ON THE BOUNDEDNESS OF THE SOLUTIONS
 OF A DIFFERENTIAL EQUATION
 IN THE COMPLEX DOMAIN

By Mitsuru Ozawa

1. In our previous paper [1] we proved a boundedness criterion for every solution of $w^{\prime \prime}+F(z) w=0$ along a ray. In this paper we shall give an extension of our earlier result. The result which we want to prove is the following

Theorem 1. Let $F(z)$ be $g(r) e^{i \gamma(r)}$ along the ray $l: r e^{i 0}(\theta:$ fixed $)$ such that $X(r)=g(r) \cos (\gamma(r)+2 \theta)$ is monotone increasing for $r \geqq r_{0}, X\left(r_{0}\right)>0$ and there is a positive constant K such that

$$
|Y(t)| \leqq K X^{\prime}(t)
$$

for $t \geqq r_{0}$ and

$$
\int^{\infty}|Y(t)| X(t)^{K} d t<\infty,
$$

where $Y(r)=g(r) \sin (\gamma(r)+2 \theta)$. Further assume that $F(z)$ is regular around the ray l. Then every solution of $w^{\prime \prime}+F(z) w=0$ is bounded along the ray l.

As an application of the above theorem we shall prove the following
ThEOREM 2. Under the same notations as in the above theorem assume that there is a positive constant K such that

$$
|Y(t)| \leqq K X^{\prime}(t)
$$

for $t \geqq r_{0}, X\left(r_{0}\right)>0$,

$$
\int^{\infty}|Y(t)| d t<\infty
$$

and $g(r)$ is bounded along the ray l. Further assume that $F(z)$ is regular around the ray l. Then every solution of $w^{\prime \prime}+F(z) w=0$ is bounded along l and the same is true for its derivative.
2. Proof of Theorem 1. For completeness we shall give its full proof here. Let us put $w(z)=R(r) \exp (i \Theta(r))$ along l. Then the differential equation

Received May 9, 1979
$w^{\prime \prime}+F(z) w=0$ gives

$$
\left\{\begin{array}{l}
R^{\prime \prime}(r)+\left\{X(r)-\Theta^{\prime}(r)^{2}\right\} R(r)=0 \tag{1}\\
\left\{\Theta^{\prime}(r) R(r)^{2}\right\}^{\prime}+Y(r) R(r)^{2}=0
\end{array}\right.
$$

Let us consider the following quadratic functional

$$
2 H=R^{\prime 2}+R^{2} \Theta^{\prime 2}+X R^{2}
$$

Then

$$
\begin{aligned}
2 H^{\prime} & =2 R^{\prime} R^{\prime \prime}+2 R^{2} \Theta^{\prime} \Theta^{\prime \prime}+2 R R^{\prime} \Theta^{\prime 2}+X^{\prime} R^{2}+2 X R R^{\prime} \\
& =X^{\prime} R^{2}-2 Y \Theta^{\prime} R^{2}
\end{aligned}
$$

by the equation (1). By integration from r_{1} to r we have

$$
2 H(r)=2 H\left(r_{1}\right)+\int_{r_{1}}^{r} X^{\prime} R^{2} d t-2 \int_{r_{1}}^{r} Y \Theta^{\prime} R^{2} d t
$$

that is,

$$
\begin{align*}
& R^{\prime}(r)^{2}+R(r)^{2} \Theta^{\prime}(r)^{2}+X(r) R(r)^{2} \tag{2}\\
& =R^{\prime}\left(r_{1}\right)^{2}+R\left(r_{1}\right)^{2} \Theta^{\prime}\left(r_{1}\right)^{2}+X\left(r_{1}\right) R\left(r_{1}\right)^{2} \\
& \quad+\int_{r_{1}}^{r} R^{2} d X-2 \int_{r_{1}}^{r} Y \Theta^{\prime} R^{2} d t
\end{align*}
$$

Now we shall estimate the last integral. By the second equation of (1)

$$
-\int_{r_{1}}^{r} Y R^{2} d t=\Theta^{\prime}(r) R(r)^{2}-\Theta^{\prime}\left(r_{1}\right) R\left(r_{1}\right)^{2}
$$

Hence

$$
\begin{aligned}
& -\int_{r_{1}}^{r} Y(t) \Theta^{\prime}(t) R(t)^{2} d t \\
& =-\Theta^{\prime}\left(r_{1}\right) R\left(r_{1}\right)^{2} \int_{r_{1}}^{r} Y(t) d t+\int_{r_{1}}^{r} Y(l) \int_{r_{1}}^{t} Y(s) R(s)^{2} d s d t
\end{aligned}
$$

Therefore

$$
\left|-\int_{r_{1}}^{r} Y \Theta^{\prime} R^{2} d t\right| \leqq\left|\Theta^{\prime}\left(r_{1}\right)\right| R\left(r_{1}\right)^{2} \int_{r_{1}}^{r}|Y(t)| d t+\int_{r_{1}}^{r}|Y(t)| R(t)^{2} d t \int_{r_{1}}^{r}|Y(t)| d t
$$

By the assumption

$$
\int^{\infty}|Y| X^{K} d t<\infty
$$

and by $X(r) \geqq X\left(r_{1}\right)>0$ for $r \geqq r_{1}>r_{0}$,

$$
\int_{r_{1}}^{\infty}|Y| d t \leqq \frac{1}{X\left(r_{1}\right)^{K}} \int_{r_{1}}^{\infty}|Y| X^{K} d t<\infty
$$

We set

$$
C_{0}=\int_{r_{1}}^{\infty}|Y(t)| d t<\infty .
$$

Hence

$$
\left|-\int_{r_{1}}^{r} Y \Theta^{\prime} R^{2} d t\right| \leqq C_{0}\left|\Theta^{\prime}\left(r_{1}\right)\right| R\left(r_{1}\right)^{2}+C_{0} \int_{r_{1}}^{r}|Y| R^{2} d t .
$$

By $|Y(t)| \leqq K X^{\prime}(t)$ for $t \geqq r_{0}$

$$
C_{0} \int_{r_{1}}^{r}|Y(t)| R(t)^{2} d t \leqq C_{0} K \int_{r_{1}}^{r} R(t)^{2} d X(t) .
$$

Thus by (2)

$$
\frac{1}{2} X(r) R(r)^{2} \leqq C_{1}+\frac{1}{2}\left(1+2 C_{0} K\right) \int_{r_{1}}^{r} R(t)^{2} d X(t)
$$

with a positive constant C_{1}. By the same process as in the proof of the Gronwall inequality we have

$$
X(r) R(r)^{2} \leqq 2 C_{1} X(r)^{1+2 C_{0} K} X\left(r_{1}\right)^{-1-2 C_{0} K},
$$

that is,

$$
\begin{equation*}
R(r)^{2} \leqq C^{*} X(r)^{2 C_{u} K} \tag{3}
\end{equation*}
$$

with a positive constant C^{*}, which depends on r_{1}. If $X(r)$ is bounded, then $R(r)$ is bounded by (3). Hence we may assume that $X(r)$ is unbounded. Since $X(r)$ is non-decreasing, we may assume that $X(r)$ is larger than 1 for $r \geqq r_{0}$. We now take an r_{1} sufficiently large so that $2 C_{0} \leqq 1$, which is clearly possible. Then

$$
\begin{aligned}
\left|\Theta^{\prime}(r) R(r)^{2}-\Theta^{\prime}\left(r_{1}\right) R\left(r_{1}\right)^{2}\right| & \leqq \int_{r_{1}}^{r}|Y| R^{2} d t \\
& \leqq C^{*} \int_{r_{1}}^{r}|Y(t)| X(t)^{2 C_{0} K} d t \\
& \leqq C^{*} \int_{r_{1}}^{r}|Y(t)| X(t)^{K} d t \leqq C_{2} .
\end{aligned}
$$

Hence

$$
\left|\Theta^{\prime}(r)\right| R(r)^{2} \leqq C_{2}+\left|\Theta^{\prime}\left(r_{1}\right)\right| R\left(r_{1}\right)^{2}=C_{3}
$$

This implies that

$$
\left|\int_{r_{1}}^{r} Y \Theta^{\prime} R^{2} d t\right| \leqq C_{3} \int_{r_{1}}^{\infty}|Y| d t=C_{0} C_{3} .
$$

Therefore

$$
X(r) R(r)^{2} \leqq D+\int_{r_{1}}^{r} R(t)^{2} d X(t)
$$

with a suitable constant $D>0$. By the Gronwall inequality $R(r)^{2} \leqq D / X\left(r_{1}\right)$, which is just the desired result.
3. Proof of Theorem 2. The inequality (3) holds in this case too. Since $X(r)$ is monotone increasing and $X\left(r_{0}\right)>0$ and since $g(t)$ is bounded and $X(t) \leqq$ $g(t)$ for $t \geqq r_{0}, X(t)$ is bounded. Hence (3) implies the boundedness of R, which is the first desired result. For the second half

$$
\frac{1}{2}\left(1+2 C_{0} K\right) \int_{r_{1}}^{r} R(t)^{2} d X(t) \leqq C^{*}\left\{X(r)^{1+2 C_{0} K}-X\left(r_{1}\right)^{1+2 C_{0} K}\right\} .
$$

by (3). The right hand side term is bounded along the ray l. Therefore

$$
R^{\prime}(r)^{2}+R(r)^{2} \Theta^{\prime}(r)^{2}+X(r) R(r)^{2}
$$

is bounded. Hence

$$
\left|w^{\prime}(z)\right|=\left|R^{\prime}(r)+\imath R(r) \Theta^{\prime}(r)\right|
$$

is bounded along the ray l.
A remark should be mentioned here. $X(r) \rightarrow b$ as $r \rightarrow \infty$. By

$$
\int^{\infty}|Y(t)| d t<\infty
$$

$|b||\sin (\gamma(r)+2 \theta)| /|\cos (\gamma(r)+2 \theta)| \rightarrow 0$ as $r \rightarrow \infty$. Since $b>0, \sin (\gamma(r)+2 \theta) \rightarrow 0$ and $\cos (\gamma(r)+2 \theta) \rightarrow 1$ as $r \rightarrow \infty$. Hence $g(r) \rightarrow b$, that is, $|F(z)| \rightarrow b$ along the ray l. By the way in the case of Theorem 1 we can say that $\left|w^{\prime}(z)\right|^{2} / X(r)$ is bounded along the ray l.
4. Taam's result. In this section we shall give a shorter proof of Taam's result [2]. There is no new idea. Let us consider the following functional

$$
H=b R^{2}+R^{\prime 2}+\Theta^{\prime 2} R^{2},
$$

where b is a positive constant. Then

$$
\frac{d}{d r} H=2 b R R^{\prime}+2 R^{\prime} R^{\prime \prime}+2 \Theta^{\prime} \Theta^{\prime \prime} R^{2}+2 \Theta^{\prime 2} R R^{\prime} .
$$

By (1) we have

$$
H^{\prime}=2(b-X) R R^{\prime}-2 Y \Theta^{\prime} R^{2} .
$$

Hence

$$
\begin{aligned}
H^{\prime} & \leqq\left\{|b-X|\left(b R^{2}+R^{\prime 2}\right)+|Y|\left(\Theta^{\prime 2} R^{2}+b R^{2}\right)\right\} \frac{1}{\sqrt{b}} \\
& \leqq \frac{1}{\sqrt{b}}(|b-X|+|Y|) H .
\end{aligned}
$$

Therefore

$$
H(r) \leqq H\left(r_{1}\right) \exp \stackrel{1}{\sqrt{ } b} \int_{r_{1}}^{r}\{|b-X|+|Y|\} d t
$$

If

$$
\int^{\infty}(|b-X|+|Y|) d t<\infty,
$$

then w and w^{\prime} are bounded along the ray l. This is nothing but a result due to Taam.
5. Next we start from the following quadratic functional

$$
Q=\sqrt{X} R^{2}+\frac{1}{\sqrt{X}}\left(R^{\prime 2}+R^{2} \Theta^{\prime 2}\right)
$$

By the equation (1)

$$
Q^{\prime}=\frac{1}{2} \frac{X^{\prime}}{\sqrt{X}} R^{2}-\frac{1}{2} \quad \stackrel{X^{\prime}}{\sqrt{ } X^{3}}\left(R^{\prime 2}+R^{2} \Theta^{\prime 2}\right)-2 \stackrel{Y}{\sqrt{ } X} \Theta^{\prime} R^{2}
$$

Now the last term is estimated by

$$
\frac{|Y|}{\sqrt{X^{3}}}\left(\frac{1}{a} X^{\alpha} \Theta^{\prime 2} R^{2}+a X^{\beta} R^{2}\right)
$$

with a positive constant a and constants α, β satisfying $\alpha+\beta=2,0 \leqq \alpha \leqq 2$. Assume that $X^{\prime} \geqq 2|Y| X^{\alpha} / a$ and $X(t)>0$ for $t \geqq r_{0}$. Then

$$
Q^{\prime} \leqq \frac{1}{2} \frac{X^{\prime}}{\sqrt{X}} R^{2}\left(1+a^{2} X^{\beta-1-a}\right)
$$

and hence with a positive constant C

$$
\sqrt{ } X(r) R(r)^{2} \leqq C+\frac{1}{2} \int_{r_{1}}^{r} \quad X^{\prime} R^{2}\left(1+a^{2} X^{\hat{p}-1-a}\right) d t
$$

Thus

$$
R(r)^{2} \leqq C \frac{1}{\sqrt{X\left(r_{1}\right)}} \exp \frac{a^{2}}{2} \int_{r_{1}}^{r} X^{\beta-2-\alpha} X^{\prime} d t
$$

Assume that $\alpha>1 / 2$. Then $-\gamma=\beta-1-\alpha<0$. In this case

$$
\begin{aligned}
R(r)^{2} & \leqq \frac{C}{\sqrt{ } X\left(r_{1}\right)} \exp \left\{\frac{a^{2}}{2 \gamma}\left(X\left(r_{1}\right)^{-i}-X(r)^{-r}\right)\right\} \\
& \leqq B
\end{aligned}
$$

Thus we have the following
Theorem 3. Suppose that $X^{\prime} \geqq 2|Y| X^{\alpha} / a$ with positive constants a and α, $2 \geqq \alpha>1 / 2$ and $x(t)>0$ for $t \geqq r_{0}$. Then every solution w of $w^{\prime \prime}+F(z) u=0$ is bounded along the ray l.

References

[1] Ozaiva, M. On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$. Kodai Math. J. 3 (1980), 295-309.
[2] TaAm, C.-T. The boundedness of the solutions of a differential equation in the complex domain. Pacific J. Math. 2 (1952), 643-654.

Department of Mathematics, Tokyo Institute of Technology.

