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§ 0. Introduction.

In a previous paper [13], the present authors studied generic submanifolds
immersed in complex space forms by the method of Riemannian fibre bundles.

The purpose of the present paper is to study generic submanifolds of
Sasakian manifolds, especially those of Sasakian space forms.

In § 1, we state some known results on submanifolds of Sasakian manifolds
and study certain properties of the second fundamental forms of such sub-
manifolds,

In § 2, we define generic submanifolds of Sasakian manifolds and prove
Propositions 2.1 and 2.2 on totally contact-umbilical generic submanifolds.

§ 3 is devoted to the study of the /-structure which a generic submanifold
admits and to that of complete integrability of the distributions X and £Γ asso-
ciated with this /-structure.

In §4, we construct an example of generic submanifold of a Sasakian space
form and in §5 we prove Theorem 5.1 which characterizes complete generic
minimal Einstein submanifolds of S 2 m + 1 with parallel second fundamental form.

In §6, we define pseudo-umbilical submanifolds of Sasakian manifolds and
prove propositions and theorems on pseudo-umbilical generic submanifolds and
in §7 we study pseudo-umbilical hypersurfaces by the method of Riemannian
fibre bundles.
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164 KENTARO YANO AND MASAHIRO KON

In §8, we define what we call P-axiom and show that if a (2n+^-dimen-
sional Sasakian manifold M (n^2) satisfies the P-axiom, then M is a Sasakian
space form.

§ 9 is devoted to the study of what we call pseudo-Einstein hypersurfaces of
S2n+ι. We prove a series of lemmas and then Theorem 9.1 which says that a
pseudo-Einstein hypersurface of S2n+1 (n^3) has two constant principal curvatures
or four constant principal curvatures.

In the last § 10 we give some examples of pseudo-Einstein hypersurfaces.

§ 1. Submanifolds of Sasakian manifolds.

Let M be a (2m+l)-dimensional Sasakian manifold with structure tensors
(φ, ζ> η> g) The structure tensors of M satisfy

g(φX, φY)=g{X, Y)-V{X)V{Y), V(X)=g(X, ξ)

for any vector fields X and Y on M. We denote by V the operator of covariant
differentiation with respect to the metric g on M. We then have

lxξ=φX, {ϊxφ)Y=R{X, ξ)Y=-g{X, Y)ζ+v(Y)X

for any vector fields X and Y on M, R denoting the Riemannian curvature
tensor of M.

Let M be an (n-f l)-dimensional submanif old of M. Throughout this paper,
we assume that the submanifold M is tangent to the structure vector field ξ
of M.

We denote by the same g the Riemannian metric tensor field induced on M
from that of M. The operator of covariant differentiation with respect to the
induced connection on M will be denoted by 7. Then the Gauss and Weingarten
formulas are given respectively by

1XY=VXY+B(X, Y) and ΪXV=-AVX+DXV

for any vector fields X, Y tangent to M and any vector field V normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle of M. A and B appearing here
are both called the second fundamental forms of M and are related by

g(B(X, Y), V)=g{AvX, Y).

A vector field V normal to M is said to be parallel if DxV=0 for any
vector field X tangent to M. The mean curvature vector μ of M is defined to
be ^=(TrS)/(n+l) , TrB denoting the trace of B. If μ=0, then M is said to be
minimal. If the second fundamental form B of M is of the form B(X, Y)—
g(X, Y)μ, then M is said to be totally umbilical. In particular, if the second
fundamental form B vanishes identically, then M is said to be totally geodesic.
If the second fundamental form B of M is of the form
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(1.1) B(X, Y)=lg(X, Y)-η(X)η(Yy]a+V(X)B(Y, ξ)+V(Y)B(X, ξ)

for any vector fields X and Y tangent to M, a being a vector field normal to
M, then M is said to be totally contact-umbilical. The notion of totally contact-
umbilical submanifolds of Sasakian manifolds corresponds to that of totally
umbilical submanifolds of Kaehlerian manifolds (see [3]). Moreover, if α—0,
that is, if B is of the form

(1.2) B(X, Y)=V(X)B(Y, ξ)+y(Y)B(X, ξ),

then M is said to be totally contact-geodesic. The notion of totally contact-
geodesic submanifolds of Sasakian manifolds corresponds to that of totally geo-
desic submanifolds of Kaehlerian manifolds.

Let R be the Riemannian curvature tensor field of M. Then, for any vector
fields X, Y and Z tangent to M, we have

(1.3) R{X, Y)Z=R{X, Y)Z-AB(Y,z,X+AB(x>z)Y+(yxBXY, Z)~{1YB){X, Z),

where the covariant derivative 1XB of B is defined to be

(1.4) C7χB)(Y, Z)=Dz(B0r, Z))-B{1XY, Z)~B{Y, 1XZ)

for any vector fields X, Y and Z tangent to M. If VxB=0 for any vector field X
tangent to M, then the second fundamental form B of M is said to be parallel.
From (1.3), we have equation of Gauss

(1.5) g(R(X, Y)Z9 W)=g(R(X, Y)Z, W)-g{B{X, W), B{Y, Z))

+g{B{Y, W), B{X, Z))

for any vector fields X, Y, Z and W tangent to M. Taking the normal compo-
nent of (1.3), we have equation of Codazzi

(1.6) (R(X, Y)ZY={1XBXY, Z)-{1YB){X, Z),

(R(X, Y)Z)L denoting the normal component of R(X, Y)Z. We now define the
curvature tensor R1 of the normal bundle of M by

R\X, Y)V-DxDγV-DvDxV-Dίx>γlV,

X, Y being vector fields tangent to M and V a vector field normal to M. Then
we have equation of Ricci

(1.7) g(R(X, Y)U, V)=g(R1(Xf Y)U, V)+g(£Av, AulX, Y),

where ZAV, AU]=AVAU—AUAV.
If R1—0, then the normal connection of M is said to be flat (or trivial).
For any vector field X tangent to M, we put

(1.8) φX=PX+FX,

where PX is the tangential part and FX the normal part of φX. Then P is an
endomorphism on the tangent bundle T(M) and F is a normal bundle valued
1-form on the tangent bundle.
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If φTx(M)C.Tx(M) at each point x of M, then M is called an invariant
submanifold of M. Any invariant submanifold of a Sasakian manifold is a
Sasakian manifold. If M is invariant, then F in (1.8) vanishes identically. If
φTx(M)aTX(MY at each point x of M, then M is called an anti-invariant sub-
manifold of M. If M is anti-invariant, then P in (1.8) vanishes identically.

If the ambient manifold M is of constant ^-sectional curvature k, then we
have

(1.9) R(X, Y)Z=j(k+3)lg(Y, Z)X-g{X, Z)Y^ + j(k-l)ίv(X)v(Z)Y

-η(Y)V(Z)X+g(X, Z)η{Y)ξ-g(Y, Z)V(X)ξ+g(φY, Z)φX

-g{φX, Z)φY-2g(φX, Y)φZ3

for any vector fields X, Y and Z on M. In this case M is called a Sasakian
space form and is denoted by M2m+\k).

Let M be an (n+l)-dimensional submanifold of a Sasakian space form
M2m+1(k). Then (1.3), (1.6), (1.7) and (1.9) imply

(1.10) R{X, Y)Z= j(k+3)ίg(Y, Z)X-g{X, Z)Y2+j(k-l)ίV(X)v(Z)Y

-η{Y)η{Z)X+g{X, Z)V{Y)ξ-g{Y, Z)η{X)ξ+g{PY, Z)PX

-g(PX, Z)PY-2g(PX, Y)PZl+AB(y.z>X-ABlx.nY,

(1.11) {1XB){Y, Z)-{1YB){X, Z)

= \(k-l)lg(PY, Z)FX-g{PX, Z)FY-2g{PX, Y)FZ^ ,

(1.12) j(k-l)ίg(FY, U)g{FX, V)-g(FX, U)g{FY, V)-2g(PX, Y)g(φU, VJ]

=g(R1(X, Y)U, V)+g(ZAv, AulX, Y).

In the following, we study certain properties of the second fundamental
form B of M. Since the structure vector field ξ is tangent to M, for any
vector field X tangent to M, we have

from which

(1.13) PX^xξ, FX=B(X,ξ).

Especially, we have

(1.14)

PROPOSITION 1.1. Let M be an (n+iydimensional submanifold of a (2m+l)-
dimensional Sasakian manifold M. If M is totally umbilical, then M is a totally
geodesic, invariant submanifold of M.
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Proof. Since M is totally umbilical, the second fundamental form B of M
is of the form B(X, Y)=g(X, Y)μ. From this and (1.14) we have B(ξ, ξ)=
g(ξy ξ)μ=0 and hence μ=0. Thus B{X, Y)=0 and consequently M is a totally
geodesic submanifold of M. Moreover, the second equation of (1.13) implies
FX=B(X, ξ)~0. This shows that M is an invariant submanifold of M.

Let X and Y be vector fields tangent to M. From the Gauss and Weingarten
formulas we have

(1.15) φB(X, Y)^{1YP)X-AFXY+B{Y, PX)+φγF)X+g(X, Y)ξ~V(X)Y,

where we have defined (!YP)X and (1YF)X respectively by

(1YP)X=1Y{PX)-P1YX and (1YF)X^DY(FX)-F1YX.

Since B is symmetric, we have

, PX) - AFX YΛ- {1YF)X~ V(X) Y

, PY)-AFYXH^χF)Y-η{Y)X.

Comparing the tangential and normal parts in the equation above, we obtain

(1.16) {lxP)Y-{lγP)X=AFYX-AFXY+η{Y)X-η{X)Y,

and

(1.17) {1XF)Y-{1YF)X=B{Y, PX)-B{X, PY)

respectively.

§ 2. Generic submanif olds.

A submanifold M of a Sasakian manifold M is called a generic submanif old
of M if φTX{M)LdTX{M) for all point x of M and if f is tangent to M.
Especially, if φTX(M)L=TX{M)— {<?}, then a generic submanifold M is an anti-
invariant submanifold such that 2 dim M— 1—dimM. If dim Ta;(M)J = l , that is,
if M is a hypersurface of M, then M is obviously a generic submanifold.

Let M be a hypersurface of a Sasakian manifold M. We denote by C the
unit normal of M in M. For any vector field X tangent to M, we have

(2.1) φX^PX+u(X)C, u(X)C=FX,

where we have put

(2.2) φC= - U, u(X)=g(U, X).

From (2.1) we find

(2.3) P2X=-X+u(X)U+V(X)ξ.

Moreover, we have

(2.4) PU=0, u(ζ)^0, u(U)=l.

We denote the second fundamental form of M by A in place of Ac to
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simplify the notation. Then the Gauss and Weingarten formulas are given
respectively by

VzY=VzY+g(AX, Y)C and ΪXC=-AX.
We also have

(2.5) 1XU=PAX, Aξ=U,

(2.6) (VxP)Y=η(Y)X+u(Y)AX-g(X, Y)ξ~g{AX, Y)U.

Let M be an (n+l)-dimensional generic submanifold of a (2m+l)-dimensional
Sasakian manifold M. Then the tangent space TX(M) of M is decomposed as
follows:

Tx(M)=Hx(M)®φTx(M)L

at each point x of M, where HX(M) is the orthogonal complement of φTx(M)x

in TX(M). Thus we see that

φHx(M)=Hx(M)-{ξ}.
Applying φ to (1.8), we find

-X+V(X)ξ=P*X+FPX+φFX,
from which we have

(2.7) FPX=0,

(2.8) P2X=-X+η(X)ξ-φFX.

From (1.15) we have

(2.9) " φB(X, Y)=(yYP)X-AFXY+g(X, Y)ξ-η{X)Y,

(2.10) B(Y, PX)=-(1YF)X.

Let V be a vector field normal to M. Then we find

(2.11) VxφV=--PAvX+φDxV,

(2.12) B(X, φV)=~FAvX.

We notice that PφTx(MY=0 and φPTx{M)dHx{M). For any vector field X
tangent to M and any Y^φT^M)1, we have

(7XP)Y=ΊX(PY)~PΊXY=-P1XYELH{M) .

For any vector field X tangent to M and any Y, Z^φT(M)L, we have

g(φB(X, Y), Z)=g(ilxP)Y, Z)-g{AFYX, Z)+g(X, Y)η(Z)-g(X, Z)V(Y)

= -g(AFYZ,X).

On the other hand, we have

g(φB(X, Y), Z)=-g{B{X, Y), FZ)=-g(AFZY, X).

Therefore, we see that g(AFYZ, X)=g(AFZY, X), from which AFYZ=AFZY for
any Y, Z<=φTx(M)L. Thus we have
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LEMMA 2.1. Let M be a generic submamfold of a Sasakian manifold M.
Then we have

(2.13) AFYZ=AFZY

for any vector fields Y and Z in φT(M)1.

In the following we denote by p the codimension of M, i.e., we put
p=2m—n.

PROPOSITION 2.1. Let M be a generic submamfold of a Sasakian manifold
M. If p<^2 and M is totally contact-umbilical, then M is totally contact-geodesic.

Proof. First of all, using (2.13), we have

g{AnX, X)=~g(AFXφa, X), X*ΞφTx(MY ,

where a is the normal vector appearing in (1.1). From (1.1) we find

B(X, X)=tg(X, X)-η(X)η(X)la+2η(X)FX=g(X, X)a

for any XeφTx(M)1. Thus we have

g(AaX, X)=g{B{X, X), a)=g{X, X)g(a, a),

-g{AFXφa, X)=-g(B(φa, X), FX)=-g{φa, X)g(a, FX),

from which

g(X, X)g{a, a)=-g(φa, X)g{a, FX)=g(a, FX)g{a, FX)

for X<=φTx(My. Since p^2, we can take X such that g(a, FX)=0. Thus
we have a=0 and hence M is totally contact-geodesic.

PROPOSITION. 2.2. Let M be an {n+l)-dimensional (n^3) generic submamfold
of a Sasakian space form M2m+\k). If M is totally contact-umbilical and if
n>m, then k~ — 3.

Proof. If £Ξ>2, then Proposition 2.1 implies that M is totally contact-geo-
desic. Thus the second fundamental form B of M is of the form

B(X, Y)=η(X)FY+η(Y)FX.
From this we find

= - B(X, PY)= - rj(X)FPY-

Therefore we have

C7XB)(Y, Z)=g(Y, PX)FZ+g(Z, PX)FY,

{1YB)(X, Z)=g(X, PY)FZ+g{Z, PY)FX.

From these equations and (1.11) we find
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g{Z, PX)FY-g(Z, PY)FX+2g(Y, PX)FZ

1 ,.
', Z)FX-g{PX, Z)FY-2g(PX, Y)FZJ ,

from which

1 ,, . ̂ r- ,~Yf Z)Fχ__g(PX) Z)FY-2g{PX,

Since n>m, άimHx(M)>l, we can take Y such that Y^HX(M) and put Z—PY.
Then FY=0 and FZ^FPY^O. Thus we have

j(k+3)g(PY, PY)FX=0,

which implies that k=—3.

In the following, we assume that p=l. Then we have

(2.14) FAX=B(X,U),

In this case, (1.11) reduces to

(2.15) g{{!xA)Y, Z)-g{(lYA)X, Z)

j , Z)g{FX, C)-g{PX, Z)g(FY, C)-2g(PX, Y)g(FZ, Q] .

Putting Z=U in (2.15), we find

(2.16) g(ΦχA)Y, U)-g(φγA)X, U)=-~{k-l)g{PX, Y),

because of g(PY, U)^g(PX, ί/)=0. On the other hand, we have

(1XA)U=1X{AU)-APAX, AU=g(C, a)U+ξ ,
from which

φχA)U=g(P, Dxa)U+g(P, a)PAX+PX~APAX
and hence

8({1XA)Y, U)-g((lrA)X, U)=g(Y, (lxA)U)-g{X, (ΊyA)U)

=g(C, Dxa)g(U, Y)+g(C, a)g{PAX, Y)+g(PX, Y)-g(APAX, Y)

-g(C, DYa)g{U, X)-g{C, a)g(PAY, X)-g{PY, X)+g(APAY, X).

If we take here X, Y such that γ(X) = η(Y)=Q and u(X)=u(Y)=0, then we have

g(FxA)Y, U)-g{{lYA)X, U)

=g(C, a)g{PAX, Y)-g(APAX, Y)-g(C, a)g(PAY, X)

+g(APAY,X)-2g{PY,X).

Moreover, we obtain the equations:

g{APAX, Y)=g(C, a)g{PAX, Y), g{APAYy X)=g(C, a)g{PAY, X).

From these equations we have
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g{{lxA)Y, U)-g{{lYA)X, U)=-2g(PY, X).

From this and (2.16) we have

-j(k-l)g(PX, Y)=-2g(PY, X),

from which

1

2

Since n ^ 3 , we can put F— PX and so we obtain k=—3. Thus we have k------3
for any codimension.

§ 3. /-structure

Let M be an (π+l)-dimensional generic submanifold of a (2m+l)-dimensional
Sasakian manifold M. From (2.8) we have

(3.1) P:i+P=0.

On the other hand, we see that rank P—dim M— codim M—l=2(n—m) everywhere
on M. Consequently, P defines an /-structure of rank 2(n—m) (see [10]).

We now consider the distributions X and 2* respectively defined by

: FX=0},
and

: PX=0 and

The distribution X is (2n—2m+l)-dimensional and the distribution cl (2m—n)-
dimensional. We study the integrability conditions of X and 2*. First of all,
we prove

PROPOSITION 3.1. Let M be an (n+ϊ)~dime?ιsιonal generic submanifold of a
(2m +1)-dimensional Sasakian manifold M. Then the distribution £Γ is completely
integrable and its maximal integral submanifold T is a (2m—n)- dim en sum a I anti-
invanant submanifold of M normal to ξ.

Proof. Let X and Y be vector fields in the distribution ST. Then (1.16) and
(2.13) imply

PIX, Y^PlxY-PlγX=F

= AFXY-AFΎX=Q.
Moreover we have

η&X, YJ)=-g(FX, Y)+g(FY, X)=0.

Thus we see that [_X} F]e£Γ and hence £Γ is completely integrable. We also
see, from the construction, that the integral submanifold T is anti-invariant with
respect to φ and is normal to ξ.
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PROPOSITION 3.2. Let M be an (n+iydimensιonal generic submanifold of a
(2m+1)-dimensional Sasakian manifold M. Then the distribution X is completely
integrable if and only if

(3.2) B(PX, Y)=B(X, PY)

for any vector fields X and Y in X.

Proof. Let X and Y be in X. Then (1.17) implies that

FIX, Y1=FΊXY-F1YX=QJYF)X-(ΊXF)Y

= B(X, PY)-B{Yf PX).

Therefore, X is completely integrable if and only if (3.2) holds.

If X is completely integrable, then its maximal integral submanifold L is a
(2n—2m-Ll)-dimensional invariant submanifold of M.

§ 4. An example of generic submanifold.

In this section we give an example of generic submanifold of a Sasakian
space form.

Let C771"1"1 be a complex (m+l)-dimensional number space. We consider an
odd-dimensional unit sphere S 2 m + 1 in Cm + 1. Then S2m+1 admits a Sasakian
structure (φ, ζ, η, g) as follows. Let v be the position vector representing a
point of S2m+1 in Cm+1. Then the structure vector field of S 2 m + 1 is given by
ζ—Jv, J denoting the almost complex structure of Cm + 1. Consider the ortho-
gonal projection

π: Tx(Cm+1)-*Tx(S*m+1),

and put φ~π-J. We denote by η the 1-form dual to ς and by g the standard
metric tensor field on S2m+1. Then, for any vector field X tangent to S2m+1, we
have

φX=JX+η(X)v.

We now consider the following immersion :

We assume that mlf ••• , mk are odd. Then n+k — l is also odd. Let v% be a

point of Smί(VmJn) in i?™i+1r=CCmi+1)/2. Smi(Vmx/n) is a real hypersurface of

C ( m i + 1 ) / 2 with unit normal Vn/mτ vx. Thus v = (v1} ••• , vk) is a unit vector in

fln+*=Ccn + *)/2β T h i s defi nes a minimal immersion of Mmv...,mk=ΠSmKVmι/n)

into S"-1-*"1. We restrict the almost complex structure of C C n + * ) / 2 to C c m * + 1 ) / 2 .

Then Jvt is tangent to S m i (VmJf t ) . Thus Jv is tangent to Mmv...,mk. We then

consider the normal space of Mmχ,...,mjt in Sn+k~1 which is the orthogonal com-

plement of the 1-dimensional space (v) spanned by v in the space (vu ••• , vk}

spanned by the vectors vlf •••, vft, that is,
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(Mmv....nky = <vl9-vk> in σn+k"\

Let i6Ί, •••, Wk-i be an orthonormal frame for Tx(Mmv...,mkY. Then wx is given

by a linear combination of vlt ••• vk. Thus /u/ t is tangent to Mmv...,mk and

hence

φwι=Jwi+η(wι)v=Jwι.
Therefore ozί\ is tangent to Mmv...,mk for all z = l , ••• , k — 1. Thus we have

which shows that A/mi,.., W / ί is a generic submanifold of a Sasakian space form

Sn+k~\

Moreover, we consider an immersion :

Smi(r1)X ••• x S m * ( r * ) - ^ S f t + *- 1 , n = Σ wzt,
1 = 1

where r r r ••• + π = l . Then Smi(r1)X ••• x S m * ( r * ) is a generic submanifold of
^Ti+Λ-i if ? ; ^ ...^ m ^ a r e o c ^ a n ( j | t ^ ^ p a r a i i e i m e a n curvature vector and is

with fiat normal connection (see [11]). If m i = m 2 — ••• ~mk=l, then S^r^X •••

χ 5 1 ( r Λ ) is an anti-invariant submanifold of 5 2 *" 1 .

§ 5. Einstein generic submanif olds.

Let M be an (n+l)-dimensional generic submanifold of a (2m+l)-dimensional

unit sphere S2"1""1 with Sasakian structure. Let {ea} be an orthonormal frame

for Tx(M)λ. We denote by Λa the second fundamental tensor with respect to

ea, i.e., we put Λa=Λea. If M is a minimal submanifold of S2TO+1, then the

Simons' type formula is given by (see [7])

(5.1) 4 Δ Γ = ( n + l ) T - Σ (TrAaAbY+ Σ Tr[/lα, Abγ+g{!A, 7.4),
Z b b

T denoting the square of the length of the second fundamental form of M, i. e.,

T=ΣTrΛ-- . We now put

Since the matrix (T α 6 ) is symmetric, choosing {ea} suitably, we can diagonalize

(T α 6 ) . Then (5.1) reduces to

^rAT=(n + ΐ)T-Σ,T2a+ Σ Tr[,4α, Ab
L a a, b

On the other hand, we have

Σ 7 1 = - ^ - : P + A - Σ (τa~τbγ, />=dim

Consequently, we obtain

(ΪZ OΛ _ AT1. /« χi\T T 2 _ _ V^^T" T \2 i "V* TrΓ/1 /! Ί 2

Z p p a>b a.b
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In the following we assume that the second fundamental form of M is
parallel. Then (5.2) becomes

(5.3) 0 - ( n + l ) Γ - ^ T 2 - - i - Σ (T α -T δ ) 2 + Σ TrD4α, AbJ .
p p asb a,b

On the other hand, the Ricci tensor S of M is given by

(5.4) S(X, Y)=ng(X, Y)-Έg(B(X, ex), B(Y, et)),

where {g*} denotes an orthonormal frame of M. Putting X—Y~ξ in (5.4), we
find

S{ξ, f)=7i-Σ*(β(£, et), B(ξ, eι))=n-'Σg(Feί, Fex)=n-p.

Thus, if M is an Einstein manifold, we have

S(X, Y)=(n-p)g(X, Y),

from which

T= Σ g(B(eι, e

Thus (5.3) reduces to

(5.5) 0 = -

Since we have

-jΣ

(5.5) implies that

(5.6)

(5.7)

,), B(et

1
p a>b

τa

lAa,

,ej))=- ΣS(e,,e,)+

Ta — Tb)
2jr Σ Ύΐ\_Aai

Λ s)2<0 V ΎrY Ab) —-^ > Z J A Γ [ _ / l α ,
α,δ

r=Tδ for all a, b,

,46]=0 for all α, ί?

β, AbJ .

Equation (5.7) shows that the normal connection of M is flat. We now need
the following lemmas.

LEMMA 5.1. ([13]). Let M be an n-dimensional submamfold of Sn+P with
flat normal connection. If the second fundamental form of M is parallel, then
the sectional curvature of M is non-negative.

LEMMA 5.2. Let M be a generic submamfold of a Sasakian manifold M.
Then the immersion is full, that is, there is no totally geodesic submamfold Mf

of M which contains M as a submamfold.

Proof. Let V be a vector field normal to M. If g(B(X, Y), V)=0 for any
vector fields X, Y tangent to M, then putting Y—ς, we have g{FX, V)=0.
Since M i s a generic submanifold of M, we can put X=φV. Then we have
g(FX, V)—g(FφV, V)=—g(V, V)Φ0, which shows that the immersion is full.
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THEOREM A ([11]). Let M be a complete minimal submanifold of dimension

n immersed in Sm and with non-negative sectional curvature, and suppose that the

normal connection of M is flat. If T is constant, then M is a great sphere of

Sm or a Pythagorean product of the form

S ^ r O x - x S M ^ v ) , rt=Vp~t/n ( = 1 , ••• , N),

and is of essential codimenswn N—l, where p u ••• , PN=1> p ι ~ τ ••• + p N = n .

We now prove

THEOREM 5.1. Let M be an (n+l)-dimensιonal complete generic minimal

submanifold of S2m+1 with parallel second fundamental form. If M is Einstein,

then M is

Sq(r) X X S%r) {N-hmes), r=Vq/(n + ΐ),

where q is an odd number and 2m—n—N—li Nq=n+1.

Proof. From the assumption and Lemma 5.1, M has non-negative sectional

curvature. Therefore Theorem A implies that M is

S*Kri)X - xS*v(rN), rt=VpJζή+ΐ) (ί = l , ••• , N)

and is of codimension 2m—n=N—l by Lemma 5.2. Since ξ is tangent to M,

we see that plf •••, pN are odd numbers and since M is Einstein, we have

Pi— "' =pN-

§ 6. Pseudo-umbilical generic submanif olds.

Let M be an (n+l)-dimensional generic submanifold of a (2m+l)-dimensional

Sasakian manifold M. We now choose an orthonormal frame {eA} of M in such

a way that eλ=ξt e2, •••, en+1 form an orthonormal frame for M and en+2, •••,

e2m+1 form an orthonormal frame for the normal space TX{M)L, and moreover

that elf •••, en-p+1 form an orthonormal frame for HX(M), en-p+2, •••, en+i form

a n o r t h o n o r m a l f r a m e for φTx(M) a n d φen-p+2=Fen-p+2=en+2, •••, φen+1=Fen+1

Unless otherwise stated, we use the following convention on the ranges of

i n d i c e s : i, j , k, - - — 1 } •••, n + 1 x , y , z , ••- = n—pJ

Γ2, •••, n + 1 a, β , γ, « = 1,

•-, n - p + 1 .

If the second fundamental form B of M is of the form

(6.1) B(X, Y)=aίg(X, Y)-η(X)η(Ym+η{X)FY+rj{Y)FX

+ Σ bxg(X, ex)g(Y, ex)Fex,
X

where ζ is a unit vector normal to M and a and bx are functions, then M is

said to be pseudo-umbilical. In this case we see that
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g(B(X9 Y)y Fex)=g{AxX, Y)

= alg(X, Y)-η(X)η(Y)lg(ζ, Fex)+V(X)g(Y, ex)+η{Y)g(X, ex)

+ bxg(X,ex)g(Y,ex),

where we have written AFβχ as Ax to simplify the notation. Thus, the second
fundamental form Ax is represented by a matrix

(6.2)

0

0

0

1

0

0

ax

0
N

\
\

\
\

0
ax

0

0 1 0

0

ax

0

ax+bx

\
\0 \

x=n~p+2, - ,

where we have put ax=ag(ζ, Fex). On the other hand, from Lemma 2.1, we
see that

dx=g(Axey, ey)=g(Avex, ey)=0 for xΦy.

Therefore, if ^=codimM^2, we have ax—0 for all x. Thus (6.2) reduces to

r

(6.3)

0 0
x

1 0

0

0

x f x=n—p+2, •••, tt+1
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If £ = 1 , then (6.2) becomes

r

177

(6.4)

0

0

1

0

a
\\

\
\

\
\

0

1

0

\\\\

a+b

where A=An+1 and b=bn+1.
When p^2, the second fundamental form B of a pseudo-umbilical generic

submanifold M satisfies

(6.5) B{X, Y)=alg{X, Y)-

for any vector X^HX(M) and any vector Y tangent to M. Since ax=ag(ζ, Fex)
= 0 for all x, we have α=0 and hence

(β.β) B(X, Y)=η{X)FY+η{Y)FX

for any vector X^HX{M) and any vector tangent to M. From (2.10) and (6.6)
we find

(VZF)7= -5(Z, P7)= - η(X)FPY- η(PY)FX=0

for any vectors X and 7 tangent to M. We now consider a distribution
X : i - > i ' , = {ZGT,(M): FX^O}. Since we have

for any Y^H(M) and any X^T(M), the distribution J : is parallel and the
maximal integral submanifold Mλ of X is totally geodesic in M. Moreover Mx

is totally geodesic in M and Mλ is an invariant submanifold of M. Thus Mi is
also a Sasakian manifold. Consequently, we have

PROPOSITION 6.1. Let M be an (n+ϊ)-dimensιonal pseudo-umbilical generic
submanifold of a (2m+ΐ)-dimensιonal Sasakian manifold M with p^2. Then the
distribution X is completely integrable and its maximal integral submanifold M1

is totally geodesic, invariant submanifold of M.

Here we notice that the maximal integral submanifold M2 of the distribu-
tion 2*: X ^ 2 , = { I G T , ( M ) : PX=0 and rj(X)=0} is totally geodesic in M.
Indeed, if X, Y are vector fields tangent to M2 and Z a vector field tangent to
Mi, then we have

g{ΊxY, Z)=-g{Y, 1XZ)=Q
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because of the fact that 1XZ is tangent to Mι and Z is normal to M2. Thus
7 χ F is tangent to M2 and hence M2 is totally geodesic in M.

From Propositions 3.1 and 6.1 we have

PROPOSITION. 6.2. Let M be an (n+ϊ)-dimensιonal pseudo-umbilical generic
submanifold of a (2m-\-l)-dimensιonal Sasakian manifold M with p^2. Then M
is locally a Riemannian direct product of the form MλxM%> where Mλ is an
(n — p + l)-dimeiιsιonal totally geodesic invariant submanifold of M and M2 a
p'dimensional anti-invariant submanifold of M normal to ξ.

THEOREM 6.1. Let M be an (n+iydimensional pseudo-umbilical generic sub-
manifold of a (2m+ϊ)-dimensιonal Sasakian manifold M with vanishing contact
Bochner curvature tensor. If p^4, then M is locally a Riemannian direct product
of the form MλxM2, where Mλ is a (n—p+ϊ)-dimensιonal totally geodesic in-
variant submanifold of M and has vanishing contact Bochner curvature tensor
and M2 is a p-dimensional conformally flat, anti-invariant submanifold of M
normal to ξ.

Proof. From Proposition 6.2, Mis locally of the form MλxM2, where Mx is
a totally geodesic, invariant submanifold of M and M2 an anti-invariant submani-
fold of M normal to ξ. Since M1 is totally geodesic, the contact Bochner curva-
ture tensor of Mx vanishes (see [2]).

Since M2 is totally geodesic in M, the second fundamental form of M2 in
M is given by B(X, Y) for any vector fields X and Y tangent to M2. From
(2.9) we have

(6.7) φB(X, Y)=-AFZY+g(X, Y)ξ

for any vector fields X and Y tangent to M2. Let X, Y, Z anά^W be vector
fields tangent to M2. Then (6.7) implies

(6.8) g(B{X, W), B{Y, Z))-g(B(X, Z), B(Y, W))

=g(AFXW, AFYZ)-g(AFXZ, AFYW)+g(X, Z)g(Y, W)-g(Y, Z)g(X, W).

Put X= Σ Xxex and W= Σ Wxex. Then (6.3) implies
X X

(6.9) AFXW= Σ XxWAtey= Σ XxWΆxex
χ,y x

= Σ XxWx(bxex+ξ)= Σ XxW*bxex+g(X, W)ξ.
X X

From (6.8) and (6.9) we have

g(B(X, W), B(Y, Z))-g(B(X, Z), B(Y, W))=0.

Consequently, Lemma 9.1 of [12; p. 147] implies that M2 is conformally flat.
This proves our assertion.

In the sequel, we assume that M is an (n+l)-dimensional pseudo-umbilical
generic submanifold of a Sasakian space form M2m+\k) with p^2. We assume
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that M has non-zero parallel mean curvature vector μ. Then (1.12) implies

j , μ)g(FX, V)-g(FX, μ)g(FY, V)l = g(£Av, A^X, Y).

By a straightforward computation, we can see that this becomes

j(k+3)ίg(FY, μ)g(FX, V)-g{FX, μ)g{FY} V)]=0.

Since p}^2, we have k=—3. In the following, we prove that M2 has non-zero
97-parallel mean curvature vector (for the 97-parallel mean curvature vector, see
[12; p. 124]). Since M2 is totally geodesic in M, the mean curvature vector μ'

of M2 in M is equal to a. Let Af be the second fundamental form of M2

P
in M and Ώ' be the operator of covariant differentiation of the normal bundle
of M2 in M. For any vector field X tangent to M2 we obtain

D'xμ'=lxμ'+A'μ.X=-Aμ.X+ nJpl Dxμ+A'μ.X.

Let Y be a vector field tangent to Mλ. Then we have

g(D'xμ', Y)=-g(A,,X, Y)=-g(B(X, Y), μ')= - η{Y) g{μ', FX),

where we have used (6.5). If η(Y)=0, then we have g(D'xμ'f Y)=0. Let Λ̂  be
a vector field normal to M. Then we have

gφf

xμ
f, N)=n~γ-g{Dxμ, N)=0

because of Dxμ=0. Therefore M2 has non-zero ^-parallel mean curvature
vector, that is, the mean curvature vector μ' of M2 in M satisfies g(D'xμ', Y)
—0 for any vector field X tangent to M2 and any vector field Y normal to M Λ

in M such that η(Y)=0. Therefore we have

PROPOSITION 6.3. Let M be an (n+l)-dimensιonal pseudo-umbilical generic
submanifold of a Sasakian space form M2m+1(k) with non-zero parallel mean
curvature vector. If p^2, then k=—3 and M is locally a Riemannian direct
product MλxM2y where Mλ is totally geodesic invariant submanifold of M2m+1(— 3)
and M2 an anti-invariant submanifold of M2m+1(—3) with non-zero η-parallel
mean curvature vector.

We denote by E2m+1(—3) the Sasakian space form with constant ^-sectional
curvature —3 with standard Sasakian structure in a Euclidean space (cf. [12]).

From Proposition 6.3 and Theorem 6.1 of [12; p. 143], we have

THEOREM 6.2. Let M be an (n+l)-dimensional complete pseudo-umbilical generic
submanifold of a simply connected complete Sasakian space form M2m+\k) with
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non-zero parallel mean curvature vector. If p^2, then M is a Pythagorean pro-
duct of the form

xS1(rp-s)xRs in

or

Proof. By Proposition 6.3, M is M1xM2 and £——3. Thus we have
M2 m + 1(—3)—£2 m + 1(—3). Since Mi is a totally geodesic invariant submanifold of
£ 2 m + 1 ( - 3 ) , we have M ! = £ n - p + 1 ( - 3 ) .

In the following, we study M2 in £2 m + 1(—3). First of all, we consider the
second fundamental form A' of M2 in Ezm+1(—3). Let I be a vector field
tangent to M2 and V a vector field tangent to Mλ. Then V is normal to M2.
Thus we have

, V).

Since we have !XV<=T(M^, we see that A'vX—ΰ. Let iV be a vector field
normal to M. Then we have

ΪXN=- A'NX+D'ZN=-ANX+DXN,

from which we obtain g(Af

NX, Y)=g(ANX, Y), where 7 is a vector field
tangent to M2. From this and (6.3) we have

(6.10)

Thus we see that the second fundamental forms of M2 in £2 m + 1(—3) are com-
mutative.

Let TV be a vector field normal to M2 in E2m+1(—3). We put

where tN is the tangential part and fN the normal part of φN respectively.
Then / defines an /-structure in the normal bundle of M2 (see [12 p. 122]).
Thus we have

(D'xf)N=-B(X, tN)-φA'NX,
from which

g((D'xf)N, V)=-g{A'vX, tN)+g{A'NX, tV),
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where V is a vector field normal to M2. If N is tangent to Mlf then we have
tN=0anά A'NX=0. If V is tangent to M1} we have tV^O and A'VX=Q. Next
we suppose that N and V are normal to M. Then Lemma 2.1 implies that
•4V* V)=i4V(fiV). Consequently, we obtain (D'xf)N=0, which shows that the
/-structure of the normal bundle is parallel. Thus Theorem β.l of [12 p. 143]
implies that M2 is of the form

SKri)X - xS\rp-s)xRs

or

Therefore we have our assertion.

§ 7. Pseudo-umbilical hypersurfaces.

Let M be a pseudo-umbilical hypersurface of a Sasakian manifold M. Then,
from (β.l), we see that the second fundamental form A of M is of the form

(7.1) AX=alX-η(X)ξΊΛ-bu{X)U+η(X)U-{-u(X)ξ

for any vector field X tangent to M, a and b being functions.
The notation of pseudo-umbilical hypersurfaces of Sasakian manifolds cor-

responds to that of ^-umbilical real hypersurfaces of Kaehlerian manifolds (cf.
[4]). A real hypersurface N of a Kaehlerian manifold N is said to be ^-umbilical
if the second fundamental form H of N is of the form HX=aX+βh(X)V,
where V is a unit vector field normal to N and h is a dual 1-form of V, and
a, β are functions.

We now prove the following

PROPOSITION 7.1. Let M be a regular Sasakian manifold and M be a hyper-
surface of M tangent to ξ, and let N be a Kaehlerian manifold and N be a real
hypersurface of N such that the diagram

M ^ M

N ^ N

commutes and the immersion i is a dijfeomorphism on the fibres. Then M is
pseudo-umbilical if and only if N is η-umbilical.

Proof. Let X and Y be vector fields tangent to N. We denote by * the
horizontal lift with respect to η. Then we have (cf. [12]), (G(HX, Y))*=
g(AX*, Γ*), G being the metric tensor field of TV. If TV is ^-umbilical, then
we find g(AX*, Y*)=ag(X*y 7*)+/3w(X*M7*), where we have used V*= U.
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Thus we have g(Aφ2X, φ2Y)=ag(φ2X, φ2Y)+βu(φ2X)u(φ2Y) for any vector fields
X, Y tangent to M. From this we have (7.1). The converse is also true by
virtue of (7.1).

Let M be a pseudo-umbilical hypersurface of a Sasakian space form
M2n+1(k). Then (7.1) implies

, X)U+u(X)PAY3

+ g(PY, X)U+v(X)PAY+g(PAY, X)ξ+u(X)PY

for any vector fields X and Y tangent to M. From this we have

+(Xb)u(Y)U-(Yb)u(X)U+a[2g(PY,X)ξ

-η(Y)PX+V(X)PYl + bίg(PAX, Y)U

-g{PAY, X)U+u(Y)PAX-u(X)PAYl

+ 2g(PXy Y)U+η(Y)PAX-η(X)PAY

+g(PAX, Y)ξ-g{PAY, X)ξ+u{Y)PX-u{X)PY.

Combining this with (1.11), we find

(7.2) λ(k+3)ίg(PY, Z)u{X)-g{PX, Z)u{Y)-2g{PX, Y)u(Z)l

={Xa)lg{Y, Z)-v{Y)η{Z)-]-{Ya)lg{X, Z)-η(X)V(Z)l+(Xb)u(YMZ)

-(YbMX)u(Z)+a[_2g(PY, X)η{Z)-η{Y)g{PX, Z)+v(X)g(PY, ZY]

+blg(PAX, Y)u(Z)-g(PAY, X)u{Z)+g{PAX, Z)u(Y)-g(PAY, Z)u(X)l

+ V(Y)g(PAX, Z)-V(X)g(PAY, Z)+τ](Z)g(PAX, Y)-η(Z)g(PAY, X)

for any vector fields X, Y and Z tangent to M.
Putting Y=U in (7.2) and using (7.1), we have

[ab+j(k+3)]g(PX,Z)=-u(Z)X(a+b)+(Ub)u(X)u(Z)

+ {Ua)lg{X,Z)-V{X)v{Z)-].

Moreover, putting Z=U in this equation, we find X(a + b)=u(X)U(a + b), from
which

[ab+ j(k+3)]g(PX, Z)=(Ua)Zg(X, Z)-v{X)v{Z)-]-{Ua)u{X)u{Z).

Since P is skew-symmetric, we have

(7.3) [ab+j(k+3)]g(PX,Z)=Q.
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If n^2, then (7.3) implies that ab~ — — (£+3). Suppose that the ambient mani-

fold M2n+ι(k) is S2n+1. Then we have ab= — L Since g(AU, U)=a + b, we

obtain

(7.4) X(a + b)=g(C7xA)U, U)=(U(a + b))u(X),

where we have used PAU=0 and (2.5). We put β=U(aJ

Γb). Then we have

XY(a+b)=(Xβ)u{Y)+βag(PX, Y)^rβu{lxY),

YX(a+b)=(Yβ)u(X)+βag(PY, X)+βu(lγX),

[X, Yl(a+b)=βu(ZX, F]).

Since R(X, Y)(a+b)=0, we find

(7.5) 0=(Xβ)u(Y)-(Yβ)u(X)+2βag(PX, Y).

Since ?z^2 and aΦO, we have /3—0 and hence (7.4) implies that X(ai~b)=0 for
any vector field X tangent to M. Therefore α-f-fr is a constant. From this and
ab~ — l, a and b are both constant. On the other hand, the second fundamental
form A is represented in the following matrix form, for an orthonormal frame
ei, ••*, #2n such that e%n-1~U and e2n~ξ,

(7.6)
0

\
S

0

0

0

s
s

s

\
\

0

a+b

1

0

1

0

We consider the matrix ( \ Then the eigenvalue λ of this matrix satis-

fies λ2—(a + b)?,J

Γab=0. Since ab= — l, we have λ—a or λ—b. Therefore, the
principal curvatures of M are a and b. The multiplicity of a is 2n — l and that
of b is 1. Consequently, we have

LEMMA 7.1. Let M be a pseudo-umbilical hypersurface of S2n+\?ι^2). Then
M has two constant principal curvatures with multiplicities 2n — l and 1 respec-
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tively.

From Lemma 7.1 and a well known theorem (cf. [6]), we have

THEOREM 7.1. Let M be a compact pseudo-umbilical hypersurface of 5 2 n + 1 (n^2).
Then M is congruent to

§8. A characterization of Sasakian space form.

First of all, we define an axiom, which will be called a P-axiom. A Sasakian
manifold M of dimension 2 n + l is said to satisfy the P-axiom if for each x^M
and each 2n-dimensional subspace 5 of TX{M), ξ^S, there exists a pseudo-
umbilical hypersurface N such that TX(N)~S, x^N and g(AU, U)=a + b=
constant.

The purpose of this section is to prove the following

THEOREM 8.1. // a (2iι+ΐ)-dimensιonal Sasakian manifold M (n^2) satisfies
the P-axiom, then M is a Sasakian space form.

Proof. Let R be the Riemannian curvature tensor of M. Then R satisfies

(8.1) R(X, Y)φ=φR(X, Y)-όXΛY-XΛφY,

where (XΛY)Z=g(Y, Z)X-g{X, Z)Y.
Let x be an arbitrary point of M and C a unit vector in TX(M) such that

^(C)=0. Let S be a 2n-dimensional subspace of TX(M) orthogonal to C. By
the P-axiom, there exists a pseudo-umbilical hypersurface N such that TX(M)=S.
From (8.1) we have

(8.2) g(R(C, φQC, X)=g(R{C, φQφC, φX)

, U)U, PX)=g(R(PX, U)U, C)

for any vector field X tangent to A7 such that u(X)~η(X)=0. On the other
hand, equation of Codazzi is given by

(8.3) g(R(X, Y)Z, C)=g(C7xA)Y, Z)-g(C7rΛ)X, Z)

for any vector fields X, Y and Z tangent to Ar. By a similar computation as
that done in § 7, we find, using (8.2),

g(R(C, φQC, X)=(PX)(a + b).

Since a+b is a constant, we obtain g(R(C, φC)C, Z)=0. Therefore R(C, φC)C
is proportional to φC= — U. From this our theorem follows by virtue of the
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following lemma.

LEMMA 8.1. ([9]). A (2n+ΐ)-dimensιonal (n^2) Sasakian manifold M is a
Sasakian space form if and only if R(X, φX)X is proportional to φX for any
vector field X of M such that η(X)~0.

§ 9. Pseudo-Einstein hypersurf aces.

Let M be a 2n-dimensional hypersurface of S2n+ί. Then the Ricci tensor 5
of M is given by

(9.1) S(X, Y)=(2n-l)g(X, Y)+Hg(AX, Y)-g{AX, AY),

H denoting the mean curvature of M. If the Ricci tensor S of M is of the
form

(9.2) S(φ*X, φ*Y)=ag(φ2X, φ*Y)+bu(φ*X)u(φ*Y)

for any vector fields X and Y tangent to M, a and b being constant, then M is
called a pseudo-Einstein hypersurface of S2n+1. Equation (9.2) is equivalent to

(9.3) S(X, Y)=

ξ, Y)+v(Y)S(ξ, X)-τ1{X)η{Y)S{ξ, ξ).

We notice here that S(ξ, ξ)=2n—2.
The purpose of this section is to determine complete pseudo-Einstein hyper-

surface of S2 n + 1.
If M is a pseudo-Einstein hypersurface of S2n+\ from (9.1) and (9.3), we

have

(9.4) a[_g{X, Y)-V(X)V(Y)-]+bu(X)u(Y)+V(X)S(ξ, Y)+v(Y)S(ξ, X)

-η(X)η(Y)S(g, ζ)=(2n-l)g(X, Y)+Hg(AX, Y)-g{AX, AY).

In the following, we assume that n ^ 3 . We can choose a local field of ortho-
normal frames eu •••, e2n-lf e2n, e2n+1 in 5 2 n + 1 in such a way that, restricted to
My e1} •••, e2n are tangent to M and e2n-i—ζ> e2n=U, e2n+ι—φe2n=C. Then if
we choose eu ••• , 2̂n-2 suitably, the second fundamental form A is represented
by a matrix of the form
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r

(9.5) Λ=

0
\\\

\
\

s
\

\

\

0

0

}χι h2n-2

0

0

1

1

a

where we have put ht=g(AU, et), z=l, •••, 2n—2, a=g(AU, U). Then from
(9.4) and (9.5) we have

g(Aet,Aej)=0 for iΦj, i, ; = 1, •••, 2 n - 2 ,

ί / ) - ^ ^ , i4ί/)=0 for ι = l , - , 2 n - 2 .

From these equations we have

(9.6) hthj=O, iΦj, i, j = l, •• , 2 n - 2 ,

(9.7) hi(H-λt-ά)=0, z=l, •••, 2?2-2.

Equation (9.6) shows that at most one h% does not vanish. Thus we can assume
that h%=0 for ι=2, •••, 2n-2. Then (9.7) implies

LEMMA 9.1. Let M be a pseudo-Einstein hypersurface of S2n+1. Then we
have H=λχ+a or h1=0.

On the other hand, from (9.4), we obtain

(9.8) a = (2n-l)+Hλt-λl, ι=2, ••• , 2n-2,

(9.9) a=(2n-ΐ)+Hλ1-λj-hh

(9.10) aJrf)=(2n-2)+Ha-a2-ho

ϊ.
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We now suppose that H=λλ+a. Then (9.9) and (9.10) imply that b= — l.
Thus, for any vector fields X, Y tangent to M such that η(X)=0, η(Y)—ΰ, we
have

(9.11) ag{X, Y)-u(XMY)=(2n-l)g(X, Y)+Hg(AX, Y)-g{AX, AY).

We now take a new local field of orthonormal frames elf ••• e2n of M such that
e2n=ξ for which the second fundamental form A is represented by a matrix of
the form

(9.12)

0

0

pin-i

U1

{=1, •-, 2 w - l .

From (9.11) and (9.12) we have

from which

(9.13) a=(2n-ϊ)+Hβi-βl, z=l, •••, 2 n - l .

Therefore we see that each βx satisfies the quadratic equation

(9.14) t2-Ht + a-(2n-l)=Q.

We now prepare some lemmas. We put

βl

o
(9.15)

o
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L E M M A 9.2. / / βλ— ••• = β2n.1—β at every point of M, then M is totally

contact-umbilical.

Proof. By the assumption we have

Aeι=βei+u(eι)ξ9 ι = l , - , 2 n - l .

On the other hand, any vector field X tangent to M is of the form

Therefore, we obtain

Thus (1.1) and (1.13) show that M is totally contact-umbilical.

LEMMA 9.3. // AU=aU+ξ, then a is a constant.

Proof. From the assumption we have

(yxA)U+APAX=.(yxa)U+PAX+PX.

From this and equation of Codazzi we have

g{{lxA)U, Y)-g({lrA)U, X)

= {lxa)u(Y)+ag{PAX, Y)+g{PX, Y)-g{APΛX, Y)

-(lYa)u(X)-ag{PAY, X)-g(PY, X) + g{APAY, X)=0 .

Thus we have

{lxa)ιι{Y)-{Ίγa)u{X)+ag{{PA+AP)X, Y)+2g(PX, Y)-2g(ΛPAX,

Putting X=U in this equation, we obtain

Therefore we have

(9.16) ag({PA+AP)X, Y)+2g(PX, Y)-2g(APAX, Y)=Q.

Put T7ua=γ. Then 1 xa=γu(X) and lYa=γu{Y) and consequently we have

lxlYa={Ίxγ)u{Y)+rg{Y, PAX)+γg{U, 1XY),

from which

R{X, Y)a={Ίxγ)u{Y)-{lYr)u{X)+γg(iPA+AP)X, F ) = 0 .

Putting X—U or Y=U in this equation, we find (^uΐ)u(Y)=^rΐ and i^υγ)ιι{X)
=7jrj'. Thus we have

γg{{PA+AP)X, Y)=0.

If we assume that PA+AP=0, then (9.16) implies
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g{PX, Y)=g{APAX, Y),
from which

g(PX, PX)^g{PAX, APX)=-g(PAXf PAX).

Thus we have PA"—0. This is a contradiction to the fact that ni>3. Conse-
quently we have γ=Q, i. e., 7^α=0 and hence (V^α)w(^")=(7^α)=0 for any
vector field ,Y tangent to M. This shows that a is a constant.

LEMMA 9.4. rank L>1 at some point of M.

Proof. We assume that βx— ••• ~β.in_2=zθ and put βzn-ι=β> Then we see

that .4^—2/(0? f° r ι—l, '- , 2n—2. From this we have

β t A ) e J f e k ) = u ( e k ) g ( P e t , e J ) + u ( e j ) g ( P e ι , e k ) ,

where i, j , k~l, ••• , 2n—2. Therefore the equation of Codazzi implies

2u(ek)g(Pet, eJ) + u(eJ)g(Pelί ek)-u(et)g(PeJt 0 = 0 .

Putting here j~k, we find

u{e,)g{eJ9 Pet)=O,
from which

2Έu{eJ)g{eι, Pet)g(eu Petn-d
1

Therefore we have u(ej)=O, j~l, ••• , 2n—2 or w(e2«-i)=0.
Let u(ej)=Q for ; = 1, ••• , 2n—2. Then we have βaπ-i—^. Thus we have

4)^, U)=βg(eJf PAeι)+g(eJ, Peι)^g{eJ, Pet).

From this and the equation of Codazzi we find g(Peτ, ej)~Q and hence

This is a contradiction to the fact that n^3.
Next we assume that u(e2n-1)=0. We then have

g{{leiA)U, O - £ - ( 0 V l ) ^ , U)=g(eJf Pet).

From this and the equation of Codazzi, we have g(Peτ, βj)=O. This is also a
contradiction. Consequently, we see that rank L > 1 at some point of M.

From (9.14) we see that at most two βt can be distinct at each point of M.
Let us denote them by λ and μ. We denote by p the multiplicity of λ. Then
the multiplicity of μ is 2n — 1 — p.

LEMMA 9.5. Let H=λ1

J

Γa. If λ and μ are constant, λ^μ, and if p^2,
2?z-l —/>^2, then λμ>0 or h^O.
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Proof. Let {ea} be orthonormal vector fields such that Aea=λea + u(ea)ξt

{er} orthonormal vector fields such that ^4er=μer+w(£r)f and {ea, er} a local
field of orthonormal frames for L. The indices a, b, c and r, s, ί run the
ranges {1, 2, •••, p} and {p+l, •••, 2n —1} respectively.

First of all, we have

a a a e a , eb)ξ+uφeaeb)ξ+u(eb)Pea ,

from which

g{{leaA)eby ec)=-g{leaeb, Aec)+λg(leaeb.tc)+u(eb)g(Pea, ec)

= u(ec)g(eb, Pea)+u(eb)g(Pea, ec).

Therefore the equation of Codazzi implies

u(ec)g(eb, Pea)+u(eb)g(Pea} ec)-u{ec)g{ea} Peb)~u{ea)g{Peb, ec)=0,

from which
2u(ec)g(eb, Pea) + u(eb)g(Pea} ec)—u(ea)g(Peb, ec)~0.

Putting a — c in this equation, we have

(9.17) u(O^,f ta)=0.

Similarly we have

(9.18) u{er)g{es, Per)=0.

From (9.17) we obtain

0 - Σ u(ea)g(Pea, eh)g{eb, Per)
a,b

= Σ u(ea){g(Pea, Per)- Σ g(Pea, es)g(es, Per)}
a s

= Σ u(ea){-u(ea)ιι(er)- Σ g(Pea, es)g(es, Per)} .
a s

Since Έu(ea)g(Pea, es)=-Σ,u(er)g(Per, es)=0 by (9.18), we have
a r

This shows that u(ea)=0 or u(er)=0.
Without loss of generality we may assume that u(ea)=0 for all a and hence

u(er)Φ0 for some r. Then we have

er, U)-g(Aleaer, U)-g(Aer, PAea)

=μgφeaer, U)-g{leaer,AU),

ea, AU)

ra, AU).

Therefore the equation of Codazzi implies
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(9.19) μg(Vtaer, U)+λμg{ea, Per)-gC7eaer, AU)+g{Ίerea, AU)=0.

On the other hand, we have

eaer, es)g{es, AU)+g(leaer, ξ)g(ξ, AU)

=μ Σ g^eaer, es)g(es, U)+gC7taer, ξ)
S

eaer, U)-g{eryPea)y

'erea, AU)^-μ2g(ea, Per)-g{ea, Per).

Substituting these equations into (9.19), we find

(9.20) {μ*-λμ+2)g(Pea, er)=0.

If e r=ί7, then AU=μU+ξ. Then, from the definition of hlf we have /h=0. If
erΦU, then (9.18) shows that g(es, Per)~0 for all s. From this we see that
g(Pea, er)=—g{ea} Per)Φ0 for some a. Consequently, we obtain μ2—λμ+2=0.
Thus we have λμ=μ2jr2>0. This proves our lemma.

LEMMA 9.6. Let M be a pseudo-Einstein hypersurface of S2n+\n^3). Then
we have h1=0.

Proof. By Lemma 9.1, it suffices to show that HΦP^+a. We assume that
H=λx+a. Then we have (9.14) and the second fundamental form A is repre-
sented by (9.12). From (9.14) we see that at most two βt are distinct and so
we denote them by λ and μ. If λ=μ at any point of M, then Lemma 9.2 shows
that M is totally contact-umbilical. This contradicts to Proposition 2.2. There-
fore λφμ at some point. Then, from (9.14) we have

(9.21) H=λ+μ, λμ=a-(2n-l).

Let p be the multiplicity of λ. Then we have H=pλ-\-(2n — l — p)μ. Combining
this with (9.21), we have

(9.22) (p-l)λ+(2n-2-p)μ=0.

Suppose a>(2?ι — 1). Then the second equation of (9.21) shows that λ and μ
have the same sign. Therefore (9.22) implies that p=l and n=3/2. This is a
contradiction.

Let a<(2n — 1). If λ=μ at some point, then we have (2n—2)λ2=a— (2n — 1)
<0 by (9.13). This is a contradiction. Hence there exist exactly two distinct
eigenvalues λ, μ of L at each point of M. Thus (9.22) implies that Kp<2n—2.
From (9.21) and (9.22) we have

2___ (2ft—2—p)(a—2n+l) 2__ (ft—l)(g—2n+l)

Therefore λ and μ are constant. Thus Lemma 9.5 implies that λμ>0 or h1=0.
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If λμ>0, this contradicts to the fact that λμ—a—(2n —1)<0.
We now assume that α=(2n —1). Then λμ—0. This gives rank L ^ l . This

is a contradiction by Lemma 9.4. Consequently, we see that Hψλ^Va and hence
/ii=0 by Lemma 9.1. This proves our assertion.

THEOREM 9.1. Let M be a pseudo-Einstein hyper surf ace of S2n+1(n^3). Then
M has two constant principal curvatures or four constant principal curvatures.

Proof. Since h1—0 by Lemma 9.6, the second fundamental form .1 is re-
presented by a matrix of the form

A\

0

\

0

0

0

\

Λ2B-2

0

0

1

0

1

a

for a local field of orthonormal frames elf ••• , e2n-2, e2n-i—ζ> e^^U of M. Then
(9.8), (9.9) and (9.10) reduce to

(9.23) a=(2n—l)+Hλi—λl, z = l , ••• , 2 n — 2 ,

(9.24) a+b==(2n-2)+Ha-a2.

On the other hand, from Lemma 9.3, a is a constant. If aΦQ, then // is con-
stant by (9.24). From (9.23) we see that at most two λ% are distinct and so we
denote them by λ and μ. Since H is constant, then λ and μ are both constant
by (9.23).

We next assume that α=0. Then we have H~p?<Jr(2n—2—p)μ, where p
denotes the multiplicity of λ.

Suppose α>(2n—1). If λΦμ at some point of M, then from H=λ+μ, we
have (p—l)λ-\-(2n—3—p)μ—0. Since λμ=a—(2n—l)>0, λ and μ have the same
sign and hence p=l, n—k/2~2. This is a contradiction to the fact that n ^ 3 .
Thus we must have λ—μ at each point. Thus (9.23) implies that (2n—3)λ2=
a—(2n—1), and hence λ is a constant.
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Suppose a<(2n—1). If λ~μ at some point, then we have (2n—3)/2=
α—(2n —1)<0 by (9.23). This a contradiction. Therefore λΦμ at each point.
Thus we have H=p?,Jr(2?t — 2—p)μ=λ-\-μ and λμ=a—(2n — l). Consequently we
have

2 _ _ (p-l)(a-2n + l)

and hence λ and μ are constant.
We next assume that a=(2n — 1). Then Λμ=0. Thus if Λ^O, then H=pλ

and hence (9.23) implies that (p — l)λ2=0. Thus we have p=L
We assume that i4g t=0, z=l, ••• , 2n—3, ^^271-2=^^2^-2. On the other hand,

we have ΛU—aU+ς. Thus we have

)eJf U)=-g(eJ} Pex), 1, ; = 1, ••• , 2 n - 3 ,

g(C7ejΛ)eτ, U)=-g{e%) Pe3), z, 7 = 1, - , 2 n - 3 .

Hence the equation of Codazzi implies that g ^ , P^i)=0. Since ?ι^3, we can
take ^ and ^ such that ^ ( ^ , Peι)Φ0. This is a contradiction. Therefore
aφ(2n—l).

We now consider the matrix ( . ). Then the eigenvalues of this matrix
V i a /

satisfy the quadratic equation

(9.25) t2-at-l=0.

Let λ=μ. Then we have

(9.26) g((VeiΛ)eJf U)=-λ*g(ej, Peι)+aλg(eJ, Pel)+g{eJ, Pe%).

From the equation of Codazzi we have

(9.27) (λ2-aλ

Therefore we have λ2—aλ—1=0 and hence λ satisfies equation (9.25). Thus M
has two constant principal curvatures.

Let λΦμ. We take an orthonormal frame {ea, er, U, ξ) such that Λea—λea,
Aer—μer, where a, b, c—\, ••• , p r, s, t = p+l, •••, 2n—2. Then we have

Λ)ea, U)=aμg(ea, Per)+g{ea, Per)-λμg{eaPer),

A)er, U)=aλg(er, Pea)+g(er> Pea)-λμg{er, Pea).

From these equations and the equation of Codazzi we have

(9.28) (aλ+aμ+2-2λμ)g(er, Pea)^0.

If g^r, Pea)Φθ for some r and a, then we have

(9.29) aλ+aμ+2—2λμ=Q.

If λ or μ satisfies (9.25), then we have λ2—aλ—1=0 or μ2—aμ—1=0. Let
λ2-aλ-l=0. Then (9.29) implies that (a—2Z)(μ—λ)=0. Since λΦμ, we have
λ—a/2. Thus we have α2/4—a212—1=0 and hence —α 2 /4=l . This is a con-
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tradiction. Consequently λ and μ do not satisfy (9.25). Thus M has four con-
stant principal curvatures.

If g(er, Pea)=0 for all r and a, then have p^2 and (2n-2-p)^2. In this
case, by the similar method used to obtain (9.27), we have λ2—aλ—1=0 and
μ2—aμ—l=0. Therefore λ and μ satisfy (9.25). Moreover, we see that p and
(2n—2—p) are even. Thus the multiplicities of λ and μ are p + 1 and 2n — 1 — p
respectively and hence they are odd. Consequently, M has two constant principal
curvatures or has four constant principal curvatures. This proves our theorem.

§ 10. Examples of Pseudo-Einstein hypersurf aces.

Let Pn(C) be a complex projective space of constant holomorphic sectional
curvature 4 with almost complex structure /. Let N be a (2n — l)-dimensional
real hypersurface of Pn(C). We denote by G the metric tensor field of Pn{C).
We denote by the same G the induced metric tensor field of N. Let C be a
unit normal of TV in Pn(C). We put JC'=-U' and u'(X)=G(X, Uf) for any
vector field X tangent to N. If the Ricci tensor S' of TV is of the form S\X, Y)
—αG(X, Y)Jrβu'(X)u'(Y), α and β being constant, then N is called a pseudo-
Einstein real hypersurface of Pn(C) (see [4]). We now consider the following
commutative diagram :

P\C)

where M is a hypersurface of S2n+1 and π, π denote the Riemannian fibre
bundles. We denote by * the horizontal lift with respect to the connection η.
Then, by a straightforward computation, we can show that the Ricci tensor 5
of M and the Ricci tensor S' of iV satisfy

(10.1) (S'(X, Y))*=S(X*, r*)+2^ (Z*, Y*)-2u(X*MY*)

for any vector fields X and Y tangent to N. From (10.1) we have the following
lemma.

LEMMA 10.1. M is α pseudo-Einstein hypersurface of S2n+1 if and only if N
is a pseudo-Einstein real hypersurface of Pn(C).

Using Lemma 10.1, we give some examples of pseudo-Einstein hypersurfaces
of S2n+1.

L e t Cn+1 be t h e s p a c e of ( n + l ) - t u p l e s of c o m p l e x n u m b e r s (zlf •••, z n + 1 ) .
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π + l
Put S2n+1={(zlf ••• , 2 n + 1 ) e C n + 1 : Σ | ^ | 2 = 1 } . For a positive number r we de-

note by M0(2n, r) a hypersurface of S 2 n + 1 defined by

Σ \ \ 2 \ \ " I Γ

For an integer m (2^mSn — l) and a positive number s a hypersurface M(2n, m, s)
of 52 r e + 1 is defined by

m π+l π+l

Σ \zA2=s Σ | z , | ! , Σ I ^ I 2 = 1 .
; = 1 j = m + l j-i

For a number ί ( 0 < ί < l ) we denote by M(2n, t) a hypersurface of S2n+1 defined
by

π + l

Σ
3 = 1

π + l

Σ
1-1

M0(2n, r) and M(2n, m, s) have two constant principal curvatures and M{2n, t)
has four constant principal curvatures (see [5], [8]).

From the results in [4] and Lemma 10.1 we can see that M0(2n, r) is always
a pseudo-Einstein hypersurface of S2n+1 for any r and M(2n, m, s) is pseudo-
Einstein if s—(m—l)/(n — m). Then the Ricci tensor S of M(2rc, m, (m—l)/(n — m))
is given by

S(X, Y)=(2n-2)tg(X, Y)-η(X)η(Y)l + η(X)S(ξ, Y)

, X)-V(X)V(Y)S(ξ, ξ),

that is, a—2n—2 and b=0. Furthermore M(2n, t) is pseudo-Einstein if t = l/(n~l)
and the Ricci tensor S of M(2n, l/(n —1)) is given by

S(X, Y)=(2n-2)ίg(X, Y)-

ξ, Y)+V(Y)S(ξ, X)~V(X)η(Y)S(ξ, ξ),

that is, a— 2n—2 and b—i—in.
Moreover M(2n, l / (n- l ) ) is not minimal and M0(2n, 2 n - l ) , M(2n, (w + l)/2, 1)

are minimal in S2n+1.
From these considerations we have the following

THEOREM 10.1. // M is a complete pseudo-Einstein hypersurface in S2n+1

(n^3), then M is congruent to some M0(2n, r) or to some M(2n, m, (m—ϊ)/(n-m))
or to M(2n, l / (n- l )) .

Proof. From Theorem 9.1 we see that M has two or four constant principal
curvatures. If M has two constant principal curvatures, then M is congruent to
M0(2n, r) or M{2n, m, s) (cf. [6]). Since M is pseudo-Einstein, M is congruent
to M0(2n, r) or to M(2n, m, (m—l)/(n—m)) by the previous argument. If M has
four constant principal curvatures, one of the principal curvatures has multiplicity
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1. Therefore, by a theorem of [8], M is congruent to M(2n, t). Since M is
pseudo-Einstein, M is congruent to M(2n, l/(n —1)). Therefore we have the
theorem.

THEOREM 10.2. If M is a complete pseudo-Einstein minimal hypersurface in
S2n+1 (n^3), fΛen M is congruent to M0(2n, 2 n - l ) or to M(2n, (n+l)/2, 1). In
the later case, n is odd.
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