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A REMARK ON THE DE RHAM MAP
FOR FOLIATED MANIFOLDS

By HiroKO NATSUME AND TOSHIKAZU NATSUME

§0. Introduction. The notion of continuous cohomology was first introduced
by R. Bott [1]. Given a space X with a finer topology X’, the continuous cohomology
H}X’'—X) is the cohomology of the complex of singular cochains on X’ which
are continuous with respect to the topology of X. In [2] and [3], M. A. Mostow
axiomatized the continuous cohomology by sheafifying H¥* and also studied
smooth analogue T%.

For a manifold M with a foliation F, we denote the set M with the leaf
topology by M?F. Mostow defined the de Rham map of T*WMF—M) into
TH*MF—M), a sheafified version of H¥. If we consider (M—M), then the de
Rham map is the usual one. Simple examples show that the de Rham map is
not necessarily surjective. Then it is natural to ask whether the de Rham map
is injective or not. The present paper is a negative answer to this question.

This paper is organized as follows. In Section 1 we shall review the defini-
tions of continuous cohomology, smooth cohomology and the de Rham map. In
Section 2 we shall consider the torus T°? foliated by lines of constant slope, and
calculate the continuous and smooth cohomologies. In Section 3 it will be shown
that for certain foliations on 7% the de Rham maps are not injective.

§1. Definitions of continuous cohomology and smooth cohomology

In this section we shall give the definitions of continuous cohomology and
smooth cohomology of foliated manifolds.

From now on, we assume that all manifolds are paracompact and Hausdorff
spaces. Let F be a foliation on a smooth manifold M, and let M¥ be the set M
topologized as the disjoint union of the leaves of F, each topologized as an

abstract manifold (not as a subspace of M). We put M !:(MF;M), where 1
denotes the identity mapping. We call M! a foliated manifold. Let Loc(M!)
denote the sheaf on M consisting of germs of continuous functions f: M—R
which are constant on each leaf.

DEFINITION 1.1. The cohomology group with sheaf coefficient H*(M ; Loc(M "))
is denoted by TX.(M!), and is called the continuous cohomology of a foliated
manifold M!.
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Similarly we define the smooth cohomology as follows. Let Loc(M!) be the
sheaf on M consisting of germs of smooth functions f: M—R which are constant
on each leaf.

DEFINITION 1.2. TX*(MN=H*(M; Loc.(M?!)) is called the smooth cohomology
of a foliated manifold M!.

Comparing these definitions, we see that there is a natural inclusion @ of
Loc(M") in Loc(M!). Then @ induces a homomorphism

br: TL(M ) —> ThL(M )

for each ¢. We call the collection @pr={P%z} the de Rham map for M!.

R. Bott, A. Haefliger and M. A. Mostow defined several kinds of continuous
and smooth cohomologies of spaces with two topologies ([2], [3]). But, for
foliated manifolds, every definition of continuous cohomology coincides with
Tk (M) (in details, see [2]). Moreover the de Rham map defined in [3] is
somewhat different from the above one. But we have the following commutative
diagram (the notations are the same as in [3]):

Tha(M 1) —1 Th—2L o rrany
0. o,
THOMY THMY

For a foliated manifold, @., @, and B are isomorphisms, and in [3] 7' is
called the de Rham map.
Now we give some examples. For a smooth manifold M of dimension

n, M!:(M—iM) is a foliated manifold of codimension 0. In this case we see
that Loco(MV)=Loc(M!) is equal to the constant sheaf R. Therefore T}.(M!)
=H*(M; R)=T*(M!). We give another example. Let M, denote M with the

discrete topology. Then MD:(Md—Z>M) is a foliated manifold of codimension .
In this case we can get:

C(M) g=0
ThLMp)=
>0,
C(M)  ¢=0
TUMp)=
>0,

and the de Rham map is the natural inclusion C=(A)<. C(M).
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2. Foliations on T2
In this section we calculate T¥%, and T%* of certain foliations on the 2-dimen-

sional torus T2
Let X! be the torus T2 foliated by lines of constant slope. We describe this

foliation more precisely. Let I” be the lattice of R? defined by
I'=Ze,PZe,,

where ¢;=(2r, 0) and ¢,=(0, 2x). T?=S'xS! is identified with R?/[. R? is
foliated by lines of constant slope 6. This foliation induces a foliation on T2
Then X! is T? with this foliation. If @ is a rational number, then all leaves are
diffeomorphic to S'. If # is an irrational number, then each leaf, diffeomorphic
to R, is dense in T? by Kronecker’s approximation theorem. The foliation X!
is transversal to the fibre of the bundle I : T?=S'xS'— S, where the action of
the generator 1 of [1,(B)=II1,(S)=Z on the fibre S' is a rotation »:S'—S!
defined by the formula

r(z)=e¥*%z for zeC with |z|=1.
Put a=2#6. If we set a=2rk+a’, where k=Z and —n<a’=nr, then
ez=e"z,

Therefore we may assume that —z<a<zs. The action of [€Z on C(S?) is
defined by

¥ fr—> for
By definitions, T§ (X )=H*(T?; Loc(X)), THX)=H*(T?; Loc(X!)). The follow-
ing proposition is a well-known fact of sheaf theory.

PROPOSITION 2.1 (The Leray spectral sequence of a map). There s a spectral
sequence which converges to a graded module associated to H*(T?; Loc(X"). The
E,-terms have the form

ERa=H?(S"; H(IT ; Loc(X ),

where HWII ; Loc(X))) 1s the Leray sheaf of the map II. Similarly, there 1s a
spectral sequence converges to a graded module associated to H*(T?; Loc(X1)).
The 'Es-terms have the form

"EYt=H?(S*; HUII ; Loc.(X1)).

Movreover, the homomorphism j: Loco(XV)—Loc(X") induces the homomorphism
'E29—EDY which corresponds to the homomorphism 7y : HUII ; Loc(X )
—HYII ; Loc(X ")) induced from j.

For the proof, see [2].
The Leray sheaf HYII; Loc(X!)) on the base space S!' is generated by the

presheaf ;
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U HY(II7*; Loc(X )T (U )=T{H{UXS"p)

=T%«(S"p)
_{ sy ¢=0,
0 g>0.

Since the structure group of I7:T?*—S!' is discrete, {C(SY)}={CUI (b))} ses’
forms a local system on S!, so that H° is a locally constant sheaf. For smooth
case, we get the same answer but with C*(S*) in place of C(S') and T% in place
of T%.. Therefore we have

E2°=H?(St; {C(SY}),
and
'E3O=H(S'; {CHSH)).

Then by Eilenberg’s theorem ([2, Theorem 9.9]), we have
HY(S*; {C(SH)=H},,(x,(SY); C(SY),

and
HY(S'; {C=(SHN=H%,(m,(SY); C(SY)), 1=0,1,2, --.

Here the action of =,(SY)=2Z on C(S?) is the above one. As in [2, p. 98] we
have
ThXD=HYZ; C(S)={f€C(SY); f—fr=0},
Th XD)=HXZ; C(SN=C(SY/{f—fer|feC(SH}.
Similarly,
TUXN={feC(S"); f—f-r=0},
TLUXN=C(SY/{f—fer; fEC(SH} .

Moreover the de Rham map TiL(X!)— T, (X! (=0, 1) coincides with the map
induced from the natural inclusion

7:C=(SYH) — C(SY).

Therefore, putting ¥': C(SY)/{f—fr} —>C°(SY)/{f—f-r} be the map induced
from j;, we obtain a commutative diagram ;

TLX ) Por T X 1)

| I
C(SH/AS—Sor; SECHSH) r C(SH/{f—S°r; fEC(SH}.

We investigate the map 7.
A real number a/2z defines a rotation » of S! by the formula;



368 HIROKO NATSUME AND TOSHIKAZU NATSUME
r(x)=e**- x,
where - denotes the multiplication in C.
Now we can formulate our main results as follows.
THEOREM 2.1. (I) If a/2% 15 a rational number, there exist 1somorphisms

oo 2 C*(ST) —= C=(SH/AS =S o v fECH(SH}
" e C(S) —> C(SN/A{f=fer; FeCSH)
such that the following diagram is commutative ;
C=(SY) d (s
Pes e

CASH/AS—Tor; fEC(SH} a CSH/Af=feor; fEC(ST)

) If a/2z s not a Liwouville number, and 1f feC=(S*) 1s written n" the
form f=g—ger for some g=C(SY), then g is smooth.

I If a/2% 1s a Lwwuville number, then for any positwe integer k, there
exists a function g of class C* but not of class C**' defined on S* such that
f=g—ge°v 15 smooth.

COROLLARY to THEOREM 2.1. [If «/2x 1s a Liouville number, then the de
Rham map Ppr: TLHUX D—Th(X) 15 not mjective.

Remark. «a/2z is not a Liouville number if and only if there exist some
integer »>0 and some real number ¢>0 such that
lam—+2xn| >e(lm|+|n|)?

for any pair of integers (m, n)#(0, 0).

3. Proof of Theorem

In this section we give the proofs of our main results.
3.1. Proof of (I)

For the sake of simplicity, we put I*(r)={f—f-r; f€C(S")} and I(r)
={f—fer; feC(SYH}. If we write «/2r=q/p with (p, =1, p>0, then r(x)
=e* . x=¢%"¥P. x, It is obvious that r? (=p-times iteration of #) is equal to
identity mapping. We can identify C(S!) with the vector space P° consisting of
continuous functions on R which are periodic of period 2z. Through this identi-
fication, we identify C=(S*) with P consisting of smooth functions contained in
P°. Then the action of » on P° can be written as follows;
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F*N()=fa+y).

It is clear that »*(P)cP. We put I°(n)={f—fer;f€P} and [(r)={g—ger;
g€ P%. I°(y) and I(») are identified with I=(r) and I(r) respectively.
Now we define Jo.: P— P/I=(r) as follows;

J(f)=the class [f] of f,

where f€ P is defined by f(y)=s(py). Then, by easy calculations, we can show
that J. is an isomorphism of C=(S') onto C=(S')/I*(») and that the following
diagram is commutative ;

~s

C=(SY) = C=(S")/I°(r)
S—/}OO
R R
P ~ P/I>(r).
P

Similarly, we can obtain an isomorphism
¢Pe: C(SYH) —> C(SH/I(¥) .

The maps ¢ and ¢. are essentially the change of period, hence it is obvious
that the diagram in the assertion (I) is commutative.
Thus the proof is completed.

3.2. Proofs of (II) and (III)

For the proofs, we may assume that all functions have values in C.
Let L? be the space of complex valued functions defined on R which are
periodic of period 2z and have the property;

MEGIREEEY
Then L? is a Hilbert space with the inner product:
f, 9= | rweiiex,  for j gerr.
Put Pc=PXzC, then P; is a dense subset of L2 It is a well-known fact of
classical Fourier analysis that {e'"*},cz form a complete orthonormal base for L2

Remind that for each non-negative integer %, the Sobolev space H, is the
subspace of L? defined by

Hk:{ueLZ; niw(1+n2)k]unk2<oo},

where {u,} is the Fourier coefficient of u defined by the formula;
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1 " -1nx
un———Z;S_”u(x)e dx.

If ueL? is of class C*, then clearly ucH,. Thus P.CH, for each k.
The following is a fundamental lemma due to Sobolev.

LEMMA 3. 1. If ueH, where k=zm~+1, then Xn'u,e*™® converges uniformly
for I=m. Thus each u€H, with k=m+1 1s equal, almost everywhere, to a
Sfunction 2June'™® of class C™.

For the proof, see [4, p. 237].

Now we show the assertion (II).

PROPOSITION 3.3. Let —L<L<—1— be not a Liouville number. Then for

22 T2
any fe P¢ such that
| fnax=0,

there exists some g< P¢ such that f=g—g-or.

Proof. Since {¢'"*} is a complete orthonormal base, we can write as
[=5) hid
Ax)= > Cre*™*, and this series converges uniformly. The condition S Ax)dx
n=-o -7
asserts that C,=0. We put

C" ne
g(x)_go 1—e'na e .
We shall prove that for any non-negative integer k, g H,. In order to see
that, we must show that

C, : 1 [Crl®
ok|_~m T 2k 0o
2n 1—e'a 4271 sinz( no <o
2

For each integer n, there exists some integer % such that
—1/2<na/2xr+k<1/2.

Then —F< ™ he™ and sin*(na/2)=sin*(na/2+ k). Since —b<-2 <L
7<% 7 <o <2

we have |m|=|k]|.
3

6

It is easy to see that the function y=sin x—(x— ) is non-negative on

[0, =/2]. Therefore
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3

6
sin®x=(x— ’é )23%, on [—n/2, 7/2].

Hence, for some constant C’>0
o MU o
sin (——2 >:C |na+2kx|®.

Since «/2x is not a Liouville number, there exist ¢>0 and an integer p=0 such
that
|na+2kn|=e(|n|+]|k|)?

for any pair of integers (n, k)#(0, 0). Therefore there exists some constant
C>0 such that

ﬁm(%?);Cﬂnl+|kD*pZC@InD*p,

because |n|=|k|. Since f is smooth, > n?'|C,|?<co for any [. Therefore, for
some constant C{ we have
C.l?
> [Cyl
b sinz(—na>
2

Thus g H, for each k, hence g is smooth by Sobolev lemma. In particular,

n**=CiZ|Cal*n®**n’?<oo.

Ca

ina
—e

mnx
nz0 1

converges uniformly. We can see that

C” 1T pina
(ger)x)= 2 T guma €
Then
Cn 1Nz C" INT ,ana
(g l= B g @ BT ¢
:ECnemx
n#0
=/(x).

Thus Proposition 3.3 is proved.

Remark 1. Let p be the least non-negative integer such that for some ¢>0,
|na+2kx|=(n]+]k])?

for any pair of integers (n, k)#(0, 0). Then the above arguments shows that if
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fis of class C™ with m>3p, then there exists g of class C™ 37! such that
f=g—ger.

Remark 2. 1t is a well-known fact that for irrational «/2x, the set {r"(x0)} nez
is dense in S* for any point x,. From this, it follows that if, for some continuous
g, g—g-r is equal to zero, then g is a constant function. This shows that the
way of decomposition f=g—ger is unique up to constant difference.

From Proposition 3.3 and the above Remark 2, it follows that if a smooth
function f is written in the form f=g—g-r, for some continuous function g,
then g itself is smooth. Thus the assertion (III) is proved.

Let now a/27r be a Liouville number. From the definition, it follows that
for any integers p=0 and N,=0, there exists a pair of integers (n,, k,)#(0, 0)
such that

1) I npl >N0 ’

2) npat2k,m| <(In,|+1ky)7.
We may assume that n,=0. We can take inductively n, (»=0, 1, ---) such that
3) 0<n,<n,< oo,
4) |nyat2k,zr|<ny?  for some k,.
Moreover we can take as
5) np>27 (p=0, 1, --)
For fixed k, we put

sin (n,a/2)
C — nktl

0 otherwise.

if n=mn,,

Then
sin®(n ,a/2) 1 ) [np,a+2k,m|?

9Ck+1) =7 9 (k+1)
n 4 n;

1
2 o, —D-2(k+1)
]Cnp‘ = < 4 np .
Hence, for any m=0,
2n2m|cn|2£_1_ Z 7,L§)1n-;n—2(k+1)
— 4 p30

—C+— .

4 pemTice+n pprECkTD-m

<o,

because of 5). Therefore, for each m=0, the function
f(x)=2Cre*™®

is contained in H,, hence f is smooth by Sobolev lemma.
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Put g(x): E_C—"elnz.

70 1—e'™®

For any 0=m=k,

n"Cn | [Caln™ 1 & e
Zl I—gma | =2 Asin(naj2)| 4 2"

.___]‘_ < m-k-1 1 & p(m—-k-1)
—4z§on‘v < 4p§oz <,
because m—Ek—1<0. Therefore, for 0=m=k, the series

>am Ca

InT
770 1—etne

converges uniformly. Hence g is of class C*. But

C, 2 1 [Cal?
e+ | TP 2Ck+1y 1Rl
2n I—¢wne =" sin*(na/2)
1 1 1
:-Al—%n%(k"'])W:z—%l:oo .

Therefore g is not an element of H,,;, hence is not of class C**'. It is clear
that f=g—ger.

Thus the proof of the assertion (III) is completed.

The assertion (III) and Remark 2 claim that if a/2z is a Liouville number,
then the de Rham map

Dpr: THX!) —> Thl X1)

is not injective.

Thus Corollary to Theorem 2.1 is proved.
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