H. HIRAMATU
KODAI MATH. J.
3 (1980), 397—406

RIEMANNIAN MANIFOLDS ADMITTING A
PROJECTIVE VECTOR FIELD

By Hritosi HIRAMATU

§ 1. Introduction.

Let M be a connected Riemannian manifold of dimension n covered by a
system of coordinate neighborhoods {U; x"}, where, here and in the sequel, the
indices £, i, j, k, -~ run over the range {1, 2, -, n} and let gj;, {,"s}, V,, Ki;",
K;; and K be respectively the metric tensor, the Christoffel symbols formed with
gji, the operator of covariant differentiation with respect to {,;}, the curvature
tensor, the Ricci tensor and the scalar curvature of M.

A vector field v* on M is called a projective vector field if it satisfies

(L) Lol," =V 7 v 404K 5" =62 oo+l

for a certain covariant vector field p,, called the associated covariant vector
field of v®, where L, denotes the operator of Lie derivation with respect to the
vector field v* In particular, if p, in (1.1) is zero vector field then the projec-
tive vector field v" is called an affine vector field. When we refer in the sequel
to a projective vector field v*, we always mean by p, the associated covariant
vector field appearing in (1.1).

Recently, the present author [1,2] proved a series of integral inequalities in
a compact and orientable Riemannian manifold with constant scalar curvature
admitting a projective vector field and then obtained necessary and sufficient
conditions for such a Riemannian manifold to be isometric to a sphere.

The purpose of the present paper is to continue the work of the present
author [1,2] and to prove the following theorem.

THEOREM A. If a connected, compact, orientable and simply connected Rie-
mannian manifold M with constant scalar curvature K of dimension n>1 admats
a non-affine projective vector field v*, then M 1s globally isometric to a sphere of

radius ~/n(n—1)/K n the Euclidean (n-+1)-space.
In the sequel, we need the following theorem due to Obata [3]. (See also [4].)

THEOREM B. Let M be a complete, connected and sumply connected Rieman-
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nian manmifold. In order for M to admit a non-truial solution ¢ of a system of
partial differential equations

(L.2) V]Vi§0h+ k(2§0jgin+90tgjn+g0hgji):0y

where o=V, k being a positive constant, 1t 15 necessary and sufficient that M
is globally 1sometric to a sphere of radius 1//F n the Euclidean (n-+1)-space.

We assume in this paper that Riemannian manifolds under consideration are
connected.

§2. Preliminaries.

We consider a projective vector field v* on a Riemannian manifold M of
dimension n. From (1.1), we have easily

2.1) Vowi=(n+1)o,
and
2.2) Vv, v+K v'=2p",

where ’=g/"F, and p*=g""p,. (2.1) shows that the associated covariant vector
field p, is gradient. Putting

2.3) p=%+ll7;v‘,
we have
24) o=V ip.
We have, from (1.1),
(2.5) V, VootV av)=20;8nt0.8nt 00850,
from which
(2.6) V,L,g"=—2p;g"— p'0F— "0}
and
2.7) ViL.g"=—2pg"—p'g""—p"g’",

where v,=v'g.
Substituting (1.1) into the formula [5]

Lka;ih:VkLv{]hz} _Vij{khi};
we find
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(2-8) Lkajih:'_angPi'i_a;lepi,
from which
(2.9) L,,Kﬁ:—(n—l)Vjpl .
We define a tensor field G;; [1,2] on M by
K
(2.10) sz:Kﬂ- 'Zgji s

which satisfies
(2.11) G,i=G,,, G;:g7"=0.

If G;;=0 for n>2 then M is an Einstein manifold and K is a constant.
The projective curvature tensor field P,;” on M is defined by

1
(2.12) pkjih:K,”i"—-H—_T(&Z‘Kﬂ—&‘[(“).

The tensor field P,;;" satisfies

(2.13) ijih:—P]klh,
(2.14) P;i"+Pip,"+P,i"=0,
(2.15) Ptjit:()y ijct:()
and

(2.16) Pk;ingjiZAnnTlck"’

where ijih:ijitgtfu
It is known that if n=2 then P,,,*=0 and if P,,;*=0 for n>2 then M is

projectively flat.
If the scalar curvature K is a constant, then, using

V]KJIZ'%'VlK:O

and
VLKkjit:VkKji_V]Kkl;

which can be obtained from the Bianchi identity

VLKkjih‘f‘Vszkzh‘l‘VkK]uh:Oy
we have

”’f VG, —F .G,

(2.17) VkPk]ih:
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where G,"=G;;g"".
For a projective vector field v* on a Riemannian manifold M, we have, for
the tensor field G,

(218) Liji:—‘iji—Viw]

if the scalar curvature K is a constant, where we have put
h_ n—1 n 5 I3

(2.19) wh= 2 p—{—nv

and w,=g;,w" and, for the projective curvature tensor field P,;",

(2.20) LyPy =0,

§3. Proof of Theorem A.

In this section, we prove Theorem A. For this purpose, we need a series of
lemmas.

LEMMA 1. In a compact and orientable Riemannian manifold M, we have

3.1 SM<171 f)(V"h)dV:—SM fdth:—SMh 4fdV

for any functions f and h on M, where d=g’V V, and dV denotes the volume
element of M.

Proof. This follows from
OngVi( TRV = SM(Vl AR V—I-SM FARdV
and
O=SMI7¢(hI7"f)d V= SM(Vih)(Vif)d V+SMhl7 v,

LEMMA 2. If, wn a compact and orientable Riemannian manifold M, a non-
constant function ¢ satisfies a system of partial differential equations

(3.2) VVion+kQpginteiginterg)=0,
where ¢r,=V 4o, k being a constant, then the constant k 1s necessarily positive.
Proof. Transvecting (3.2) with g**, we have

from which and Lemma 1,
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1
kSMSDfGD’d V= —WSM(V;'ASDXDW 14

1 2
~2(n+1) SM(AS") av,

where ¢’=g’p;. Since ¢ is a non-constant function, two integral inequalities
o’ 2
SM%D dv>0, SM<A9") dV>0
hold and consequently %2 must be positive.

LEMMA 3. If a complete and simply connected Riemannian manifold M with
positive constant scalar curvature K of dimension n>1 admits a non-affine projec-
tive vector fleld v™ and if the vector field w™ defined by (2.19) is a Killing vector

field, then M is globally isometric to a sphere of radius v/n(n—1)/K in the Eucli-
dean (n-+1)-space.

Proof. We have, from (1.1),
ViV vntVrv)=20;8in+0:8in+ 008
Since w" is a Killing vector fleld, we have

Viwh-l—Vhwi:O
or, equivalently,

(n_]-)ViPn’f‘%(VzUh'Fthz):O,
from which and the above relation, we find
K
VjViPn+m(zpjgm'i"pigjh'{“pngﬁ):o,
and consequently the lemma follows from Theorem B.

Remark. Using Lemma 2, we see that if, in Lemma 3, M is compact and
orientable then we can remove the positiveness of the scalar. curvature K.

LEMMA 4. For a projective vector field v™ on a compact and orientable Rie-
mannian manifold M with constant scalar curvature K of dimension n>1, we have

3.3) SMG,-i owtd V= -nZTlSM(Atw‘)Zd %
1

_mSM(Vjuﬂi—l_Viu)j)(Vjwz_l_Viwj)dV'
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Proof. By using an identity

V"Vjpi—Kﬁp’—-Vidpzo y
we have

) K
SMGﬁp’wldV=—SM(ViAp)w‘d V—I—SM(VJVij)wldV—zSMpiwtdV.
Here we notice that we have, using (2.1) and (2.19),

—SM(V,-Ap)w‘d V:SM(Ap)ViwldV

=17 nil wi= n(ilil) vifpaay

2
n—1

oo 2K
SM(VLw)dV Ty

2K
n(n—1)

S 7 0wt d V
M

__2 SM(Vtw‘)ZdV%—

- |, o wiwray

N

2
n—1

2(n+1K
n(n—1)

S 7 wydV+ S pawdV.
M M
Consequently, we have

| Guprwrav

2
n—1

(n+3)K
n(n—1)

Il

SM(Vtw’)zd V—}—SM(V’V,-pi)w‘d Vet [ parav,

from which, using
VJ(V]'Ui+‘71,vj):Vijgji:(n+3)pi ’

2
| Grorwav=——t_{ w.uwtrav

P e e (e e ey

2 1
1 SM<Vtwt)2d V+ ﬁj»{ Wi wi+VwpwdV

1
7 whyd V——n—_TSM(V,wi—I—Viwj)V’w‘d 14

2
n—1

= nzl SM
= S 7 w0 ydV—— 1

WSM(VJMH-Viwj)(VJw‘-I-Viwj)d V.

M
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LEMMA 5. For a projective vector field v* on a compact and orientable Rie-
mannian manifold M with constant scalar curvature K, we have

(3.4) [ 7rGowav= %SM(iji—l—V,-wj)(V’w’—l-V’wj)d V.

Proof. Integrating
v {(iji'i‘Viwj)wi}
= {Vj(VJwrl‘Vle)} w’-[—(V,-wi-l-Viwj)V’w‘
={VW ;w+Vw;)} w‘—l——;—(iji—}-Viwj)(V’wl—l-V‘wj)
over M and using (2.18), we have (3.4).

LEMMA 6. For a projective vector field v™ on a compact and orientable Rie-
mannian manifold M with constant scalar curvature K of dimension n>1, we
have

) i _ 6
@5 [0 wav=—-—21{ Ty
———n+2 1 [P
- 2n—1) SM(iji'i‘Viwj)(V’w +Viw)d V.
Proof. Using
n—2
ViG;= o V,K=0,

we have
(VijG]i)wt: {Vij(G]tg”)} Wo

=WIL,G 0w+ GV LgMw, .
Substituting (2.7) into this, we find
PILG,HYw,=FL,G ;)w'—3G 07w .
Integrating this over M and using Lemmas 4 and 5, we have (3.5).

LEMMA 7. For a projective vector field v* on a campact and orientable Rie-
mannian manifold M with constant scalar curvature K of dimension n>1, we have

(3.6) SMg"j(LkaGﬂ)wid V=—n—_6_—1—SM(V,w‘)2d 1

n+2

+ 2(n—1)

SM(iji—l—Viwj)(V’wi—l—V'wj)dV.
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Proof. We have
SH(LY 4G )w'=F LG ji)w*— g* (Lo {'5}) Graw— ¥ (Lo ') G jew"
=(VJ'L1,G,-i)w’—3Gﬁp’wl .

Integrating this over M and using Lemmas 4 and 5, we have (3.6).
Now we prove Theorem A. By using

(LoPisit)g!'=—"-L,Gy» = Pyyi*Log”,
we have
(VkLkajih)gjiwh:TZ‘I_(VkLvah)wh
"(Vkijih)(ngﬁ)wn—ijih(VkLugji)wn .
Substituting (2.7) and (2.17) into this, we find

(PELyPryiM) g wa= nﬁl T*LG M ws,

sXLog”Ywn+(7 G,PXLog Ywnt —

1 Gjip’w’,

from which, integrating over M,

SM(V kLkajih)gjiwhd 14

n ; n—2 i
2 PILG it V== 7.6t d v

. n
+{, 7 sGaxtugtpra v+ | Guprwrav .

Here we notice that we have, using (2.6) and (2.18),

—9 ‘
— 22 G utdy
————n—z ¢ n—2 .
= —IS GV L,g"w dV—I— S G i(Log? WV ;w'd V
[ 2(::12) SMG'”‘O] td V———-S (L G”)gi ngth
2(n—2)

— [ Guprwrav+ 7 awtydV

n—1 Z(n 2)5
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and, using

n—

2
o V:K=0,

(Viji)gk]:

[, 7.0 wray = LG wav .

Consequently, we have

SM(V"L,,P,,,-i")gﬁwth
_ 2n—2) me g1 N4 .
T on—l1 SM(V‘w FaV="3 SMGﬁ'O]w av
4" S LG i)de—S L WG wrd V
n___l u O] 3 Mg o R 5T )

from which, using Lemmas 4, 6 and 7, we have

MS V. wh2dV

n—1 Ju

SM(V EL Py gl d V=

_ 1
n—1

+ SM(iji-FViwj)(V’w’—I—Vlwf)dV.

From this and (2.20), we have

2(n—3)

1 .
p— SM(V‘wt)zd V+ —nTlSM(V,-wi+Viw,-)(Vfwl+V’w’)d V=0.

If n>2 then we have, from the above relation,
| 0tV o )7 rw+ 7t whd V=0,

from which
iji—l—Viw,:O,

that is, the vector field w” defined by (2.19) is a Killing vector field and Theorem
A follows from Lemma 3. If n=2 then we have P,;;"=0 and hence, from (2.16),
G;;=0. Consequently, using Lemma 5, we have

[ 7 0ct7 ) wrw+7w)av=0,

from which
ij,,+l7¢w]=0

and Theorem A follows from Lemma 3.
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