M. OZAWA KODAI MATH. J. 3 (1980), 310-314

ON THE BOUNDEDNESS OF THE SOLUTIONS OF A DIFFERENTIAL EQUATION IN THE COMPLEX DOMAIN

By Mitsuru Ozawa

1. In our previous paper [1] we proved a boundedness criterion for every solution of w'' + F(z)w = 0 along a ray. In this paper we shall give an extension of our earlier result. The result which we want to prove is the following

THEOREM 1. Let F(z) be $g(r)e^{i\gamma(r)}$ along the ray $l: re^{i\theta}$ ($\theta: fixed$) such that $X(r)=g(r)\cos(\gamma(r)+2\theta)$ is monotone increasing for $r \ge r_0$, $X(r_0)>0$ and there is a positive constant K such that

$$|Y(t)| \leq KX'(t)$$

for $t \ge r_0$ and

 $\int_{-\infty}^{\infty} |Y(t)| X(t)^{\kappa} dt < \infty ,$

where $Y(r)=g(r)\sin(\gamma(r)+2\theta)$. Further assume that F(z) is regular around the ray l. Then every solution of w''+F(z)w=0 is bounded along the ray l.

As an application of the above theorem we shall prove the following

THEOREM 2. Under the same notations as in the above theorem assume that there is a positive constant K such that

 $|Y(t)| \leq KX'(t)$

for $t \geq r_0$, $X(r_0) > 0$,

 $\int_{0}^{\infty} |Y(t)| dt < \infty$

and g(r) is bounded along the ray l. Further assume that F(z) is regular around the ray l. Then every solution of w'' + F(z)w = 0 is bounded along l and the same is true for its derivative.

2. Proof of Theorem 1. For completeness we shall give its full proof here. Let us put $w(z)=R(r)\exp(i\Theta(r))$ along *l*. Then the differential equation

Received May 9, 1979

w'' + F(z)w = 0 gives

(1)
$$\begin{cases} R''(r) + \{X(r) - \Theta'(r)^2\} R(r) = 0, \\ \{\Theta'(r)R(r)^2\}' + Y(r)R(r)^2 = 0. \end{cases}$$

Let us consider the following quadratic functional

$$2H = R'^{2} + R^{2}\Theta'^{2} + XR^{2}$$

Then

$$2H' = 2R'R'' + 2R^2\Theta'\Theta'' + 2RR'\Theta'^2 + X'R^2 + 2XRR'$$
$$= X'R^2 - 2Y\Theta'R^2$$

by the equation (1). By integration from r_1 to r we have

$$2H(r) = 2H(r_1) + \int_{r_1}^r X' R^2 dt - 2 \int_{r_1}^r Y \Theta' R^2 dt ,$$

that is,

(2)

$$R'(r)^{2} + R(r)^{3} \Theta'(r)^{2} + X(r)R(r)^{2}$$

$$= R'(r_{1})^{2} + R(r_{1})^{2} \Theta'(r_{1})^{2} + X(r_{1})R(r_{1})^{2}$$

$$+ \int_{r_{1}}^{r} R^{2} dX - 2 \int_{r_{1}}^{r} Y \Theta' R^{2} dt .$$

Now we shall estimate the last integral. By the second equation of (1)

$$-\int_{r_1}^{r} Y R^2 dt = \Theta'(r) R(r)^2 - \Theta'(r_1) R(r_1)^2 \,.$$

Hence

$$\begin{split} &- \int_{r_1}^r Y(t) \Theta'(t) R(t)^2 dt \\ &= - \Theta'(r_1) R(r_1)^2 \int_{r_1}^r Y(t) dt + \int_{r_1}^r Y(t) \int_{r_1}^t Y(s) R(s)^2 ds dt \; . \end{split}$$

Therefore

$$\left| -\int_{r_1}^r Y \Theta' R^2 dt \right| \leq |\Theta'(r_1)| R(r_1)^2 \int_{r_1}^r |Y(t)| dt + \int_{r_1}^r |Y(t)| R(t)^2 dt \int_{r_1}^r |Y(t)| dt.$$

By the assumption

$$\int^{\infty} |Y| X^{\kappa} dt < \infty$$

and by $X(r) \ge X(r_1) > 0$ for $r \ge r_1 > r_0$,

$$\int_{r_1}^{\infty} |Y| dt \leq \frac{1}{X(r_1)^K} \int_{r_1}^{\infty} |Y| X^K dt < \infty.$$

We set

$$C_0 = \int_{r_1}^{\infty} |Y(t)| dt < \infty.$$

Hence

$$\left| -\int_{r_1}^r Y \Theta' R^2 dt \right| \leq C_0 |\Theta'(r_1)| R(r_1)^2 + C_0 \int_{r_1}^r |Y| R^2 dt.$$

By $|Y(t)| \leq KX'(t)$ for $t \geq r_0$

$$C_0 \int_{r_1}^r |Y(t)| R(t)^2 dt \leq C_0 K \int_{r_1}^r R(t)^2 dX(t) \, .$$

Thus by (2)

$$\frac{1}{2}X(r)R(r)^2 \leq C_1 + \frac{1}{2}(1 + 2C_0K) \int_{r_1}^r R(t)^2 dX(t)$$

with a positive constant C_1 . By the same process as in the proof of the Gronwall inequality we have

$$X(r)R(r)^{2} \leq 2C_{1}X(r)^{1+2C_{0}K}X(r_{1})^{-1-2C_{0}K}$$

that is,

(3)
$$R(r)^2 \leq C^* X(r)^{2C_0 K}$$

with a positive constant C^* , which depends on r_1 . If X(r) is bounded, then R(r) is bounded by (3). Hence we may assume that X(r) is unbounded. Since X(r) is non-decreasing, we may assume that X(r) is larger than 1 for $r \ge r_0$. We now take an r_1 sufficiently large so that $2C_0 \le 1$, which is clearly possible. Then

$$|\Theta'(r)R(r)^{2} - \Theta'(r_{1})R(r_{1})^{2}| \leq \int_{r_{1}}^{r} |Y| R^{2} dt$$
$$\leq C^{*} \int_{r_{1}}^{r} |Y(t)| X(t)^{2C_{0}K} dt$$
$$\leq C^{*} \int_{r_{1}}^{r} |Y(t)| X(t)^{K} dt \leq C_{2}.$$

Hence

$$|\Theta'(r)|R(r)^2 \leq C_2 + |\Theta'(r_1)|R(r_1)^2 = C_3$$
.

This implies that

$$\left|\int_{r_1}^r Y\Theta'R^2dt\right| \leq C_3 \int_{r_1}^\infty |Y|dt = C_0 C_3.$$

Therefore

$$X(r)R(r)^{2} \leq D + \int_{r_{1}}^{r} R(t)^{2} dX(t)$$

with a suitable constant D>0. By the Gronwall inequality $R(r)^2 \leq D/X(r_1)$, which is just the desired result.

312

3. Proof of Theorem 2. The inequality (3) holds in this case too. Since X(r) is monotone increasing and $X(r_0)>0$ and since g(t) is bounded and $X(t) \leq g(t)$ for $t \geq r_0$, X(t) is bounded. Hence (3) implies the boundedness of R, which is the first desired result. For the second half

$$\frac{1}{2}(1+2C_0K)\int_{r_1}^r R(t)^2 dX(t) \leq C^* \{X(r)^{1+2C_0K} - X(r_1)^{1+2C_0K}\}$$

by (3). The right hand side term is bounded along the ray l. Therefore

$$R'(r)^{2} + R(r)^{2}\Theta'(r)^{2} + X(r)R(r)^{2}$$

is bounded. Hence

$$|w'(z)| = |R'(r) + iR(r)\Theta'(r)|$$

is bounded along the ray *l*.

A remark should be mentioned here. $X(r) \rightarrow b$ as $r \rightarrow \infty$. By

$$\int^{\infty} |Y(t)| \, dt < \infty$$

 $|b||\sin(\gamma(r)+2\theta)|/|\cos(\gamma(r)+2\theta)| \to 0$ as $r \to \infty$. Since b > 0, $\sin(\gamma(r)+2\theta) \to 0$ and $\cos(\gamma(r)+2\theta) \to 1$ as $r \to \infty$. Hence $g(r) \to b$, that is, $|F(z)| \to b$ along the ray *l*. By the way in the case of Theorem 1 we can say that $|w'(z)|^2/X(r)$ is bounded along the ray *l*.

4. Taam's result. In this section we shall give a shorter proof of Taam's result [2]. There is no new idea. Let us consider the following functional

$$H = bR^2 + R'^2 + \Theta'^2 R^2$$
,

where b is a positive constant. Then

$$\frac{d}{dr}H=2bRR'+2R'R''+2\Theta'\Theta''R^2+2\Theta'^2RR'.$$

By (1) we have

$$H'=2(b-X)RR'-2Y\Theta'R^2.$$

Hence

$$\begin{aligned} H' &\leq \{ |b - X| (bR^2 + R'^2) + |Y| (\Theta'^2 R^2 + bR^2) \} \frac{1}{\sqrt{b}} \\ &\leq \frac{1}{\sqrt{b}} (|b - X| + |Y|) H. \end{aligned}$$

Therefore

$$H(r) \leq H(r_1) \exp \frac{1}{\sqrt{b}} \int_{r_1}^r \{|b - X| + |Y|\} dt.$$

If

$$\int_{-\infty}^{\infty} (|b-X|+|Y|) dt < \infty ,$$

then w and w' are bounded along the ray l. This is nothing but a result due to Taam.

5. Next we start from the following quadratic functional

$$Q = \sqrt{X} R^2 + \frac{1}{\sqrt{X}} (R'^2 + R^2 \Theta'^2).$$

By the equation (1)

$$Q' = \frac{1}{2} \frac{X'}{\sqrt{X}} R^2 - \frac{1}{2} \frac{X'}{\sqrt{X^3}} (R'^2 + R^2 \Theta'^2) - 2 \frac{Y}{\sqrt{X}} \Theta' R^2.$$

Now the last term is estimated by

$$\frac{|Y|}{\sqrt{X^3}} \left(\frac{1}{a} X^{\alpha} \Theta'^2 R^2 + a X^{\beta} R^2\right)$$

with a positive constant a and constants α , β satisfying $\alpha + \beta = 2$, $0 \le \alpha \le 2$. Assume that $X' \ge 2|Y|X^{\alpha}/a$ and X(t) > 0 for $t \ge r_0$. Then

$$Q' \leq \frac{1}{2} \frac{X'}{\sqrt{X}} R^2 (1 + a^2 X^{\beta - 1 - a})$$

and hence with a positive constant C

$$\sqrt{X(r)} R(r)^2 \leq C + \frac{1}{2} \int_{r_1}^r \frac{X'}{\sqrt{X}} R^2 (1 + a^2 X^{\beta - 1 - \alpha}) dt$$

Thus

$$R(r)^2 \leq C \frac{1}{\sqrt{X(r_1)}} \exp \frac{a^2}{2} \int_{r_1}^r X^{\beta-2-\alpha} X' dt .$$

Assume that $\alpha > 1/2$. Then $-\gamma = \beta - 1 - \alpha < 0$. In this case

$$R(r)^{2} \leq \frac{C}{\sqrt{X(r_{1})}} \exp\left\{\frac{a^{2}}{2\gamma} (X(r_{1})^{-\gamma} - X(r)^{-\gamma})\right\}$$
$$\leq B.$$

Thus we have the following

THEOREM 3. Suppose that $X' \ge 2|Y|X^{\alpha}/a$ with positive constants a and α , $2 \ge \alpha > 1/2$ and x(t) > 0 for $t \ge r_0$. Then every solution w of w'' + F(z)w = 0 is bounded along the ray l.

References

- [1] OZAWA, M. On a solution of $w'' + e^{-z}w' + (az+b)w = 0$. Kodai Math. J. 3 (1980), 295-309.
- [2] TAAM, C.-T. The boundedness of the solutions of a differential equation in the complex domain. Pacific J. Math. 2 (1952), 643-654.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

314