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Summary

Historically we have treated many multivariate discrete data which did not
have an unimodal probability density. We consider that we need to develope a
new method analyzing these data. It is not so easy to make convenient tables
of these multivariate discrete distributions. The treat of data is different every
underlying distributions. It is important that it is better to develop the structure
of discrete data and to use the personal computer which have recently been near
ourself than before to get the statistical utilizable levels and regions than to wait
the finish of general theory and its statistical tables. And under some hypothesis
of structure we can simulate the data by computer and may be able todecide
the hypotheses is true or not. It is a dynamic system of statistical decision
theory.

In this paper we attempt to generalize the multivariate Poisson distribution
and to investigate the detail of structure. Our purpose is to keep some of the
property of Poisson distribution and to enlarge the class of Poisson distribution
which we can treat.

Notations and Definitions

n positive integer, dimension.

N sample size.

X=(X,, X,, -+, X,) n dimensional random vector.

x=(xy, Xs, ***, Xn) oObservation of X.

1=y, Ta, =+, In) n dimensional vector with components of non-negative
integers. We also use j and k.

p(x, ) usual univariate Poisson density with parameter A.

s=(Sy, Sz, ***, Su) n dimensional vector.

B, p:) multivariate Bernoulli distribution.

B(N, p;) multivariate binomial distribution.

PQ,) multivariate Poisson distribution.
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Main Results

In this main results we attempt systematically to develop and represent a gen-
eralized multivariate Poisson distribution and to discuss the structure of the dis-

tribution.

1. GENERALIZED MULTIVARIATE BERNOULLI DISTRIBUTION GB(1, p.).
An usual multivariate Bernoulli distribution is defined by P(X=j)=p, where ;
is a n dimensional vector with components 0 or 1 and p, satisfies p;=0 and
>,p;=1. To generalize this Bernoulli distribution we have to replace the vector
j with components 0 or 1 by the vector ¢ with components of 0,1,2, .
Generalized multivariate Bernoulli distribution will be defined by P(X=i)=2p;
where p;=0 and X,p;=1. We shall denote this distribution as GB(1, p,).
The moment generating function (m.g.f.) is given by

g(s)ZZLpisllls2l2 sntn .
The mean vector E(X) is given by

E(X)=23i,p: (j=L1,2, -, n),
or
EX)=(Zii1ps Zitadir =+, Dilnbs)

We can denote this mean vector as >;ip;, then
EX)=2ap:.

The covariance matrix of GB(1, p,) is given by

Cov (X, Xp)=3sts1ppi—(Zst, p)(Zits Ps)
Var (Xj):ziijzpi_(zii;pi)z .

The marginal distribution of this generalized multivariate Bernoulli distribution
is also a generalized degenerated multivariated Bernoulli distribution.
Note. >, means the sum of all terms of varying .

2. GENERALIZED MULTIVARIATE BINOMIAL DISTRIBUTION GB(Y, p.).
Generalized multivariate binomial distribution will be defined by convolution
of N independent observations of GB(1, p,). The probability density is given by

N!

H‘a 1 Hzpz%:
(2ad M

P(X'—‘—‘k):Zal Siai=kt
Ziaz1=k;
Zia50n=kp
195=
a;20 1integer
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where % is a n dimensional vector with nonnegative components of integers and
the notation >} means to sum up all terms verying integer ¢;=0 with the condi-
tions denoted after a,. The m.g.f. of this distribution is given by

gn(8)=[g(s)1¥=[Z.pis*]".

The marginal distribution of this distribution is also a degenerated generalized
multivariate binomial distribution.
The mean values and the covariance of our GB(Y, p;) will be given by

E(X)=NX,pi,

Cov (ij Xk):N[(Eiljikpi>—(21i1pi)(2i1kpi)]
and
Var (X)=N[(Z:i,2p)— i, 0]

3. GENERALIZED MULTIVARIATE POISSON DISTRIBUTION GP(Z,).

In this section, a generalized multivariate Poisson distribution will be intro-
duced as a limiting distribution of our GB(V, p;). To get a limiting distribution
we have to assume that only a finite number of p; including p, are positive such
that Np;=2,>0 (i#0) and another p; equal to zero. In this assumption 2, (1#0)
are nonnegative fixed parameters. Exactly we have to denote p,(N) instead of
ps in our assumptions. So that our assumption about p; becomes

p(N)>0 and Npi(N)=2;=0,

where A, are nonnegative fixed parameters and the number # of positive 2, will
be assumed as finite.

If a random variable Xy has this generalized multivariate binomial distribution
GB(N, pi«(N)) and we assume

Do(N)>0 and Np«(N)=2,=0

2{i: Np:(N)=2,>0} <o0
then we can derive that

lim P(Xy=k)=a, ;. T Ha, 1)
Zia;1p=ky
Ziaztn=ky

Zia4=
a;20 1integer

where p(a,, 4,) is an usual univariate Poisson probability density. The notation
> means the sum of the products with a, varying nonnegative integer and satis-
fying the denoted n-+1 equalities. For the simplicity of notation we write the
restriction including n-+1 equalities as *.

THEOREM 1. If a sequence of random variables Xy has a sequence of distri-
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butions GB(N, p:(N)) (N=1, 2, ---) respectively and we assume that N—co and
Do(N)>0, Np(N)=2,=0 and ${1: 2,>0} <oo, then weh ave a limiting distribution

llm P(XN k) 2‘17,* Hp(a‘u A )

Proof. From our assumption that X, has a distribution GB(N, p,(IV)), we
can express

N!
P(Xy=k)=2ap—— a ILJL(N)'”.
From each term of the sum we can pull the next limiting value
. N1
lim M.a 7 Hapd(N)*™
N:D,(N) 2 i, !
Elaz—N

. N! ay aq

= lim

N! <1_ 1:20 A )N-z;{oa’ I A%
Nooo aollg a,!

N i#0 [N %2

= %LIOP(au ).

Therefore, under the assumptions of the theorem, we have
llm P(XN—k) Ea e H p(au 1)

N
Np =3

This is our conclusion of this theorem and we shall call this limiting distribution
as generalized multivariate Poisson and we shall denote it as GP(Z,).

THEOREM 2. The moment generating function of the generalized multivariate
Poisson distribution is given by

h(s)=exp{— 2 4+ 2} As'}
= [T exp{—A;+A.s%}.
1#0
Proof. We shall derive the m.g.f. from g(s)”.
h(s)= lim  g(s)¥= lim  [3.p.s"]"

—00
Npg(N)=2; Np,.(N) =2

=},i_{£l° (1—- 1;) P(N)+ 1;) pi(N)sHY

“hm(1- B 5+ 25)
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=exp{— 2 4+ 2 45}
2#0 2#0
where we have denoted s*=s;%1s,%2 - 5,°,

THEOREM 3. If a random vector X has the generalized multivariate Poisson
distribution then we have an unique decomposition of the random vector X as X,
=>1,Y, (j=1, 2, -+, n) where Y, 1#0) are mutually independent univariate Poisson
variables with parameter 2,.

Proof. 1f Y, (i1#0) are mutually independent univariate Poisson varia-
bles with parameter 4, then the random vector X with components X,=2%i,Y,
has a generalized multivariate Poisson probability density

P(X= k)ZZai*ll;]c; p(az; ).

And if we assume X has the generalized multivariate Poisson density GP(4,) then
X has a m.g.f. h(s) as described in the preceding theorem.

h(s)=exp{— X 2.+ X A5}
1#0 1#0
= IT exp{—2A;-+2,5%.
1#0

For simplicity of our proof we assume n=2 and only two of 2, {i=(, 2),
(2, 1)} are positive then A(s) becomes

h(s)=exp{—2Aie— 221+ 1251 S:2 4 2215125, }
=exp{—Apt2A:125:" 5"} eXp{—Aa1F+ 215,75} .

This means there exist two independent univariate Poisson random variables X,,,
X,, with parameter A5, 4,; respectively and X has a decomposition

X:(l, 2)X12+(2, l)le .
In another way of proof, if we put s,=1 then
h(s)=exp{—2Aia— Azt 21251+ 201 5:%}
=eXp{— At} exp{—2As+25:8.%.

The marginal distribution of X, is given by X,+2X,; and in the same way, our
X, is given by 2X;;+X,;. This means

X=(1, 2)X;,+2, DX;; or [Xi=X,;+2X,, and X,=2X,,+X,].

And in general case, we can prove our result of this theorem by the same
way.
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Note. In this proof we have denoted X, 2, X a8 X1 X and A¢, 2, o vy
as Ay, Aq; for our simplicity of notation. And we shall use this notations in the
following lines.

THEOREM 4. The mean vector and the covariance matrix of the generalized
multivariate Poisson distribution GP(1,) 1s gwen by

E(Xj):Ziijzz , Cov (Xp Xk)zziljikzt (j#k)
and Var (X;)=2X1,°4, .

Proof. We assume that X has our distribution GP(4,). First we shall cal-
culate the mean value of X,. We shall use the m. g.f. i(s) of X. To differentiate
the h(s) by s, we get

d(}ilij) :h(s){ubzoljzlslll ves S]_11]_13111~13j+17'j+1 snln}
and if we put s;=s,= - =s,=1 then we have
_[dh(s) .
B[] oy = Db

In the same way we shall use the equality

[ d*h(s)
E(X]Xk)_[ dSdeJ ]sl=sz=~~=sn=1 ’
where the differential is given by

d Idh(s)}_ dh(s)
ds, U ds, 17 ds,

{Ziijlzsxll 31_11;—13]1j‘ls].+11j+1 e s}

+ h(s)_@__ (D081t - 5,718,471 1y 1041 on 5,70
dSk
=h(){it, 251" -} {Zateduss®t -} FA() {Zarjtedess®t -}
To put s;=s,= --- =s,=1 in this equality we can derive
E(X, X)) =(Z;4 (s d) H (i1 k) .
And we can get our conclusion
Cov (X,, Xp)=E(X,X)—E(X)E(X)=2 i34, .

To derive Var(X;) we shall use the result of preceding Theorem 3. From
Theorem 3 if X has the distribution GP(2,) then we have a Poisson decomposition
of X.

X;=>ua,Y,, =1, 2, -+, n).
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Therefore we can conclude
Var (X))=Var (Z,Y,)=2;1,2 Var (V,)=2:,%4,.
In the following lines we shall consider the marginal distribution of our

generalized multivariate Poisson distribution GP(4,).

THEOREM 5. If a random vector X has a generalized multwariate Poisson
distribution G P(1,) then the marginal distrvibution 1s also a degenerated generalized
multivariate Poisson distribution.

Proof. Since X has the m.g.f. A(s), it follows that a degenerated random
vector of X denoted as

X(j)‘:(Xh ) X]—ly Xj+1: ) -Xn) (]:1: 2) T n)
has a m. g.f. h(s)]sfl.
h(s)ls,:l:eXp{_z; 2i+l§ As} ISj=1

:exp{_Zi(j)$0(21j21>+Eﬂﬁ#o(zyll)si} .

Where we have used a new notation ¢“” which has been denoted likely as X%,
This equality means that if X has the generalized multivariate Poisson distribu-
tion, it follows that X has also a degenerated generalized multivariate Poisson
distribution GP(X, ;.2,). And if we put similarly

X(“’Jz’m’Jk):(le ) le—ly X,71+1; ) ij—b X,12+l; ) Xjk—ly Xjk+1; ) Xn)

where ji, i, -+, jr are integers and ;;=<;,< --- =<j,. This degenerated random
vector of X has a m.g.f.

O] P

=eXp{—2:i01. 1205 k)#o(Ez,l, PR A2)

11 ... 1y -
+2i01 ]2»-",]Iz)¢0(27,] Ve )8 M e s, Mt
1 72 k
2 1, - 1 1, - 1 1
.s]1+l 71+ ... s]z-l Jg ls]2+1 29+ -es S]k“l Ip ls]k"’l ;k+l Sn n}’

where we used a new notation 19172 7% as we had denoted X“u727»_  There-
fore, the random vector X727 has a degenerated generalized multivariate

Poisson distribution
GP(Z)LJI, Uyt A

k

as to be proved.

COROLLARY 1. The marginal distribution X, of X is a univariate generalized
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Poisson with parameter 3k,

COROLLARY 2. If Cov(X,, X,)=0 (j#k) then X, and X, are mutually inde-
pendent random variables.

Proof. From Theorem 3 we have decompositions of X, and X,
X,=2uY.,, Xi=2auY.,
and from Theorem 4, we have
Cov(X,, Xo)=2iped=0  (G#k)

this means, for any fixed : if i, and 7, are simultaneously positive integers then 2,
must be zero, that is, our Y;=0. From this property we can conclude that X,,
X, are mutually independent random variables.

THEOREM 6. If X, X,, -+, Xy are mutually independent random vectors of
the generalized multivariate Poisson distributions GP(Z,,), GP(4.,), -+, GP(4,)
respectively then the sum wvector 2% X, has a generalized multwariate Poisson
distribution GP(X, =1y=.=sy=i4s))-

Proof. If we assume all the parameters equals to a same 2,
111:112: :ZiNZZL

then X,% X, has a generalized multivariate Poisson distribution with parameter
N2,, because the m.g.f. of 3,% X, becomes

h(s)¥ =N exp{—2: i+ 5%
=exp{—2iNA;+2:NA,s}.

And, generally > % X, has a m.g.f.

N
h(s)= 1T exp{—20, 4, + 2 2, s*7}
J=1

N N
:exp{- E lellj—l'_ E th/{ljslj}
J=1 J=1

=€xXp {—‘21211=12=~~=1N=121J +E¢2 zl=12=~-~=zN=i/7\1j5i} .

Therefore hi(s) is a m.g.f. of generalized multivariate Poisson distribution with
parameter

211=12=»-~=1N=z211 .

4. SOME RESTRICTIONS ON THE PARAMETERS.
In preceding section 1, we have defined a generalized multivariate Bernoulli
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distribution GB(l, p,). If we assume

$:=20 for 1 {0, 1}" and p»,=0 for 1 {0, 1}

then GB(1, p;) means B(l, p;) which is called a multivariate Bernoulli distribution.
Under the same assumption, our generalized multivariate binomial distribution
GB(N, p;) defined in section 2 means B(N, p;), which is called a multivariate
binomial distribution, see Kawamura [4].

In section 3, we have defined GP(Z,). It is a generalized multivariate Poisson
distribution because if we assume that A, is defined as nonnegative parameter
for 1#0 and

2;=20 for 1€{0,1}® and 2,=0 for 1< {0, 1}™.

then our GP(1,) means p(4,) which is called a multivariate Poisson distribution,
see Kawamura [4].

THEOREM 7. Given a generalized multiwariate Bernoull distribution GB(1, ps),
if we restrict the parameter p; as

p:=0 on i€{0, 1}* and p:=0 on 1& {0, 1}".

Then GB(1, p;) means B(1, p;) which is a multivariate Bernoulli distribulion. And
given a generalized multivariate binomial distribution GB(N, p.), 1f we restrict p;
as above then GB(N, p;) means B(N, p;) which is a multivariate binomial distvibution.

THEOREM 8. Given a generalized multivariate Poisson distribution GP(R,), if
we restrict the parameter 2, (i#0) as ;=0 on i€ {0, 1}™ and 2;=0 on 1< {0, 1}*
then GP(1,) means P(1,) which is a multwariate Poisson distribution.

5. EXAMPLES.

We shall discuss some examples in this section. For our simplicity of discus-
sion, we treat only the bivariate case (n=2).

5-1. We assume X has a distribution GB(1, p;) and we restrict the space of
X to three points (0,0), (1,2) and (2,1), or in another words we restrict only
three p; on i=(0,0), (1,2) and (2,1) are positive and otherwise p;=0. Then our
GB(1, p;) becomes

(A) P(X=(0, )=pcw.0, P(X=(, 2)=pa.» and PX=(2, D)=pe».
And we Shall denote p(olo):poo, P(I,Z):plz and p(z,l):pzp

Of cause we can select these three points without selecting (0, 0) but to con-
sider the limiting distribution to generalized Poisson we must remain (0,0) in the
space of X with large probability or more exactly near one. But in this GB(1, p;)
case if there does not include (0,0) in the space of X or P(X=(0, 0))=0, there is
no trouble theoretically.
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D12

P

pOO
-1

The space of GP(1, p;)

The mean value of X with this GB(1, p,) is given by
E(X)=(0poo+1p12+2ps1, 0poot2p1et-1ps1)
And the covariance value is given by
Cov (X;, X2)=0:0poo+1-2p1+2-1ps
—(0poo+1912+202)0poot2p10+1p21)
=2p12F2pa1—(Pr2t202)2Pret Por) -

We consider the n convolution of GB(1, p;) defined in (A) in the followings.
We shall rewrite again as X the convolution of n independent variables Xi, X,
.+, Xy. Then the sum vector X has a distribution GB(N, p,) by the discussion
of section 2.

N!
—'—_Hlpzal

PX=B)=Tan iy

(B)

N!

:Eai 0agotlaipteas=Fk ——*,~—,——T,1>oo“°°i)m“12]>m““
0agot+2aitlag=Fk, (TR STRI‘TIRE
agptaptan=N
@0 @12 and @2120 1nteger

We shall restrict in (B) only on 1=(1,2) and (2,1), Np;(N)=2,>0 and N—co
where poo(N)+ Pio(N)+ pon(N)=1 and another p;=0 then we can derive a gener-
alized multivariate Poisson distribution GP(4,).

P(X=k)= 2 Captran=n
alz'am[my‘:f“zz‘:’fz ] (a1, A12) P21, A21)

@12, 22120 1nteger.

where X is rewrited again and p(a,, A) is an univariate Poisson probabilitv den-
sity. From our decomposition theory our X will be expressed as

X:(l, 2)Y12+(2; 1) Y21
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where Y, and Y, are mutually independent univariate Poisson random variables
with parameter A,, and A,; respectively. The m.g.f. of this X is given by

h(s)=exXp{—A1z— Aot 212811527+ 215,785} .
The mean value of X and the covariance matrix is given by
E(X)=(A12+2251, 22,5+ 221) ,
Cov (X;, Xo)=2(A12+221),
Var (X;)=2;.+44,;, and Var (X,)=44;,+42, .
So that our covariance matrix is represented as
A 42z 2(Q12+ A2r)
[2(212+221) Aot 2 }

p_ﬂ_l_* Pn ‘
Poo D10 . Doo DP1o
5-2(1) 5-2(2)

The space of GB(1, p,)

5-2. (1) If we assume X has a distribution GB(1, p;) and we restrict the
space of X to two points (0, 0) and (1,0) only, then GB(l, p;) becomes to an uni-
variate Bernoulli distribution and our GB(, p,) becomes to an usual univariate
binomial distribution. Under our restriction of limitation Npo(N)=2;,>0 and
N—co we can derive that GP(1,) becomes to an usual Poisson distribution with
parameter pi,.

(2) If we restrict the space of X with a distribution GB(1, p;) to four points
0,0), (1,0), (0,1) and (1,1) only, then GB(l, p;) becomes to an usual bivariate
binomial distribution B(1, p;). From N convolution of this GB(1, p;) we can derive
that GB(N, p;) becomes to an usual bivariate binomial distribution B(N, p,). To
pull our limiting distribution of GB(Y, p,) we have to restrict Np,=4, (1#0)
and N—oo., Our limiting distribution is an usual bivariate Poisson distribution
P(A,).
llObZOICXIId

bleld!

o~ 210 201-211

PUX,, Xo)=(k, l)):z]lgigflle

b.c :;nd dz0 1integer

5-3. If we assume X has a distribution GB(1, p,) and we restrict the space
of X to three points (0,0), (1,0) and (2,0) only, then our GB(Y, p;) becomes to a
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generalized (univariate) binomial distribution which is a degenerated case as we
treated in 5-2 (1). We rewrite again X which we assume to have GB(N, p,)
distribution, then we can derive

pOO plo pZO

The space of GB(1, p;)

N1
P(X=Fk)= ajot2az=ky k2= —_— D"
e (el ™

app, @310 and @220 1nteger.
k)

* AL Doo®00 P10 Pay20 .
Qoo a0 las!

=2

Under our restriction of Np(N)=2y, Npso(N)=2, and N—co we can derive a
limiting degenerated generalized distribution GP(1,). We shall rewrite X again
the random variable of GP(4,), then our decomposition theory states that

X=(1, 0)Y1,+(2, 0)Y5

where Y, and Y,, are mutually independent univariate Poisson random variables,
and this X is a degenerated generalized bivariate Poisson random variable and
this X rolls as an univariate generalized Poisson distribution and as an univariate
compound Poisson distribution.
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