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A-SUBMANIFOLDS IN EUCLIDEAN SPACE

By B. ROUXEL

§0. Introduction. In this paper we give a geometrical characterization of
A-submanifolds M™ of a Euclidean space E™*? using the (p—2)th polar hypersur-
face K2 of the characteristic hypersurface K of the normal space THM™", mes M™
This leads us to other characterizations involving Lipschitz-Killing curvature and
second mean curvature. Several examples of A-submanifolds in E* are given.
Finally we extend the notion of A-submanifold in a natural way to A,-submani-
fold according to the position of the mean curvature vector with respect to K.

§1. Preliminaries.

Let M™ be an n-dimensional submanifold immersed in an (n+4 p)-dimensional
Euclidean space E™"?. At meM™ we choose an orthonormal frame (e, e, -+,
en+p) such that the vectors ey, -+, ¢, span the tangent space T,M" and e¢,.1,
“*, @n+p Span the normal space 757 M™ Then we have

dm=w'e;+ -+ +w"e,,

n+p
de,= glcu{e] , w+wi=0,

n
wl= > rhot.
k=1
The second fundamental form is given by

/’l:ZT]f (l)l(()]ek 1, ]:17 2’ N, k:n+1’ e n+p)
J

and the mean curvature vector by

—1 n+D .
® =, 2 (Zri)e

With any normal vector ¢ at me M™ we associate the symmetric transformation
A(e) of T,,M" into itself defined by

CA(e)(X), Y)={e, (X, Y))
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for all tangent vectors X, Y at m. A(e) is the second fundamental tensor asso-
ciated with e. The determinant of A(e) is the Lipschitz-Killing curvature

q_
|H|
E™*? are defined as follows [2]; we consider a normal vector field # and a local
frame field such as

K(m, ¢). M™ is said to be pseudo-umbilical if A( ):u. A-submanifolds of

U=|u|ensr, [ul=<u, ud*.

Then the allied vector field of u is given by [2]

) awy=—-lu| ¥ trace (Aler.) Alensenss.

The allied mean curvature vector is a(H). If the allied mean curvature vector
a(H)=0, then M™ is called an A-submanifold of E™*?., (Minimal submnanifolds,
pseudo-umbilical submanifolds and hypersurfaces are A-submanifolds of E"*?).

§2. Polar hyperquadric of an A-submanifold.

In the case of a surface M? in E* the locus of the points N in which 75 M?*
is cut by the neighboring normal plane of M? is a conic, which is called the
Kommerell conic. In the case of a general M™ is E™*? we obtain an algebraic
hypersurface of T3M™ denoted by K. This was studied by Perepelkine [8].
The coordinates X"(r=1, ---, p) of a point N belonging to T#M™ and to a neigh-
boring normal space are such that

—w“{-ré Xo®=0, 1=1, -, n,
and hence the equation of K is
3) det | i; Xrynr—g,,| =0.
(3) defines an algebraic hypersurface of degree n in T M". We associate in an
intrinsic way to the couple (K, m) the successive polar hypersurfaces of K with

respect to m. Let F(X!, X2 ---, X?*')=0 be the homogeneous equation of K.
Then the equation of the (p—s)th polar hypersurface K is

$) XTJL)SF(Xl e, XPry=0
=1 0Xr o o
where the values of the partial derivatives are taken at the point m(0, 0, ---, 1).

For the (p—2)th polar hypersurface K» we obtain

T

s[@ B o —enon |+ 2 x| 3 - |
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r, s=1,2, -, p,
4 - =2n—1) 2 X (XrH)+n(n—1)=0, where
T r Aop=1,2, -, n.

Further the allied vector field a(e,.;) is
12 ..
a(enJrl):;;Z ’1 race [A(en+1)A(en+r)]en+r ’

and Trace [A(en) Alens) 1= 270707+ 2730155 4 p=1, 2, »+, n. By choos-
A

ing the local frame such that Tﬁlf—:enﬂ we get Er}lﬁzo for »>1, and

Trace [ Alens) Alensr))=— 3 7575+ D157 2, p=1,2, =, n.

Hence if M" is an A-submanifold the coefficient of X'X" in the equation of
K@ vanishes. This proves

THEOREM 1. A submanifold M™ of a Euclidean space E™*? 1s an A-submani-
fold 1f and only 1f the mean curvature vector H determines a principal direction
of the (p—2)th polar hypersurface of K.

Remark 1. If M™ is a pseudo-umbilical submanifold of E™*? with mean
curvature vector |H|e,., then

TU=TR = e == 1 =05 A e A, p=12, 0, n
The terms independent of X7, »>1, in the equation of K% are,

nn—Dyr(X)?—2n(n—1r X +n(n—D=n(n—1)(FX*—1)?,

. . . 1
and hence K® is a quadratic hypercone with vertex at m+7en+1 and H as

principal axe.
Remark 2. M™ is minimal if and only if K has its center at m.

Remark 3. It is possible to give a geometric interpretation of various theo-
rems of B.Y. Chen, L. Verstraelen and K. Yano for submanifolds of codimension
2 with umbilical or quasi-umbilical normal direction. We give some examples.

If p=2, K is a curve. For an M"™ umbilical w. r.t. a nonparallel normal
direction, K degenerates into two straight lines (with multiplicity 1 and n—2
respectively) [3].

If p=2, n>4 and M™ quasi umbilical w.r.t. a non-parallel normal direction,
K has a multiple point of order n—1 and another of order >n—3. Then K
degenerates and contains a line with multiplicity >»n—3, [4].
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§3. Examples of 4-submanifolds in E£*.

Recently [10], G. Vranceanu studied a class of surfaces M? in E* called
rotation surfaces. These surfaces are defined by the following equations w.r.t.
an orthonormal system of coordinates (xi, xs, X3, x4): x;=7(%) COS 1 COS U, X,=
r(u)cos © sin v, x;=r(u)sin u cos v, x,—»(u)sinu sin v. Now we choose a local
moving frame such that e, ¢, are in the tangent plane and e, ¢, are in the
normal plane. For example, we take

—cos © sin v ( Bcos v 1 —Ccos v
COS 1 COS ¥ 1| Bsinv ‘ 1| —Csinv

o —sinu sinv | e2~Z! Ccos v I’ ea:Z‘ Beosv |
sin « cos v l Csin v I Bsinv

[ —sinu sin v

sin u cos v
e4= . »
cos u sin v

—CGS U4 COS V

where A=+/7*+7"%, B=¢'cos u—rsinu, C=7’sin u+rcosu«. Then, with w'=
r dv and 0=+ Fr’*du, we get

1 — " - 2r 2y
ﬁl:W, 73:=0, ngz‘m;iz)s/zﬁ
—1
Th=0, M= e Th=0
w‘;’:wg:—li—/_“it
Vi

Hence we have immediately
Theorem 2. Rotation surfaces of E* are A-submanifolds.

Remark 1. When r=e¢** we obtain pseudo-umbilical submanifolds of £* and
from w?=w}i it follows that these submanifolds are flat.

Remark 2. 1t is possible to give others examples of A-submanifolds of E*.
For instance R. Calapso [1] studied the M? of E* for which K is a circle and
proved that such M? posses a conjugate net of Voss of special type (type ¢).
These submanifolds are A-submanifolds and have constant Lipschitz-Killing cur-
vature at m. L.N. Krivonosov proved that surfaces in E* for which K is a
circle are in normal correspondance with minimal surfaces of E*[7].
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§4. Lipschitz-killing curvature of A-surfaces.

For a surface M? of E®*? the K-variety is an hyperquadric. The Lipschitz-
Killing curvature in the direction of the unit normal vector e(x?, x2, ---, x?) is
given by

.

K(m, e)=det :é}lﬁ,xr

The K-variety has two common points with the line N=m+pe. These points
are determined by the roots p;, p. of the equation

Y4
det]Z_‘,lpx’rIj—élj =0.

It is well known that for a hyperquadric L has ex-
0102 P10z

tremal values when e determines a principal direction. This proves

Then K(m, e)=

THEOREM 3. A surface M?* in E**? 1s an A-submanifold if and only if the
Lipchitz-killing curvature has an extremal value wn the dirvection of the mean
curvature vector.

This result is analogous to a theorem of C.S. Houh for pseudoumbilical sur-
faces [6]. In the case of rotation surfaces of E* the Lipschitz-Killing curvature
for e=cos fe;-+sin fe, is

2 12 e 1

K(m, e)=~%—{:%—w-coszﬁ—m R
K(m, ¢) has maximal value if 2r2+37">—rr” >0 and minimal value if 2r°-+3r"%*—
rr”<0. It is possible to construct examples for the two cases. For instance if
r=cos u, K(m, ¢) has maximal value in the direction of the mean curvature
vector. If r=u-Y/® K(m, ¢) has minimal value in the direction of the mean
curvature vector for some values of u. This is a counterexample to a lemma of
C.S. Houh in [6].

If 2r24-3r"2—rr”=0, the rotation surfaces are special minimal surfaces (R-
surfaces) studied by Eisenhart [5].

It is possible to generalize theorem 3 to M™ in E"*? as follows.

THEOREM 4. A submamfold M™ in E™? 15 an A-submanifold if and 1f the
second mean curvature has an extremal value in the direction of the mean cur-
vature vector.

Proof. Let k,, ---, k, be the principal curvatures of M™ w.r.t. a normal
unit vector e. The [th mean curvature of M™ w.r.t. e is defined by [2].
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(D )M@=2 ko

By the geometric properties of polar hypersurfaces [9] we see that the point
m+-pe of K are determined by the equation

Hence
1 o (P\y,
7,04“027 = E] kL/?]——< 5 )N[Z(e) .
The theorem follows now at once.

§5. A,-submanifolds.

Let A be the symmetric square matrix of order p associated with the (p—2)
th polar hypersurface K. Let FE,, be the eigenspace associated with each
eigenvalue A, of A; we get a decomposition of 7#M™ into an orthogonal direct
sum E; @ - PE;,. We denote by k the number of nonzero projections of H
on the eigenspaces £;,. A submanifold M"™ of E™*? is said to be an A,-sub-
manifold of E**? if k is the integer associated with the mean curvature vector
H of M™.

Aq-submanifolds are minimal submanifolds. A,-submanifolds are the A-
submanifolds. Each submanifold of E**? is an A,-submanifold for some % with
0<k<p. Now we prove the following theorem on product submanifolds.

THEOREM 5. [If M™(resp. M"I) 1s an Ag,—(resp. an Arp) submanifold of
Em+1(resp. E™*PY) then the product M™XM™ 1s an Ay-submanifold of Em™+p
X E™*Pt ynth k= pitph

Proof. Let Ay(resp. A]) the symmetric square matrix of order p, associated

with the polar hypersurface K of K in T;M™. There exist k, eigenvectors
of A, denoted by &, --+, &, such that

k
Hy= éhifl, h,+0.

There exist an orthonormal set of p, vectors such that e,.; 1s collinear
with the mean curvature vector H, of M™, ¢, (r=1, ---, k;) belong to the vector
space spanned by &, -+, &, and en.(s=Fk,+1, ---, p)) are eigenvectors of A,.
We can then write A, as
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where a, is a symmetric square matrix of order k; and a, is a diagonal matrix
of order p,—k,. The same construction may be done for A} and a short calcula-
tion shows that the matrix A associated with the polar hyperquadric of M™ X

M™ is

a, 7T
........................ 0
a;
A=] oo TRPTOURUUUUE AP &
770 aj
aj

where 7= Erflﬂ and j'= ‘_foiﬂ-

The mean curvature vector of M™xM™ is given by H= _fl_ o (Tenrit
1

7’enj+1). In the general case A(H) belongs to a linear space of dlmensmn kit k]

orthogonal to the eigenvectors &, 11, -+, &5, Exis1, =+, Epj of A. Thus Mrix M™
is an A,-submanifold with 2=<%,-+ %, and theorem 5 is proved.

Remark. 1f k;=0 then y=0(M™ is minimal) and k=Fk].
If ky=Fk{=1 then a; and «] are (1, 1) matrices and

A(H)= {ar+77"2)en, 1+ (a7 775 eni+1}

_
ny+ng
we have A(H)=uH if and only if
a7t =ritad.
n1+1

But by (4) 7*—ai=( Zri") = B 43—

_ E(T”‘+l)+ Z (3P =Trace (A(en,+1))* .

So

The product of two A-submanmifolds 1s an A-submanifold 1f and only 1if
Trace (A(en,+1))*=Trace (A(exi+1))?[B. Y. Chen [2]]. In the other cases the
product of two A-submanifolds s an As-submanifold.

This gives a method to construct examples of A,-submanifolds. Most of
these results can be extended to Riemannian spaces.
The author would like to express his hearty thanks to Professor L. Vanhecke

for valuable conversations about this paper.
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