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THE SPECTRUM OF THE LAPLACIAN FOR

SOME 6-DIMENSIONAL iΓ-SPACES

BY TAKUJI SATO

1. Introduction.

Let (M, g) be a compact orientable Riemannian manifold with metric tensor
g. By Δ we denote the Laplacian acting on differentiable functions on M. Then
we have the spectrum

Spec(M, g)= {O^λ^λz^ y— 00}

where each eigenvalue is repeated as many time as its multiplicity indicates. The
spectrum Spec(M, g) exerts an influence on the geometry of (M, g). It is inter-
esting to see the relation of Spec(M, g) on the geometry of (M, g). For the
study of this, M. Berger and T. Sakai used the coefficients of the asymptotic
expansion of Minakshisundaram-Pleijel. In [6], after a long calculation, Sakai
obtained the following

THEOREM A. Let (M, g) and {M', gr) be compact connected orientable Einstein
manifolds, with dimension M=β. We assume that X(M)=X(M/) and Spec(M, g) =
Spec(M', g') hold where X(M) denotes the Euler-Poincare characteristic of M.
Then (M, g) is locally symmetric if and only if (M', gf) is locally symmetric.

In the present paper, we shall prove the following

THEOREM B. Let (M, g, J) and (M'f gf, /') be ^-dimensional complete, con-
nected K-spaces which are non-Kdhlenan. We assume that X(M)=X(M/) and
Spec(M, g)=Spec(M', gf). Then (M, g) is Riemannian locally ^-symmetric if and
only if (iW, gf) is Riemannian locally ^-symmetric.

It is well-known that the β-dimensional non-Kahler /f-space (M, g, J) is an
Einstein manifold with positive scalar curvature [5]. Therefore M is compact
by Myers' theorem. The study of Riemannian 3-symmetric space has been done
by A. Gray [4]. We shall give some definitions and preliminary facts on
Riemannian 3-symmetric spaces in § 2. Particularly we shall show the relationship
between Riemannian 3-symmetric spaces and homogeneous if-spaces. In § 3, we
shall prove Theorem B by slight modification of the proof of Theorem A.
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2. Riemannian 3-symmetric spaces.

Throughout this paper, manifolds and tensor fields are assumed to be of class
C°° unless otherwise specified.

Let (M, g) be a Riemannian manifold with Riemannian connection 7. By
R~(Rabcd)> Ri-(Rab) and 5 we denote the Riemannian curvature tensor, the
Ricci curvature tensor and the scalar curvature, respectively.

Suppose that (M, g) admits a local isometry θp: UP~>UP for each point p of
M such that

ii) p is an isolated fixed point of θ p,
iii) the tensor field θ defined by θp=(dθp)p is C°°.

Then we can define an almost complex structure / by

(2.1)

where Ip denotes the identity of TP(M). Since each θp is an isometry, the
Riemannian metric g is almost Hermitian with respect to /. Furthermore, we
assume

iv) each θp is holomorphic with respect to /, i. e.,

dθp°J~J°dθp on Up.

DEFINITION 1. A Riemannian manifold (M, g) is called a Riemannian locally
Asymmetric space if (M, g) admits a family of local isometries {θp} satisfying
the above conditions i), ii), iii) and iv). An almost complex structure / defined
by (2.1) is said to be a canonical one.

DEFINITION 2. A Riemannian locally 3-symmetric space (M, g) is called a
Riemannian Asymmetric space if each θp can be extended to a global holomorphic
isometry of M.

As an example, we shall consider the β-dimensional unit sphere S6. Let C
be the Cayley algebra and E be a set of all pure imaginary Cayley numbers.
Then E can be identified with the 7-dimensional Euclidean space. For any two
points x, y of E, the inner product {x, y) and the vector product xXy are
defined by

—(x> jy)—the real part of xy,

xXy=the imaginary part of xy,

where xy is a product of x and y in C. The β-dimensional unit sphere S6 is
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the set of all x^E such that (x, x)=l. For any point a of S6, we define a map
θa : S 6 - S 6 by

n / \ % , N 1 . V 3

Then we can check by straightforward computation that θa*—l and a is an
isolated fixed point of θa. With this family {θa} and a canonical metric g0,
(SG, go) becomes a Riemannian 3-symmetric space. It may be verified that the
canonical almost complex structure / 0 of this family coincides with the one
constructed by A. Frδlicher [2], and hence (S6, g0, Jo) becomes a if-space [3].

DEFINITION 3. Let (M, g, J) be an almost Hermitian manifold. A tensor
field T of type (1, 2) on M is called a homogeneous structure if it satisfies

(a) (ΊXR)(Y, Z)=IT(X), R(Y, Zy\-R{T(X)Y, Z)-R(Y, T(X)Z),
(b) φ
(c) 7
(d) g(T(X)Y, Z)+g{Y, T(X)Z)=0.

In [8], Sekigawa proved the following

THEOREM 2.1. Let (M, ^ , /) όe α homogeneous almost Hermitian manifold.
Then, there exists a homogeneous structure T on M. Conversely, if a connected,
simply connected, complete almost Hermitian manifold (M, g, J) admits a homo-
geneous structure T, then (M, g, J) is a homogeneous almost Hermitian manifold.

Now let (M, g, J) be a iΓ-space. We put

(2.2) j

The tensor field T plays an important role in a /ί-space. It has been shown
that T always satisfies the conditions (b), (c), (d) for the homogeneous structure
[9]. Hence we shall consider only the condition (a). We define a tensor field
L of type (1, 4) by

L(X, Y, Z)=(ΊXRXY, Z)-lf(X), R(Y, Z)1 + R(T(X)Y, Z)+R(Y, f(X)Z).

Obviously, L=0 means that the tensor field f satisfies (a). In the case of
dimM=6, Sekigawa has calculated in his paper [9] the square of the length of
L. By \P\2 we denote the square of the length of a tensor P.

THEOREM 2.2. Let (M, g, J) be a complete 6-dimensιonal complete non-Kahler
K-space. Then we have

where dM denotes the volume element of (M, g).



132 TAKUJI SATO

As for the relation between Riemannian 3-symmetric spaces and homogeneous
K-spaces, the present author [7] proved the following

THEOREM. 2.3. Let (M, g, J) be a complete, connected and simply connected
K-space. Then (M, g, J) is a homogeneous almost Hermitian manifold with
homogeneous structure T if and only if (M, g) is a Riemannian ^-symmetric space
with canonical almost complex structure J.

We shall remark that the proof of the above theorem in [7] actually yields
the following slightly more precise result.

THEOREM 2.4. Let (M, g, J) be a complete and connected K-space. Then the
tensor field T is the homogeneous structure of (M, g, J) if and only if (M, g) is
a Riemannian locally ^-symmetric space with canonical almost complex structure /.

3. Proof of Theorem B.

We first prove two lemmas. We put

R=RabcdRab

uvRCcLuv,

R=RabcdRa

u

c

vRbudv.

LEMMA 3.1. Let (M, g) be a compact onentable Einstein manifold of dimen-
sion β. Then we have

(3.1) ( RdM=]-\
JM 4 JM

Proof From the computation, we get the following Lichnerowicz's formula.

(3.2) -jΔ( I R12)= I Vi? 12+4/?αδcdVαVctfδd

+2RuvRu

abcRυabc-R-4R.

If (Mf g) is β-dimensional Einsteinian, (3.2) is reduced to

(3.3) jA(\Rn=\VR\2+jS\R\*-R-4R.

Applying Green's theorem to (3.3), we get (3.1).
Making use of Lemma 3.1, we obtain the following formula (3.4) due to

Sakai [6].

LEMMA 3.2. Let (M, g) be a compact onentable Einstein manifold of dimen-
sion 6. The Euler-Poincare characteristic X(M) is given by
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(3.4)

Proof. In a β-dimensional compact orientable Riemannian manifold, it is
well-known that X(M) is given by

CS8—12SIi?21
a+3S

M

+24RabRcdRabcd-24RuυRu

abcRvab

-\-2R-8RabcdRa

u

c

vRbvdu-]dM.

By using the Bianchi's identity repeatedly, we get

Thus we have

+24RabRcdRacbd-24RuvRu

abcRυabc

SR+iRldM.
In Einsteinian case,

(3.5)

Therefore (3.4) is obtained from (3.5) and (3.1).

We now proceed to prove the theorem. We need the asymptotic expansion
of Minakshisundaram-Pleijel for Spec(M, g) given by

Σ expWAί)~(4Λ:0~m/2Cαo+αiί + α2ί2+ ] ,

where m=dimM. The coeflficients a0, a1} a2 and α3 have been computed by
Berger [1] and Sakai [6] :

(3.6) α0=Vol(M),

(3.7) 0 i=-M 5 dM>
Ό JM

(3.8) α «= 360 }M

(3 9) β = τ
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9090 R
1 ΔlV nab pcd jp ° Όuυ p a

6S acbd β^"

1 21

It may be noticed that instead of Spec(M, £)=Spec(M', g'), we mainly use
ai=at

/ for z=0, 1, 2, 3.
Since the β-dimensional non-Kahler /ί-space is an Einsteinian, the coefficients

a, are rewritten

(3.6)'

(3.7)'

(3.8)'

(3.9)'

α0=Vol(M),

"clM

From these, aι=aι

/ imply

(3.10) Vol(M)=Vol(M/),

(3.11) 5 = S r ,

(3.12) f |i?|26/M=f I ^ I ^ M ' ,
J iW J M'

(3.13) J M [ ^ ^ -

By Lemma 3.2, we have

Considering (3.10)—(3.12) and Theorem 2.2, Z(M)=X(M/) implies
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(3.14) \ \L\2dM=\ \L'\2dM'.
J M J M'

Theorem B now follows from Theorem 2.4.

In the course of the proof, we established the following

COROLLARY 3.3. Let (M, g, J) and (M', g', J') be ^-dimensional complete and
connected K-spaces which are non-Kdhlenan. We assume that Spec(M, g)=
Spec(M/, g'). //

f RdM=[ R'dM' or \ R dA4=\ R'dM'
JM JM' JM JM>

is satisfied, then (M, g) is Riemannian locally ^-symmetric if and only if (M', g;)
is Riemannian locally ^-symmetric.

We shall conclude this paper by noticing the following

PROPOSITION 3.4. Let (M, g, J) be a ^-dimensional complete and connected
K-space which is non-Kdhlenan. Then we have

?\2-j5Sή]dM

with equality holding if and only if (M, g) is a Riemannian locally ^-symmetric
space.

Proof. By Lemma 3.2,

\ \lR\2dM— — 192ττ3%(M)+ —\
JM Δ JM

From this and Theorem 2.2, we have
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