U-H. KI, J.S. PAK AND Y. H. KIM
KODAI MATH. J.
4 (1981), 137—151

GENERIC SUBMANIFOLDS OF COMPLEX PROJECTIVE
SPACES WITH PARALLEL MEAN CURVATURE VECTOR

Dedicated to Professor Shigeru Ishihara on his sixtieth birthday
By U-HANG K1, JIN SUK PAK AND YOUNG HO KiM

A submanifold M of a Kaehlerian manifold M is called a generic submanifold
(an anti-holomorphic submanifold) if the normal space Np(M) of M at any point
PeM is always mapped into the tangent space T (M) under the action of the
almost complex structure tensor F of the ambient manifold, that is, FNp(M)C
Te(M) for all PeM (see [4], [9], [10] and [12]). The typical examples of
generic submanifolds are real hypersurfaces of a Kaehlerian manifold. So many
authors, for example, Kon [127], Okumura [9], Pak [9] and Yano [12] etc., have
studied generic submanifolds of a Kaehlerian manifold by using the method of
Riemannian fibre bundles and developed this method of Lawson [2], Maeda [5]
or Okumura [8] extensively for real hypersurfaces.

In particular, two of the present authors [4] have studied generic submani-
folds with parallel mean curvature vector of an even-dimensional Euclidean space
under the condition that the f-structure induced on M is normal (see section 2).

The purpose of the present paper is to characterize generic submanifolds of
complex projective space CP™.

In §1, we investigate fundamental properties and structure equations for
generic submanifolds immersed in a complex projective space CP™. And we find
the condition that the f-structure induced on M is normal.

In §2, we recall the theory of fibrations and some relations between the
second fundamental tensor of M in CP™ and that of M=#"(M) in S*™*! and

’

then establish some equations for the connections in the normal bundles of M and
of M, where % is the projection induced from the Hopf-fibrations S'—S2m+1—CP™,

In the last §3, we characterize generic submanifolds of a complex projective
space CP™ by the method of Riemannian fibration. In characterizing the sub-

manifolds, we shall use the following theorem:

THEOREM A ([111). Let M be a complete n-dimensional submanifold of S™
with flat normal connection. If the second fundamental form of M 1s parallel,
then M 1s a small sphere, a great spheve or a pythagorean product of a certain
number of spheres. Moreover, 1f M 1s of essential codimension m—n, then M 1s
a pythagorean product of the form
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SPHr)X o XSPN(ry), ri*t o Aryt=1, N=m—n+1,
or a pythagorean product of the form

SPUpr )X oo XSSP (ry )TS™ I ()TS™, 24 - Fry =121, N=m—n.
Manifolds, submanifolds, geometric objects and mappings we discuss in this

paper are assumed to be differentiable and of C*, We use in the present paper
the systems of indices as follows:

£ g, v, 2=1,2, -, 2m+1; h,, j, k=12, -, 2m,

a, B,7,0,e=1,2, -, n+l; a,b ¢ d e=12--,n,

u, v, w, x, v, z=1,2, -, p, n+p=2m.

The summation convention will be used with respect to those systems of indices.

§1. Generic submanifolds of Kaehlerian manifolds.

Let M be a 2m-dimensional Kaehlerian manifold covered by a system of co-
ordinate neighborhoods {U; y*} and denote by g, components of the Hermitian
metric tensor and by F,* those of the almost complex structure of M. Then we
have

(1.1) FfEM=—0},
(1.2) thplsgts:gjl ,

0" being the Kronecker delta.
And denoting by V, the operator of covariant differentiation with respect to
g1, We get

(1.3) V;F,"=0.

Let M be an n-dimensional Riemannian manifold covered by a system of
coordinate neigllborhoods {U; x%} and immersed isometrically in M by the im-
mersionNz: M—M. We identify (M) with M itself and represent the immersion
1: M—M by
(1.4) yr=yMx)

We put
(15) Bbh:abyh » ab:a/axb
and denote by C,* mutually orthogonal unit normals to M. Then denoting by

ge the fundamental metric tensor of M, we have g,=g;:B./’By* since the immer-
sion is isometric. Therefore, denoting by V. the operator of van der Waerden-
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Bortolotti covariant differentiation with respect to g, equations of Gauss and
Weingarten for M are given by

(1.6) VB =he,*C" ’
(17) Vcczh:'—hcazBah

respectively, where h.* are the second fundamental tensors with respect to the
normals C,"* and h¢®;=hepoh**=he?!g%gys, g,.=C,’C,'g,; being the metric ten-
sor of the normal bundle of M and (g°%)=(gy.)" "

Equations of Gauss, Codazzi and Ricci are respectively given by

(1.8) chba:KkjihB’fzjclbufz—i_hdazhcbz—hcaxhdbz ,
(1.9) Kkjithjcl})th:vdhcbz_vchdbz ’
(110) chyx::KkjihBlc?ljccyzczh_!_hdexhcey_hcezhdey ’

where BY¥,=DBq"B By B%, B,:ijcib:Bdch]Bbly Bah:Bb]gbagjhy C’”nZCy]g“g;h,
and K,;.,* and Kg4.,” are the curvature tensor of M and that of the connection
induced in the normal bundle of M respectively.

From now on, we consider generic submanifolds of a Kaehlerian manifold M.

Then we can put in each neighborhood
(1.11) F]th]:fcaBah_“fcICzh ’

(1.12) FrCl=f,"B,",

where 7. is a tensor field of type (1.1) defined on M, f.* that of mixed type

and fxa:fcygcagyx-
Applying F to (1.11) and (1.12) respectively and using (1.1) and those equa-

tions, we can easily find

(1.13) fcefea:_ag+fczfza ,
(1.14) fEfet=0,  f.°f.*=0,
(1.15) feof ,=0% .

Therefere, equations (1.13)~(1.15) show that M admits the so-called f-structure

satisfying f*-+/=0 (cf. [6] and [7] etc.).
Using F,;=—F,,, F;=F,"g.», we have from (1.11) and (1.12),

(116) fcb: '_fbc » fcz:fzc ’

where we have put fo=/c"gsa, foa=/1"8ys and fz=F3"Zoq.
If we apply the operator V. of the covariant differentiation to (1.11) and take

account of (1.3), then we obtain
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Fthchb]:(vcfba)Bah+fbacha,h_(vcfbx>cxh_"fbxvccxh ’
or, substituting (1.6) and (1.7),

(117) vcfba:hcblfza_hsaxfbx ’
(1.18) vcfbx:hcexfbe .

By the same way we have from (1.12)

(1.19) vcfxa:hcexfae s
(1.20) Sothoe' =hy® o f oY

with the help of (1.6) and (1.7).
We now assume that the ambient manifold M is of constant holomorphic
sectional curvature ¢. Then it is well known that its curvature tensor K,,;” has

the form

(1.21) Ky = %(ﬁﬁgﬁ—ﬁgkﬁ—Fk”Fj~—F]"F“—2Fk,Fl") .

Therefore, substituting (1.21) into (1.8), (1.9) and (1.10), we can See that the equa-
tions of Gauss, Codazzi and Ricci are respectively given by

(1.22) chba:‘%(B%gcb_5(clgdb+fdafcb_fcafdb—Zfdcfba)+hdazhcbx_hcuxhdbz )
(1.23) Vaho=Veha™= (= oot S k2 0l i),

(1.24) chyx:“fr(fdxfcy_fcl‘fdy)"i_ hdexhcey—hcezhdey .

We now consider a tensor field S of type (1, 2) of the form

Scba:[f; f]cba+(vcfbx_vbfcz)fxa s
where

I:fr f]cba :fcevefba—fbevefca _(vcfbe_vbfce)fea

is the Nijenhuis tensor formed with f.%.
Substituting (1.17) and (1.18) into this, we find

(125) Scba:(hce.rfea_“fceheax>fbx_(hbexfea __fbe//leaa:)f(lr .
The induced f-structure on M is said to be normal if S.* vanishes identically
(cf. [4]).

The left hand side of (1.25) does not depend on the choice of the unit normals
C,". Indeed, if we choose another set of mutually orthogonal unit normals 'C,",

then we have
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(1.26) 'Cyt=0,YC,",

(6,%) being a special orthogonal matrix of degree 2m—n.
Defining the second fundamental tensor 'h.,° with respect to ‘C,* by V.B,"
="h,*'C.", then we have from (1.6) and (1.26)
(127) /hcbzzo.ylhcby .
Also, we have from (1.11) and (1.26)

Ifcx:nyfc'y
Consequently we have

(hcexfea "‘fceheax)fbx_<hbexfea _fbehea r)fcz
:(,hcexfea—fce/heax)lfbr_'(/hbexfea“fbe'heaz)lfcx

because of ¢,’¢,.=4g,,. This shows that the condition imposed on M is of
intrinsic character.
Suppose that S.,* vanishes identically on M, we have from (1.25)

(hcezfea—fcehear)fbx_(hbezfea _'fbeheax)fczzo ’

from which, transvecting f°v,
haeyfhe+ hbeyfae:hce:cfaefcyfbx »

from which, taking the skew-symmetric part and then transvecting f.°, we get

heeafof °¥=0.
Therefore, we obtain

(1.28) hbezfae+llaesze: .

Hence we have

PROPOSITION 1.1. Let M be a generic submanifold of a Kaehlerian manifold
M. In order for the f-structure wnduced on M to be normal, it 1s necessary and
sufficient that the second fundamental tensors h.,” and f.* commute.

§2. Submersion 7:S5?™*1-CP™ and immersion :: M—CP™.

Let S*™*X(1) be the hypersphere {(c?, -+, c™)|[c!|2+ - +[c™[2=1} of
radius 1 in the (m-1)-dimensional complex space C™*!, which will be identified
naturally with R*™*b. The sphere S?™*(1) will be simply denoted by S2™*!.
Let #:S5*™*'—CP™ be the natural projection of S?™*! onto a complex projective
space CP™ which is defined by the Hopf-fibration.

We consider a Riemannian submersion z: M—M compatible with the Hopf-

fibration % : S*™*'—>CP™, where M is a submanifold of codimension p in CP™ and
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M=#""(M) that of S*™*!. More precisely speaking, =:M—M is a Riemannian
submersion with totally geodesic fibres such that the following diagram is com-
mutative :

]\'/'[ L > Gam+l

M_—_—' 5 cpr

where 1: M—S*™*' and 1: M—CP™ are certain isometric immersions.
Covering S*™*! by a system of coordinate neighborhoods {U; y*} such that
#O)=U are coordinate neighborhoods of CP™ with local coordinate (y"), we

~

represent the projection 7: S*"**'—CP™ by

2.1 yh=y"(y*)
and put
(2.2) Elr=0y",  0,=0/0y",

the rank of the matrix (E,*) being always 2m.

Let’s denote by £* components of & the unit Sasakian structure vector in
S*m+1 Since the unit vector field € is always tangent to the fibre z-(P), Pe
CP™ everywhere, E,* and £, form a local coframe in S?™*!, where {,=g,,£" and
g.. denote the Riemannian metric tensor of S*™*!. We denote by {E*, &} the
frame corresponding to the coframe {E,", £}. We then have

(2.3) EJE =0, EJ&=0, &E"=0.

We now take coordinate neighborhoods {U; %%} of M such that =(0)=U are
coordinate neighborhoods of M with local coordinate (x?%). Let the 1sometric
immersions ¢ and : be locally expressed by y*=y%(x*) and y"=y"(x?) in terms
of local coordinates (x2) in U (CM) and (x%) in U (C M) respectively. Then the
commutativity #oi=:1>x of the diagram implies

Y (x )=y (x)),
where we expressed the submersion = by x*=x% x%) locally, and hence
(2.4) BJEL*=E/B.",
B,'=04y’, B.,"=0,y* and E,*=0,x°.
For an arbitrary point P=M we choose unit normal vector fields C,” to M

defined in a neighborhood U of P in such a way that {B,’, C.’} spans the tangent
space of CP™ at {(P). Let P be an arbitrary point of the fibre z'(P) over P
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then the lifts C,*=C,’E*; of C,’ are unit normal vector fields to M defined 1n
the tubular neighborhood over U because of (2.4). Since &E,=0, we can repre-
sent by

(2.5) Er=£4DB, ",
where &7 is a local vector field in M. Using (2.4) and (2.5), we find
(2.6) £89=1, &YE,*=0,

where §a=5'3gﬂa and gs. is the Riemannian metric tensor of M induced from
that of S2™*!, Therefore, {E,% &,} is a local coframe in M induced from that of
S2m+1 - Denote by {E%,, £%} the frame corresponding to this coframe {E.%, &.},
we have

(2.7) EabEaa:‘sZ » EaEab:()r
and consequently
(28) Eijb]:anEab
with the help of (2.4) and (2.6).
. A 1 « a . )
Denoting by {/J ,,}’ { ]f {‘3 7’} and {c b} the Christoffel symbols formed

7 R
with the Riemannian metric g.1, g1, g5« and g, respectively, we put

D#Eﬂ:a;,Ef——{‘uk Z}E”h}—{] " i}E,/E;" ,

D,,Eﬂ:a‘,,E‘m'—{#zﬁ}E"i—{]h i}E,,JEXh,

and

VoE= L] JEet ) JESES

- a . c
Since the metrics g;, and g.3 are both invariant with respect to the submersions
# and & respectively, the van der Waerden-Bortolotti covariant derivatives of
E;*, E* and E.,*, E%, are given by

D#Ef:/l]l(E,f]éz —f—é/zElj) i
(2.9) . .

D‘,,Elf——/‘ljiE/zjfl*llzJSyEZJ B

vﬁEaa:hba<Eﬁb$a+§,ﬁEab) ’
(2.10) =

Vs B =hp B —h"6 s E%,
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respectively, where h, =h; g, hy*=hy.g®, h; and h,, being the structure ten-

sors induced from the submersions # and = respectively (see Ishihara and Koni-
shi [37).

On the other hand the equations of Gauss and Weingarten for the immersion
1: M—S*™*! are given by

(211) VﬁBaE:hﬁaxcx’c N ﬁﬁcz”:*hﬁnzBaE N
and those for the immersion 1: M—CP™ by
(212) vbBah:hbazczh ’ vbcxh:_hbazBah ’

where h;%.=hg '8 "gyz hpa” and hy,® are the second fundamental tensors of M
and M with respect to the unit normals C,* and C,* respectively. Moreover, in
such a case, (2.4) and (2.8) imply

VD: E”bv .

We now put F,*=D,&* Then we have by definition of the Sasakian structure

(2~13> F#XFK#:—(%“’ N;:é/1 ) F#Réu:o, éXF‘uX:O; F/LZ"I‘FZp:O
and
<2-14) D#Fxﬁzéxéz—éﬁgm ) D‘uéIz:F/lX’

where F,;=g.,F,*. Denoting by £ the Lie differentiation with respect to the
vector field &, we find

(2.15) LF,2=0.
Putting in each neighborhood U
(2.16) Fjl:F#ZE#JEll’

we can see that F," defines a global tensor field of the same type of F,*, which
will be denoted by the same letter, with the help of (2.15), .,L’E1]:0 and LE;*
=0. Moreover, using (2.9), (2.14) and (2.16), we easily see

2.17) Fr=—h,

which satisfies

(2.18) FrFyt=—0}.

Differentiating (2.6) covariantly along CP™ and using (2.9) and (2.14), we have
(2.19) V.F,*=0

where V denotes the projection of D. Hence the base space CP™ admits a
Kaehlerian structure {F, g;;} which is represented by the structure tensor h,
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of the submersion #:S*™*'—CP™ defined by the Hopf-fibration.

Let’s denote by K,C,,,,’I and K,;;" components of the curvature tensors of
(S*™*1 g,.) and (CP™, g;;) respectively. Since the unit sphere is a space of con-
stant curvature 1, using the equations of co-Gauss, we have

Kkjih: ,;‘u;ZEKkE#jEleAIL‘F/lkh/’lﬂ—h]hhki—Z}lk]hlh
and together with (2.17)
Kkjih:&’;gji"’l;;‘gki+FkhF]t‘F;thi‘2ijth-

Hence CP™ is a Kaehlerian manifold with constant holomorphic sectional curva-
ture 4 (cf. Ishihara and Konishi [37]).
Putting

(220> FtthlszaBah_fbrczh , thcxl:fzaBah ’

as already shown in §1, we can easily find the algebraic relations (1.13)~(1.16)
are the structure equations (1.17)f\:(1.24)_with ¢=4 which will be very useful.
Now we put in each neighborhood U of M

(2.21) fﬂaszaEﬁbEaa . fxa:fxaEaa ’ faI:fazEaa »

where here and in the sequel we denote the lifts of functions by the same letters
as those the given functions. Then, using (2.4), (2.8), (2.20) and (2.21) and taking
account of C,*=C,’E*, we obtain

(222) F/tha'u:faﬁBﬂx—faxcxx ’
(2.23) F‘uxcx,u:fxaBax .

Transvecting F.* to (2.22) and (2.23) respectively and using (2.13), (2.22) and (2.23)
in the usual way, we can easily obtain that

(2.24) TP =—05+foPfa"+E.E7,
(2.25) F°=0,  fJf;%=0,
(2.26) [of =61,

(2.27) fd&=0, &f=0,
(2.28) =0,  &fJ7=0,
(2.29) foa=—Fapr Jar=[za,

where we have put fa=/5"8ra faz=Sa' &y fra:fxﬁgﬁa. Applying the operator
VﬂzBﬁ"DK to (2.22) and (2.23) respectively and making use of (2.11), (2.14), (2.22)
and (2.23), we also find

(2.30) Vo 5%=— 856 +08E s+ hys™f o — Ay oS5 .
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(2.31) vﬁfazzhﬁrxfar » vﬂfza: "hﬂrzfra P
(2.32) hﬂayfxa:hﬁazfay .

Also, applying the operator Vﬂ to (2.5) and taking account of (2.11) and (2.14), we
have

(2.33) Veb*=fp%,  Ehga"=—[5",  h5"Ef=—f.",
which and (2.9) and (2.21) imply
(2.34) fba:'—hba .

Moreover, in such a submanifold A, equations of Gauss, Codazzi and Ricci are
respectively given by

(235) Ka,ﬁ"zﬁggrﬁ—5;’g55+h5“x/17.3’—hr"zh,;,g” s
(2.36) Vihsa® = shsa™=0,
(2.37) Kgay™=hg"hay—hay"hs"y,

where Kj 3% and Kj,,“ are components of the curvature tensor of A/ and those
of the normal bundle of M respectively because the ambient manifold S*™*! is a

space of constant curvature 1.
Now we apply the operator VD:B,,JV,:ET,,V,. to (2.4). Then, using (2.11) and
(2.12), we have

hpa*Co'E o+ B ENLE o * =By E* (D ,EJ)B "+ EJE yho"C."
from which, taking account of (2.9), (2.10) and (2.34),
hoo*Co B —fo* Ba'6a=—F By'éat(hga" EP)C,7
or, using (2.20),
(2.38) hsa"Efy=hya"E " —f,"Eq .
Transvecting (2.38) with E,” and changing the index 7 with 3, we get
(2.39) hga®=hp " EE S —f576a—Esfo”

with the help of (2.21) and (2.33).
Thus we have

LEMMA 2.1. The mean curvature of M s the same as that of M.

Therefore, from now on, we write h1.,°* and h,** as the same letter A~
Moreover, the mean curvature vector M is given by
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f — 171‘ K
He=— 2 Rt

The mean curvature vector H is said to be parallel in the normal bundle of M
if Vﬁh’”:O. Hence, as a direct consequence of Lemma 2.1, we have

LEMMA 2.2. The mean curvature vector of M is parallel in the normal bundle
of M if and only 1f the mean curvature vector of M 1s parallel in the normal
bundle of M.

Transvecting 4,4, to (2.39) and using (2.21), (2.26), (2.28) and (2.38) imply
(240) /’lﬂrxhﬂry:(hba‘zhcay—f‘fbrfcy)EﬁbEac—hbarfyaEﬁbéa

- hbayfaIEﬁEab_l"(frxfyr)gﬂga ’
which and (1.20) gives

hﬁrxhary_harzhﬁry:(fdxfcy#fczfdy+hdexhcey*hcex/’ldey)EﬂdEac s
that is,
Kgay"=Kaey"E*EL" .
Thus we obtain
LEMMA 2.3. In order that the connection wn the normal bundle of M wn S2m+1

1s flat, 1t 15 necessary and sufficient that the connection 1n the novmal bundle of
M wm CP™ 1s flat.

§3. Generic submanifolds of a complex projective space admitting the
normal f-structure.

In this section we assume that the f-structure induced on M in CP™ is normal
and the normal connection of M is flat, that is,

3.1 hbezfae"’“haeszezo
and
(32) fdzfcy—fczfdy_l’hdexhcey—‘hcezhdey:o

with the help of (1.24) with c¢=4.
Transvecting (3.1) with . and making use of (1.13), we obtain

hcbx—(llbexfyc)fcy+hdexfcdfbe: )
from which, taking the skew-symmetric part with respect to ¢ and b,
(hcezfye)fby—_(hbexfye)fcy:() .

Transvection f,¢ gives
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(3.3) hoe™f 4= Py."f"
where we have put
(3~4) Pyzz:hcbxfycfzb .

Putting P,,,=P,.,"guws Wwe see that P,,, is symmetric for all indices be-
cause of (1.20) and (3.4). Also, transvecting (3.2) with f,° and using (3.3), we
find

szuPuwxfdw—quIwaufdw’:affdy—fdzgyz y
or, using (1.15),

(35) szuPuwI‘quxwauzazzgyw_az)gyz ’
from which,
(36) quxPyxu:PzPyzx"l'(p—l)gyz,

where we have put
3.7 Pr=g¥?pP, ">,
Now we prove

LEMMA 3.1. Let M be an n-dimensional gemeric submanifold of CP™ with
flat normal connection. If the f-structure induced on M is normal, then we have

(3.8) hga®hy®y=Py,"hg"+ 85107 -

Proof. Differentiating (3.3) covariantly along M and then taking the skew-
symmetric part of what obtained thus, we have

(vchbex‘vbhcex)fye"_hcexhbayfae—hbexhcayfae
:(vcPyzx)sz—(vbpyzx)fcz"l_ Pyzzhcesze—Pyzzhbezfce

with the help of (1.18). Substituting (1.23) with ¢=4 and making use of (3.2),
then it must be that

(39) zfcbag+2hcezhaeyfba:(VcPyzx>sz_<vbpyzz)fcz+2Pythcesze
with the help of (3.1). Transvecting (3.9) with f,° and using (1.14) and (1.15),

VcP‘wa:fwb(vbezx)fcz .
Therefore (3.9) reduces to

(310) fcbaf/"" hcemhaeyfba: Pyzzhceszc
with the help of P,,°=P,,®. Transvecting (3.10) with f,°, we have

(311) (gcd—fczfdz)ag—hcexhdey"f"hcexhaeyfdzfza:'_Pythcdz"E_ Pythcezfdwfwe .
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Taking account of (3.3) and (3.5), then (3.11) gives

(Gea—fefa)0f—hee ha®y+ Puwu® Poyfo'f "

=—=Py hed® o ay—05 " eat Puwu® Py f *f " .
Consequently, we obtain
(3.12) hee®ho®y= Py, hey*+ Geu0y—fc"foy
Substitution (3.12) into (2.41) yields
hga®hy®y=P,,"hgy*+ g5,0%

with the help of (2.21), (2.39) and (3.3). This completes the proof of our lemma.
On the other hand, by the straightforward computation we get

(3.13) ha®f1%4 hya®f 5%=0

with the help of (2.24), (2.25), (2.26), (2.27), (2.39) and (3.1). Transvection (2.39)
with f,% gives

(3.14) hﬂaxfya:Pyzxfﬁzvagéﬁ
with the help of (2.21) and (3.3), from which, transvecting f,?, we find
(3.15) Py =hg."f,Pf.”,

or, transvecting gv?,
(3.16) Pr=hgf,ffve.
Now, differentiating (3.13) covariantly and using (2.31), we find
(Vsh 5™ W1+ hpa™(— 80r& “+08&+ R 4 — hs®y 1)+ (Vahya™)f 5
Fhra®(— 85550585 hop¥f y*—hs%y [ 5¥)=0,

or, using (2.33), (3.8) and (3.14),
(Vohpa™)f*+Tshar™)f =0,

from which, taking the skew-symmetric part with respect to the indices ¢ and §,
(Vshra™)f g5 —Tghya®)f54=0

since the ambient manifold S®*™*! is a space of constant curvature 1. Hence the
last two equations imply (V,hp,%)f5%=0, from which, transvecting f.°, we find

V]’hﬂsz:(vrhﬁax)feyfya_I—(vrhﬁaz)gega

by virtue of (2.24). Transvection this equation with gf¢ gives
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ikt =V o™ PV +(Trhga™)EPE™ .
By the straightforward computation, we find
(Vrhga®)ePE*=0

because of (2.28) and (2.33). Consequently, we have
(3.17) Vrh*=(V;hga ") PV, .

If we differentiate (3.16) covariantly and use (3.17), then we obtain

Y PP=N 0"+ ko™ (Vo f B0y hga ™YY %

or, substitute (2.25) and make use of (3.14), we get

T, P*=Y,h".
Thus we have

LEMMA 3.2. Under the same assumptions as those stated in Lemma 3.1, we
have

(3.18) ¥, Pr=V,h".
Next, we prove

LEMMA 3.3. Under the same assumptions as those stated in Lemma 3.1, we
have

1 - = -
(3.19) 7A(h,sa’”hﬂ“x)z(vﬂvah’”)hﬁ“ﬁIIV,h,sa’”llZ,

where A 1s the Laplacian gwen by A=g'*V,Vp.

Proof. From the Ricci identity, we have
(3.20) Vi hpa®—VgVah®=Kgrho *— Ksparh'*®
with the help of (2.36), where K, is the Ricci tensor given by
(3.21) Kg=ngp+h"hge—hgahy%

by virtue of (2.35). If we transvect (3.20) with #2#¢, and take account of (2.37),
(3.8) and (3.21), then we find

(vrvrhlga’”)hﬂ%—(ﬁﬁvah”)hﬁ"‘x:O

with the help of (3.6). Therefore, we have the Laplacian of the length of the
second fundamental tensors hg,” as follows:

1 = = -
-Z—A(hﬂazhﬂ“x):(vﬁvahz)hﬁaz'f‘||v7hﬁaIH2 .
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Thus we complete the proof of this lemma.

If the mean curvature vector of M is parallel in the normal bundle, then it
follows that the mean curvature vector of M is also parallel in the normal bundle
by means of Lemma 2.2. Therefore, hﬁa”hﬁ%:h,Pz—l—(n—}—l)p, which is induced
from (3.8), is a constant along M because of (3.18). Hence (3.19) reduces to
V,hs."=0. Since M is of essential codimension 2m—n and does not admit um-
bilical sections because of (3.14), combining with Theorem A is §0, we have

THEOREM 3.4. Let M be an n-dimensional complete generic submanifold of a
complex projective space CP™ with flat normal connection. If the f-structure
wmduced on M 1s normal and i1f the mean curvature vector of M 1s parallel wn the
normal bundle, then M 1s of the form

7(SPry) X -+ XSPN(ry)), b1, -+, py are odd numbers =1,

Pt pet o tpy=n+l, rit+rit+ - +ri=1, N=2m—n+1,

where S?i(r,) is a p-dimensional sphere with radius r,.

(107
(11]

(12]
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