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A REMARK ON THE DE RHAM MAP

FOR FOLIATED MANIFOLDS

BY HIROKO NATSUME AND TOSHIKAZU NATSUME

§ 0. Introduction. The notion of continuous cohomology was first introduced
by R. Bott [1]. Given a space X with a finer topology X', the continuous cohomology
Hf(X'—*X) is the cohomology of the complex of singular cochains on X' which
are continuous with respect to the topology of X. In [2] and [3], M. A. Mostow
axiomatized the continuous cohomology by sheafifying Hf, and also studied
smooth analogue Tϊ.

For a manifold M with a foliation F, we denote the set M with the leaf
topology by MF. Mostow defined the de Rham map of T£(MF->M) into
T?(MF-+M), a sheafified version of //?. If we consider (M-+M), then the de
Rham map is the usual one. Simple examples show that the de Rham map is
not necessarily surjective. Then it is natural to ask whether the de Rham map
is injective or not. The present paper is a negative answer to this question.

This paper is organized as follows. In Section 1 we shall review the defini-
tions of continuous cohomology, smooth cohomology and the de Rham map. In
Section 2 we shall consider the torus T 2 foliated by lines of constant slope, and
calculate the continuous and smooth cohomologies. In Section 3 it will be shown
that for certain foliations on T 2 the de Rham maps are not injective.

§ 1. Definitions of continuous cohomology and smooth cohomology
In this section we shall give the definitions of continuous cohomology and

smooth cohomology of foliated manifolds.
From now on, we assume that all manifolds are paracompact and Hausdorff

spaces. Let F be a foliation on a smooth manifold M, and let MF be the set M
topologized as the disjoint union of the leaves of F, each topologized as an

abstract manifold (not as a subspace of M). We put M\—{MF—^M), where i
denotes the identity mapping. We call M\ a foliated manifold. Let Loc(M\)
denote the sheaf on M consisting of germs of continuous functions / : M^R
which are constant on each leaf.

DEFINITION 1.1. The cohomology group with sheaf coefficient H*(M; Loc(M\))
is denoted by T&C(M\), and is called the continuous cohomology of a foliated
manifold Ml.
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Similarly we define the smooth cohomology as follows. Let Loc^Ml) be the
sheaf on M consisting of germs of smooth functions / : M^R which are constant
on each leaf.

DEFINITION 1.2. T£(M\)=H*(M;Loco*(M\)) is called the smooth cohomology
of a foliated manifold Ml.

Comparing these definitions, we see that there is a natural inclusion Φ of
LoCoo(M\) in Loc(Ml). Then Φ induces a homomorphism

for each q. We call the collection ΦDR={ΦIR} the de Rham map for Ml.
R. Bott, A. Haefliger and M. A. Mostow defined several kinds of continuous

and smooth cohomologies of spaces with two topologies ([2], [3]). But, for
foliated manifolds, every definition of continuous cohomology coincides with
Tfoc(Ml) (in details, see [2]). Moreover the de Rham map defined in [3] is
somewhat different from the above one. But we have the following commutative
diagram (the notations are the same as in [3]):

TUMI) - - Tin ί T*(Ml)

Φc

T*(M\) ^ TUMI)

For a foliated manifold, Φoo, Φc and β are isomorphisms, and in [3] β~loI is
called the de Rham map.

Now we give some examples. For a smooth manifold M of dimension

n, M\—(M-*M) is a foliated manifold of codimension 0. In this case we see
that LoCc(Ml)=Loc(Ml) is equal to the constant sheaf R. Therefore Tfoc(Ml)
—H*(M; R)=Tt(Ml). We give another example. Let Md denote M with the

discrete topology. Then MD=(Md—>M) is a foliated manifold of codimension ??.
In this case we can get:

TUMD)=

and the de Rham map is the natural

ί C(M)

\ o

1T
inclusion C

9=0

<7>0,

9=0

<J>0,

;~(M)c
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2. Foliations on T 2

In this section we calculate Tfoc and T* of certain foliations on the 2-dimen-
sional torus T2.

Let X! be the torus T 2 foliated by lines of constant slope. We describe this
foliation more precisely. Let Γ be the lattice of R2 defined by

where e1=(2π, 0) and β2=(0, 2π). T^S'xS1 is identified with R2/Γ. R2 is
foliated by lines of constant slope θ. This foliation induces a foliation on T2.
Then X\ is T 2 with this foliation. If θ is a rational number, then all leaves are
diffeomorphic to S1. If θ is an irrational number, then each leaf, diffeomorphic
to R, is dense in T2 by Kronecker's approximation theorem. The foliation X\
is transversal to the fibre of the bundle Π: T2=S1XS1-*S1, where the action of
the generator 1 of Π1(B)=Π1(S1)=Z on the fibre S1 is a rotation r'.S'^S1

defined by the formula

r(z)=e2xiθz for z^C with | z | = l .

Put a=2πθ. If we set α=27r&+α:/, where &eZand —π^α'^π, then

Therefore we may assume that — π^αSπ. The action of I G Z on CCS1) is
defined by

By definitions, Tfoc(Z !)-//*(T 2 Lί?c(Z!)), T*(Z !)=//*(T 2 Locoo(Z!)). The follow-
ing proposition is a well-known fact of sheaf theory.

PROPOSITION 2.1 (TA^ L^raj; spectral sequence of a map). There is a spectral
sequence which converges to a graded module associated to H*(T2 Loc(Xl)). The
E2-terms have the form

Eξ ^H^S1 H%Π Loc{X!))),

where Hq(Π Loc(X\)) is the Leray sheaf of the map Π. Similarly, there is a
spectral sequence converges to a graded module associated to H*(T2 LoCoo(Xl)).
The 'Έz-terms have the form

Έψ^H'iS1 H%Π Loc^Xl))).

Moreover, the homomorphism j : LoCoo(X\)-^Loc(X\) induces the homomorphism
Έi^-^El^ which corresponds to the homomorphism j * : Hq(Π Loc^(X\))
->H%Π',Loc(X\)) induced from j .

For the proof, see [2].
The Leray sheaf Hq(Π Loc{X\)) on the base space S1 is generated by the

presheaf
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U•—• HKΠ-1 Loc(X!)| Π~\U))=T%c{UxS1*)

CCS1)

0

Since the structure group of Π\T2^S1 is discrete,

forms a local system on S1, so that H° is a locally constant sheaf. For smooth

case, we get the same answer but with C^CS1) in place of CCS1) and T% in place

of Tfoc Therefore we have

Eψ^HKS1; {CCS1)}),

and

Then by Eilenberg's theorem ([2, Theorem 9.9]), we have

H\S' {C(S1)})=Hi

EM(π1(Sί) CCS1)),

and
1 ) ) , ι = 0 , 1, 2,

TUX\)=H\Z; CCS1))- {/eCCS1) / - / * r-0} ,

TUX !)=//XZ CCS^^CCS1)/ {/-/- r |/eCCS1)} .

Here the action of π^S^^Z on CCS1) is the above one. As in [2, p. 98] we
have

Similarly,

Moreover the de Rham map Ti(Z!)—>Tίoc(Z!) (ι=0, 1) coincides with the map
induced from the natural inclusion

j : C-CS1) —> CCS1).

Therefore, putting Ψ: C^S1)/{f-f°r} — C°(S1)/{/-/°r} be the map induced
from j , we obtain a commutative diagram

TUX!) — TUX!)

C-CS1)/{/-/*r; / E C I S 1 ) } ^ CCS1)/{/-/or /eCCS1)}.

We investigate the map Ψ.
A real number a/2π defines a rotation r of S1 by the formula



368 HIROKO NATSUME AND TOSHIKAZU NATSUME

r(x)—eaι x,

where denotes the multiplication in C.
Now we can formulate our main results as follows.

THEOREM 2.1. (I) // a/2π is a rational number, there exist isomorphisms

-f* r : /

and
ψc: dS1) — dS1)/{f-f. r f

such that the following diagram is commutative

^ as1)
L

CiS1)/{f-f*r fe-CiS1)}.

(II) // a/2π is not a Lwuville number, and if /eC^CS1) is written irΓthe
form f—g—g°r for some g^C{Sλ), then g is smooth.

(III) // a/2π is a Lwuville number, then for any positive integer k, there
exists a function g of class Ck but not of class Ck+1 defined on S1 such that
f=g—g°r is smooth.

COROLLARY to THEOREM 2.1. // a/2π is a Lwuville number, then the de
Rham map ΦDR: Tl(X\)->T}0C(X\) is not injechve.

Remark. a/2π is not a Liouville number if and only if there exist some
integer p>0 and some real number ε>0 such that

\amJ

Γ2πn\>ε(\m\Jr\n\yp

for any pair of integers (m, n)Φ(0, 0).

3. Proof of Theorem

In this section we give the proofs of our main results.

3.1. Proof of (I)

For the sake of simplicity, we put I°°(r) = {f—f° r f^C^iS1)} and I(r)
^if-f-r feΞCiS1)}. If we write a/2π=q/p with (p, q) = l, p>0, then rU)
= eaι

 x = e2-ι-q/p. χ > j t jg o j3V i o u s that rp (=£-times iteration of r) is equal to
identity mapping. We can identify C^S1) with the vector space P° consisting of
continuous functions on R which are periodic of period 2π. Through this identi-
fication, we identify C^S1) with P consisting of smooth functions contained in
P°. Then the action of r on P° can be written as follows
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(r*f)(y)=f(a+y).

It is clear that r*(P)dP. We put ϊ°°(r)={f-f°r;f<EΞP} and ϊ(r)={g-g°r)
g(=P0}. /°°(r) and I{r) are identified with 7°°(r) and /(r) respectively.

Now we define 9L: P-*P/Ϊ°°(r) as follows;

£»(/)=the class [/] of / ,

where / G P is defined by f(y):=f(py). Then, by easy calculations, we can show
that φ^ is an isomorphism of C^iS1) onto C^iS1)/7°°(r) and that the following
diagram is commutative

IK Iβ

P Ξ ^ p//~( r) .

Similarly, we can obtain an isomorphism

φc: C^1) —+ aS'WKr).

The maps ψoo and ̂ c are essentially the change of period, hence it is obvious
that the diagram in the assertion (I) is commutative.

Thus the proof is completed.

3.2. Proofs of (II) and (III)

For the proofs, we may assume that all functions have values in C.
Let L2 be the space of complex valued functions defined on R which are

periodic of period 2π and have the property

\f(x)\2dx<oo.

Then L2 is a Hubert space with the inner product:

dx, for

Put PC=PXRC, then Pc is a dense subset of ZΛ It is a well-known fact of
classical Fourier analysis that {etnx}n(=z form a complete orthonormal base for L2.

Remind that for each non-negative integer k, the Sobolev space Hk is the
subspace of L2 defined by

where {un} is the Fourier coefficient of u defined by the formula;
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1 r*
un—-^r— I u(x)e τnxdx .

ZTC J-π

If MGL2 is of class Ck, then clearly u^Hk. Thus PcClHk for each £.
The following is a fundamental lemma due to Sobolev.

LEMMA 3. 1. // u^Hk where kz^m+l, then Σnιune
ιnx converges uniformly

for ISrn. Thus each u^Hk with k^m+l is equal, almost everywhere, to a
function ΣιUne

tnx of class Cm.

For the proof, see [4, p. 237].

Now we show the assertion (II).

PROPOSITION 3.3. Let —ττ<~τs—<-ττ be not a Lwuville number. Then for
Z Zπ Z

any / e Pc such that

there exists some g^Pc such that f=g—g°r.

Proof. Since {eιnx} is a complete orthonormal base, we can write as

fix)— Σ Cne
ιnx, and this series converges uniformly. The condition \ f{x)dx

n=-<χ> J-π

asserts that C0=0. We put
r

V —- eιnx

We shall prove that for any non-negative integer k, g^Hk. In order to see
that, we must show that

C n — * ^ - 2 * l ~ / t l < o o ,
l - e t n a 4 Σ n

4 . / na

For each integer n, there exists some integer k such that

-l/2<na/2π

Then —%<~?ψ-+πk<^-, and sin2(n«/2)=sin2(nα/2H-^τr). Since ~<-£-<^,
Z Z Z Z ZTC Z

we have | m \ ^ | k \.

( x^ \
x — ) is non-negative on

[0, 7τ/2]. Therefore



DE RHAM MAP FOR FOLIATED MANIFOLDS 371

on [—π/2, ττ/2] .
6 / = 36

Hence, for some constant C > 0

Since α/2τr is not a Liouville number, there exist ε>0 and an integer p^O such
that

for any pair of integers (n, k)Φ(0, 0). Therefore there exists some constant
C>0 such that

because \n\^\k\. Since / i s smooth, Σ f t 2 1 | C J 2 < o o for any /. Therefore, for
some constant C[ we have

. / na

Thus g^Hk for each k, hence g is smooth by Sobolev lemma. In particular,

converges uniformly. We can see that

(σor)(x)=Kg TAX)

Then

c c

Thus Proposition 3.3 is proved.

Remark 1. Let p be the least non-negative integer such that for some ε>0,

for any pair of integers (n, k)Φ(0, 0). Then the above arguments shows that if
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/ is of class Cm with m>3p, then there exists g of class Cm~iΊ>~1 such that
f=g-g°r.

Remark 2. It is a well-known fact that for irrational a/2π, the set {rn(x0)} n^z
is dense in S1 for any point x0. From this, it follows that if, for some continuous
g> g~~g°r is equal to zero, then g is a constant function. This shows that the
way of decomposition f=g—g°r is unique up to constant difference.

From Proposition 3.3 and the above Remark 2, it follows that if a smooth
function / is written in the form f—g—g°r, for some continuous function g,
then g itself is smooth. Thus the assertion (III) is proved.

Let now a/2π be a Liouville number. From the definition, it follows that
for any integers p^O and N0^0, there exists a pair of integers (np, kp)Φ(0, 0)
such that

1) \np\>N0,

2) \npa+2kpπ\<(\np\ + \ k p \ ) - p .

We may assume that np^0. We can take inductively np (p=0, 1, •••) such that

3) 0 < n 0 < n ! < ••• t CXD,

4) \npa+2kpπ\<np

p f o r s o m e kp.

Moreover we can take as

5) np>2p (^=0, 1, •••)

For fixed k, we put

Γ —

s'm(npa/2)
~ ZJV

Then

1 n ? ' =

sm2(npa/2)

if n = np,

otherwise.

\npa
Jr2kpπ\ 1 i

4 p

Hence, for any m^O,

i \Γ 2 < — - V n2v

because of 5). Therefore, for each m^O, the function

is contained in Hm, hence / is smooth by Sobolev lemma.
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P u t

For any O^m^k,

nmCn

l-eιna

1 <

\Cn\n

^ 4|sin(nα/2)|

~ 4 ^on™~k~l< j Σ 2 p ( ) ϊ l - M < o o ,

because m—k—l<0. Therefore, for O^m^k, the series

converges uniformly. Hence g is of class Ck. But

1 \r |2

2 gtπί

Therefore g is not an element of Hk+i, hence is not of class Ck+1. It is clear
that f=g—g°r.

Thus the proof of the assertion (III) is completed.
The assertion (III) and Remark 2 claim that if a/2π is a Liouville number,

then the de Rham map

is not injective.
Thus Corollary to Theorem 2.1 is proved.
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