1 r? i 1 " r + Σ ^ W ; Λ, μ = l , 2, •••, π. By choos-
λ H λΦμ

ing the local frame such that -Γτ-τΓ=en+1 we get Σ Γ ? / r = 0 for r > 1, and

Trace [Λ(en+1)i4(en+r)] = - Σ n Y Y ^ r + Σ rtfXlF \ λ, μ=l, 2, •••, n.

Hence if Mra is an y4-submanifold the coefficient of XλXr in the equation of
K™ vanishes. This proves

THEOREM 1. A submamfold Mn of a Euclidean space En+P is an A-submam-
fold if and only if the mean curvature vector H determines a principal direction
of the (p—2)th polar hypersurface of K.

Remark 1. If Mn is a pseudo-umbilical submanifold of En+P with mean
curvature vector \H\en+1 then

in —/ 22 — — i n n —/ , Tλμ —u , λψμ , Λ, μ—l, z, , n

The terms independent of Xr, r>l , m the equation of K^ are,

and hence K™ is a quadratic hypercone with vertex at mΛ—en+1 and H as

principal axe.

Remark 2. Mn is minimal if and only if K^ has its center at m.

Remark 3. It is possible to give a geometric interpretation of various theo-
rems of B. Y. Chen, L. Verstraelen and K. Yano for submanifolds of codimension
2 with umbilical or quasi-umbilical normal direction. We give some examples.

If £=2, K is a curve. For an Mn umbilical w. r. t. a nonparallel normal
direction, K degenerates into two straight lines (with multiplicity 1 and n—2
respectively) [3].

If ρ=2, n>4: and Mn quasi umbilical w. r. t. a non-parallel normal direction,
K has a multiple point of order n—1 and another of order >n—3. Then K
degenerates and contains a line with multiplicity >n—3, [4].
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§ 3. Examples of ^4-submanif olds in EA.

Recently [10], G. Vranceanu studied a class of surfaces M2 in E4 called
rotation surfaces. These surfaces are defined by the following equations w. r. t.
an orthonormal system of coordinates (xlf x2, xz, XA) : Xi—r(u) cos u cos v, x2=
?'(w)cos u sin v, xs=r(u) sin u cos v, xA=r(u) sin u sin v. Now we choose a local
moving frame such that elf e2 are in the tangent plane and e3, e4 are in the
normal plane. For example, we take

—cos u

COS U

—sin u

sin u

sin

cos

sin

cos

V

V

V

V .

' B

B

C

C

' —sin

sin

cos

_ cos

COS V

sin v

cos v

sm v

_ 1

u sin v '

M cos z;

w sin v

u cos z}

—Ccos

—C sin

B cos

5 sin

ί;

V

V

where . 4 = V r 2 + r / 2 , B=r'cos u — r sin u, C—r' sin tί + ?- cos u. Then, with ω1^

r dv and ω 2 = V r 2 + r / 2 du , we get

" Vr2+r'2~'
r 3 — A r 3 —
I 12 — U , / 2 2 —

-rr"+2r/2Jrr2

rii=o, rίί=-7=^5=, rϊί=o

Hence we have immediately

Theorem 2. Rotation surfaces of E4 are Asubmanifolds.

Remark 1. When r = £ α w we obtain pseudo-umbilical submanifolds of E4 and
from ωl=ωί it follows that these submanifolds are flat.

Remark 2. It is possible to give others examples of A-submanifolds of E4.
For instance R. Calapso [1] studied the M2 of E4 for which K is a circle and
proved that such M2 posses a conjugate net of Voss of special type (type c).
These submanifolds are yl-submamfolds and have constant Lipschitz-Killing cur-
vature at m. L. N. Krivonosov proved that surfaces in E4 for which K is a
circle are in normal correspondance with minimal surfaces of E4[Ί~].
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§4. Lipschitz-killing" curvature of .^-surfaces.

For a surface M2 of E2+p the UΓ-variety is an hyperquadric. The Lipschitz-
Killing curvature in the direction of the unit normal vector e{xx, x2, •••, xp) is
given by

K(m, e)=άet

The K-variety has two common points with the line N=m+pe. These points
are determined by the roots ρlf ρ2 of the equation

det = 0 .

Then K{m, e)— . It is well known that for a hyperquadric has ex-
pip2 Pip2

tremal values when e determines a principal direction. This proves

THEOREM 3. A surface M2 in E2+p is an A-submamfold if and only if the
Lipchitz-killing curvature has an extremal value in the direction of the mean
curvature vector.

This result is analogous to a theorem of C. S. Houh for pseudoumbilical sur-
faces [6]. In the case of rotation surfaces of EA the Lipschitz-Killing curvature
for g=cos #£3+sin θeA is

, 2 r 2 + 3 r / 2 - r r / /

 2 Λ 1
K(jnf e)= {r2+rnγ cos8β ^X^r

K(m, e) has maximal value if 2 r 2 + 3 r / 2 - r r / / > 0 and minimal value if 2 r 2 + 3 r / 2 -
r r " < 0 . It is possible to construct examples for the two cases. For instance if
r=cos u, K(m, e) has maximal value in the direction of the mean curvature
vector. If r=u~a/5\ Kim, e) has minimal value in the direction of the mean
curvature vector for some values of u. This is a counterexample to a lemma of
C. S. Houh in [6].

If 2r2+3r / 2—rr"=0, the rotation surfaces are special minimal surfaces (R-
surfaces) studied by Eisenhart [5].

It is possible to generalize theorem 3 to Mn in En+P as follows.

THEOREM 4. A submanifold Mn in En+P is an A-submanifold if and if the
second mean curvature has an extremal value in the direction of the mean cur-
vature vector.

Proof. Let klt •••, kp be the principal curvatures of Mn w. r. t. a normal
unit vector e. The /th mean curvature of Mn w. r. t. e is defined by [2].



186 B. ROUXEL

By the geometric properties of polar hypersurfaces [9] we see that the point
m-\-pe of Km are determined by the equation

%-£] \ p

Hence

——=ΈkιkJ=(ξ)λf2(e).

The theorem follows now at once.

§ 5. ,4 ^-submanifolds.

Let A be the symmetric square matrix of order p associated with the (p—2)
th polar hypersurface K%\ Let Eλ% be the eigenspace associated with each
eigenvalue λ% of A we get a decomposition of T^M71 into an orthogonal direct
sum Eλl® ••• ®Eλs. We denote by k the number of nonzero projections of H
on the eigenspaces Eλi. A submanifold Mn of En+P is said to be an Ak-sub-
manifold of En+P if k is the integer associated with the mean curvature vector
H of Mn.

^40-submanifolds are minimal submanifolds. /Irsubmanifolds are the A-
submanifolds. Each submanifold of En+P is an A &-submanifold for some k with
O^k^p. Now we prove the following theorem on product submanifolds.

THEOREM 5. // MWl(resp. Mnχ) is an Akl — (resp. an Ak[) submanifold of

Eni+Pl(re$p. En{+p[) then the product Mn^xMn{ is an Ak-submanιfold of £wi+*i

χEn'ί+p>1 with k^pi+pί.

Proof. Let ^(resp. A[) the symmetric square matrix of order pλ associated
with the polar hypersurface K{^ of K in T^Mni. There exist kλ eigenvectors
of Aλ denoted by ξu •••, ξkl such that

There exist an orthonormal set of pλ vectors such that eni+ί is collinear
with the mean curvature vector H1 of Mni, en+r(r=l, •••, kλ) belong to the vector
space spanned by ξlf •••, ξkl, and en+s(s=k1+lf ••• , pλ) are eigenvectors of Aλ.
We can then write Ax as
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where aλ is a symmetric square matrix of order k± and aλ is a diagonal matrix
of order pί—kx. The same construction may be done for Λ[ and a short calcula-
tion shows that the matrix A associated with the polar hyperquadric of MniX
Mn[ is

aλ . : 77'
• 0

A=

1

where γ= Σ ^ 3 and ;-'= ΣrίV+1

1 = 1 1=1

The mean curvature vector of MnιxMn>ι is given by H=- , v / c w + 1 ,
n\-\r yi\

γ'en'ι+i). In the general case A(H) belongs to a linear space of dimension kλ-\-k[

orthogonal to the eigenvectors ξkl+i, •••, ξPl, ζkΊ+i, •••, ξpΊ of yl. Thus M n i x M n ί

is an ^4^-submanifold with k^k^kί and theorem 5 is proved.

Remark. If &!—0 then γ=0 (MUί is minimal) and k — k[.
If k!=kί=l then αα and αj are (1, 1) matrices and

A(H)=-
1

we have A(H)=μH if and only if

But by (4) r ' ϊ - α ί = ( Σ r , r x ) ! - J ( Σ Ir2ί+Ir2i«+1

So

The product of two A-submanifolds is an A-submanifold if and only if
Trace U(en i + 1))2=Trace(i4(eni+i))2[B.Y. Chen [2]]. In the other cases the
product of two A-submani folds is an A2-submanιfold.

This gives a method to construct examples of τ42-submanifolds. Most of
these results can be extended to Riemannian spaces.

The author would like to express his hearty thanks to Professor L. Vanhecke
for valuable conversations about this paper.
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