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SEPARABLY HILBERTIAN FIELDS

BY KOJI UCHIDA

Let t and X be indeterminates. Let fτ(t, X), ι=l, ••• , m be irreducible
polynomials over a field k and let a(t) be a non-zero polynomial over k. A
field k is called Hilbertian [6] if for any choice of f% and a there exists an
element s of k such that every fi(s, X) is irreducible and a(s)Φ0. Any Hilber-
tian field of non-zero characteristic p is non-perfect because it has an element
s such that Xp~s is irreducible. But this is not essential in applications of
Hilbertian fields, and a slight modification of the definition allows us perfect
Hilbertian fields. Let t and X be indeterminates. Let f(t, X) be a polynomial
over a field k such that it is separably irreducible over k(t) as a polynomial of
X. A field k is called separably Hilbertian if for any choice of such f(t, X)
it contains an element s such that f(s, X) is separably irreducible over k.
Let k be a Hilbertian field and let fit, X) be a polynomial over k which is
separably irreducible with respect to X. Then the discriminant Df(t) is not
zero. Now there exists an element s of k such that f(s, X) is irreducible and
Df(s)Φ0. Then f(s, X) is separably irreducible, i.e., any Hilbertian field is
separably Hilbertian. It has been known and will be shown below that two
definitions are equivalent when the characteristic of a field k is zero. In the
first section, it will be shown that a field k of non-zero characteristic is
Hilbertian if and only if it is separably Hilbertian and non-perfect. In section
2, we will show some extensions of separably Hilbertian fields are also separ-
ably Hilbertian. Galois groups of extensions of separably Hilbertian fields of
cohomological dimension 1 will be dealt in the last section. We will remark
here an important application of Hilbertian fields essentially due to Lang [7]
which does not seem to be well known. Let k be a field of characteristic p
containing a finite field Fq. Let G be a connected linear algebraic group defined
over Fq. Let x be a generic point of G over k. Then k(x) is a finite Galois
extension of k(x~x'xi(ύ) with Galois group G(Fq), the rational points of G over
Fq. As x~λ-xm is also a generic point of G over k\ k(x~x-x™) is isomorphic
to k(x) over k. This shows that if k is (separably) Hilbertian and if k(x) is
purely transcendental over k, k has a Galois extension with Galois group G{Fq).
It is known that k(x) is purely transcendental if G splits over k. For example,
let Fp be the algebraic closure of Fp and let t be an indeterminate. Then
Fp(t) has a Galois extension with Galois group G(Fq) for any connected linear

Received February 7, 1979

83



84 KOJI UCHIDA

algebraic group G defined over a finite extension Fq of Fv.

1. Hilbertian fields and separably Hilbertian fields.
Let k be a field and let u be an indeterminate. Then it is known that

k{u) is Hilbertian. This was first proved by Franz [1] for infinite fields k and
by Inaba [3] in the general case. This theorem will be used in the reduction
step. A proof of this theorem in the case k is infinite is rather elementary,
and we only need this case because every separably Hilbertian field is infinite.

LEMMA 1. Finite fields are not separably Hilbertian.

Proof. Let Fq be a finite field with q elements. Let / be a prime number
which is not a divisor of q. A polynomial f(t, X)=Xι — t+tQ is separably
irreducible, but f(s, X)=Xι is not irreducible for any s^Fq.

L E M M A 2. Let k be a separably Hilbertian Held. Let tu ••• , tt and X be
indeterminates. Let a polynomial f(tlf ••• , tt; X) be separably irreducible over
k ( t 1 } ••• , tt) and let a(tlf ••• , tt) be a non-zero polynomial. Then there exist
elements s1} ••• , st of k such that f(slf ••• , sL X) is separably irreducible over k
and a ( s l t ••• , Sι)Φθ.

Proof. We first assume 1=1 and we put

Rtu X)=bo(t1)Xn+b1(t1)Xn-1+ ••• +bn(t1).

If n = l, the assertion is easy as k is infinite. We assume n^2. As the
polynomial

g(tu X)=Xn+a(t1)b1(t1)Xn-1+ ••• +a(t1)
nbo(t1)

n'1bn(t1)

is separably irreducible, there exists an element Si of k such that g(slf X) is
separably irreducible. Neither a(s^) nor bo{s^) is zero for such slf and f(slf X)
is separably irreducible. We now assume / ^ 2 . Then the field k(t1} ••• , fι-i)
is Hilbertian by Franz-Inaba theorem. Let Df(tlt •••, tt) be the discriminant
of f(tlf ••• , tι X). Then we can find a rational function ctlf ••• , ^-i) such
t h a t / ( ^ , —, tι-lf c(tu —, tι-0; X) is irreducible and a(t1} •••, tι-lt c(tu •••, ^ - 0 )
Df(tl9 •••, h-u c(tu ••• , tt-^ΦO. We put

/ ( ί i , •••, tι-i, c(tl9 -" ί t - 0 X ) = d ( t l f •- i £ - i ) - ^ ( i i , •••, ̂ - i X)

w h e r e g^k{_tlf ••• tι-1; X2 a n d d is a p o w e r of t h e d e n o m i n a t o r of c. B y t h e
i n d u c t i o n , w e c a n find e l e m e n t s slf ••• , s^_i of k s u c h t h a t g ( s i , •••, Sj-i j Ĵ Γ)
is s e p a r a b l y i r r e d u c i b l e , d(s i , ••• , Si-JΦO, a(sly •••, 5;-i, c(slf •••, 5 Z _ ! ) ) ^ 0 a n d
Df(slf -" , Sι-lf c(slf ••• Si-i))=£θ. T h e n S ί = c ( s i , •••, s^-O i s a n e l e m e n t of k s u c h
t h a t / ( s i , ••• , Si Z ) is s e p a r a b l y i r r e d u c i b l e a n d α ( s i , •••, st)Φθ.

L e t ^ b e a field a n d l e t tlf ••• tL b e i n d e t e r m i n a t e s . W e p u t R=k[_t1, ••• ί j .
L e t / i ( ί i , ••• ̂  X), i = l , ••• , m, be s e p a r a b l y i r r e d u c i b l e p o l y n o m i a l s o v e r R .
L e t α t b e a r o o t of fi(tlf ••• , tt\ X)=0 in t h e a l g e b r a i c c l o s u r e of k ( t l f ••• ίO
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Any /-tuple (slf •• sz) of elements of k determines a maximal ideal (t — s)

=(t1—s1, •'• , tι — sι) of R. Let Rs be the local r ing determined by this maximal

ideal. We put S=RsZalf ••• α m ] and Sc^ = Rsi^Jlt ••• aJr~] for any subset

(j)=(jlf ••• jr) of (1, ••• m). Let /3* be the residue class of aτ in S/(t — s)S.

L E M M A 3 . Let ai(tu ••• ί j ) αnrf Dι(t1, ••• , ί j ) b£ the leading coefficient and

the discriminant of fi(tlf ••• , ^ X) respectively. If ive choose su ••• sL as

fliC^i, ••• Sι)Di(slf ••• sO^O / o r ez ̂ r^ i, S ( ; ) is f/ιg integral closure of Rs in the

field k(tlf ••• tι aH, ••• , α J r ) for any (j).

Proof. Our assumption shows every α̂  is integral over Rs. We only need

to show Sr=Rs[_alf ••• , α r ] is integrally closed for any r. It is clear for 7'=0.

We assume 5r_i is integrally closed. As the defining polynomial of ar over

Sr-i divides fr(tlf •••, ίf Z), our assumption shows the discriminant of that is

a unit in Sr_i. Let

β = b Q + b 1 a r

J

Γ •" + b q - 1 a r

q - 1 , b i ^ k ( t l f ••• , tL; a u ••• a r - λ )

be integral over 5r_!, where q is the degree of ar over 5r_!. We get q

equations by replacing ar to its conjugates. By solving these equations with

respect to bif we see b0, ••• ̂ . J E S , . - ! as every conjugate of β is integral over

5r_i. This proves Sr is integrally closed.

L E M M A 4. Let k be a separably Hilberhan field. Let ft(tlf ••• tL; X),

ι=l, " m, be separably irreducible with respect to X, and let a(tlf ••• , tt) be a

non-zero polynomial. Then there exist elements slt ••• , st in k such that every

fi(su ••• Si X) is separably irreducible and a(slf ••• sL)Φθ.

Proof. Let ax and βt be as above. As every ax is separable over k(tlf •••, tL),

we can find an element a such that k(tlt ••• ̂  α 2, ••• , am)=k(tlf •••, ̂  α).

Let / ( ί i , ••• f tι\ X) be the defining polynomial of a. Lemma 2 shows that we

can find slf •••, sL in k such that / ( s ^ •••, st; X) is irreducible, a(slf ••• , s^^O

and they satisfy the conditions of Lemma 3 for every ft and /. Then S=Rs[_ά2

= Rsίoclt •••, a-rrj is integrally closed. Let β be a root of f(slf •••, ŝ  Z ) = 0 .

Then 5 / ( ί - s ) 5 = ^ [ / 5 ] is a field as f(sί} ••• , sz X) is irreducible. Hence (t — s)

is a maximal ideal of S 0 ) for all (j). Then Rsί(Xι']/(t — s)Rs[.aι2=k(βi) is a

field and

This shows fi(slf •••, sz X) is irreducible, and it is separable by our chice of

Si, •••, si.

Remark. This lemma shows a field k of characteristic 0 is Hilbertian if

and only if it is separably Hilbertian.

T H E O R E M 1. Let k be a separably Hilbertian field and let tlf •••, tt be

indeterminates. We put K=k(tlf •••, tt). Let K(alt •••, am) be a Galois extension
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of K with Galois group G and let fi(tu ••• , tL X) be the defining polynomial of
aτ. Then we can find slf ••• , sL in k and roots βt of ft(su ••• , sL X)=0 such
that k(βlf ••• , βm) is a Galois extension whose Galois group is isomorphic to G
and intermediate fields K(aJv ••• , aJr) correspond to k(βJV ••• , βJr) through this
isomorphism for all (j).

Proof. We can find an element a such that K(a)=K(a1} ••• , am). Let
f(tu ••• , tι\ X) be the defining polynomial of a. We can find slf ••• , Si in k
as in the proof of Lemma 4. Then S=Rs[_a~] = Rs[a1, ••• , am~] is integrally
closed and f(slf ••• , sL X) is separably irreducible. The Galois group G
operates on S and on (t—s)S. Hence G operates on S/(t — s)S=k(β) where β
is a root of f(slt ••• , sL Z ) = 0 . As G operates faithfully on S/(t — s)S, k(β) is
a Galois extension of k whose Galois group is isomorphic to G. The proof of
Lemma 4 shows

RsίaJV -. , aJr-]/(t-s)RsίaJl, ••• , α , , ] ^ ^ , ••• , β J r ) .

Hence K{a3v ••• , α:Jr) and ^(/3Jα, ••• , /3;r) are fixed fields of corresponding sub-
groups.

LEMMA 5. Let k be a field of non-zero characteristic p. Let f(X) be a
separably irreducible polynomial over k whose leading coefficient is 1 and which
has a coefficient not contained in kp. Then f(Xq) is irreducible over k for any
power q of p.

Proof. Let a be a root of f(Xq)=0. Then β=aq is a root of /(Z)=0.
We have to show [&(α): k(β)l=q. As [&(«): &(β)] is a power of £ and is not
greater than q, aq/p should be contained in k(β) if [k(a): k{β)~]<q. Then
k(aqlp)^k(β) and α 5 / p satisfies an equation

Then /3 satisfies

which is impossible by our assumption.

LEMMA 6. Let k be a non-perfect field of characteristic p. Let h{t) be a
polynomial over k which is not contained in & p [ί p ]. // there exist elements a of
k such that h(t-\-a)^kp[Q, they are contained in a unique residue class of the
additive group k mod kp. Let b be an element of k such that h(t + b)
Then the number of elements c of k such that h{b-\-cp)^kp is at most finite.

Proof. Let g(t)=h(t + a)&kplQ. Let b be an element of k such that
c—b—a is not in kp. We put

Then g2(t) is not zero and whose degree m is not a multiple of p. As
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h(t+b)=g(t+c)=gl(t*+c*)+g2(t+c)

and as gι(tPJrcp)<Ξkp[_tp~], the coefficient of degree m—1 of h(t + b) is not
contained in kp. Now let h(t+b)& kp[t~]. Then there exist elements 1, w2, ••• , wr

of k which are linearly independent over kp such that

+φr(t)ur, φt(t)

Our assumption asserts at least one of φ2(t), ••• φr(t) is not zero. If

hφ+cη=φ1(cp)+φ2(cp)ui+ ••• +φr(cp)ureikp,

it must be φ2(cp)= ••• = φr(cp)=0. Hence such elements are at most finite.

THEOREM 2. Let k be a field of non-zero characteristic p. It is Hilbertian if
and only if it is separably Hilbertian and non-perfect.

Proof. If k is Hilbertian, it has been shown that it is separably Hilbertian
and non-perfect. We now assume that k is separably Hilbertian and non-perfect.
Let fi(t, X), 2=1, ••• , m, be any irreducible polynomials and let a(t) be any
non-zero polynomial. We can assume that the leading coefficient of every
fiitj X) is 1. Let /i, •••, fι be inseparable, and let fi+1, •••, fm be separable.
We can find a separably irreducible polynomial gi(t, X) for any 2=1, ••• , /
such that fi(t, X)=gi(t, XQί) for some power qt of p. Then g% has the leading
coefficient 1 and has a coefficient ht(t) which is not in kp[tp2 as fx is irreduci-
ble. As the additive group k/kp has infinitely many residue classes, there
exists an element b of k such that

We put gt=fι for z = / + l , ••• , m. As gi(t+b, X) are separably irreducible with
respect to X, gi(tPJrb, X) are also separably irreducible. There exist only a
finite c3 in k such that A<(&+c/)efe* for some i—1, ••• , /. Let d(t) be the
product of a(b+tp) and all t—c3 for such c3. Then Lemma 4 shows there
exists an element r of k such that gi(b+rp, X), 2=1, ••• m, are separably irre-
ducible and d(r)=£0. We put s=b+rp. As Ai(s)Φ ^^ for 2=1, •••, /, gi(s, X) has
a coefficient which is not contained in kp for every 2=1, •••,/. Then every
fi(s, X) is irreducible and a(s)Φθ. This shows k is Hilbertian.

2. Extensions of separably Hilbertian fields.

LEMMA 7. Finitely generated extensions of a separably Hilbertian (resp.
Hilbertian) field k are also separably Hilbertian (resp. Hilbertian).

Proof. If k is non-perfect, every finitely generated extension of k is also
non-perfect. Hence we only need to prove the separably Hilbertian case. We
can divide the proof into three steps, i. e., purely transcendental extensions,
separably algebraic extensions and purely inseparable extensions. First step
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comes from Franz-Inaba theorem. For the second step, see [6]. Let K be a
purely inseparable extension of k. In this case K does not need to be finitely
generated. Let fit, X) be a separably irreducible polynomial over K[_Q. We
put

Then we can find a power q of the characteristic such that

g(t, X)=^ao(tyXn+

is a polynomial over k[_Q. Let a be a root of f(t, X)—0. Then aq is a root
of g(t, X)=0. As a is separable over K(t), it must be Kit, a)=K(t, aq). This
shows g(t, X) is separably irreducible over K(t), hence also over k(t). Then
we can find s in & such that ao(s)^0 and g(s, X) is separably irreducible over
k. Let β be a root of g (s, X)=0. As β is separable over k, it must be

As /(s, β1/q)=0, [_K{βllq)\ K~]^n. This shows β1/q is separable of degree n over
/ί, i. e., /(s, J£) is separably irreducible over if.

We now show examples of infinite algebraic extensions of a separably
Hilbertian field which are separably Hilbertian. These are generalizations of [5].

THEOREM 3. Let k be a separably Hilbertian iresp. Hilbertian) field. Then
i) Every abelian extension of k is separably Hilbertian iresp. Hilbertian).

ii) Let K be contained in a niίpotent extension of k. If K contains a subfield
E finite over k such that [E: kΓ\ is divisible by at least two prime numbers, K is
separably Hilbertian {resp. Hilbertian).

Proof. If k is non-perfect, every separable extension is also non-perfect.
Hence we only need to show the separably Hilbertian cases. Let K be an
extension of k as in i) or ii). Let t be an indeterminate and let f(t, X) be a
separably irreducible polynomial over K[_Q. Let a be a root of f(t, X)=0 and
we choose an element β such that K(t, a)(ZK(t, β) and K(t, β) is a Galois
extension of K(t). We can find a finite subextension E of K such that every
coefficient of fit, X) is in E, E(t, β) is a Galois extension of E{t) whose Galois
group is isomorphic to that of K(t, β) over K(t), and [_E\ k~\ is divisible by
at least two primes in case ii). Then there exists a field F such that Ei)FZ)k,
E is a cyclic extension of F of degree n>l, and n is divisible by at least two
primes in case ii). Let σ be a generator of G(E/F). Let t=tlf ••• , tn be
indeterminates and let σ operate as σ(tt)=tι+1, ι=l, ••• , n—1, and σ(tn)=t1.
Then σ determines an automorphism of E(tlt ••• , tn) of order n. Let σ also
denote an extension to an automorphism of the algebraic closure of E(tlt ••• , tn).
We put a=alf β=βi, and we define alt ••• , an, βu ••• , βn by σ(aι)=aι+1 and
σ(βi)=βi+1, ι=l, -" , n — 1. Though σ(βn) may not be βlt σ causes an auto-
morphism of E(tu -•• , tn, βlf ••- , βn) because σ{βn)=σn(β1) is in E(tlf βλ). Let
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E=F(γ), r=ϊi a n d σ(γt)=γι+1. T h e n t h e i n v a r i a n t subfield of σ in E(tlf ••• , tn)

is F(ulf ••• , un), w h e r e

Then z/j, ••• , un are algebraically independent over F, and £ ( ί i , ••• ίn, βu ••• , /3n)

is a Galois extension of F(wi, ••• , un). As i*1 is separably Hilbertian, we can

find elements υlt ••• , vn of F s u c h that the specialization Ui^Vi maps jE[i2, ••• , tn,

βi> '" > βnl/F\iulf ••• , wn] to a Galois extension of F with isomorphic Galois

group. Then E[_tly ••• , ί Λ ] maps onto E. If we put ti^Si^E, at^λτ and

jSi -^μi, we can assume E(μτ)/E is a Galois extension containing Λt, and

, α ) : E(t)l = lE(tlf ••• , ίn, α 2 ) : E(t1} ••• , ί n ) ]

As ĵ is a root of /(si, Z)=0, f(slf X) is separably irreducible over K if
E(μ^)Γ\K=E. Let L be a subextension of E(t, β) which consists of the
algebraic elements over F. We can assume that L maps identically onto itself
by the above specialization. Then

EdLrλKdEit,, β1)r\K{t1)r\K=E{tι)r\K=E,

i.e., E—Lr\K. As L{t1} βλ) is a regular extension of L and as it is free from

L(tlf βt), iΦl, over L, they are linearly disjoint, i.e.,

L{tlt tlf βi)Γ\Utlf tt, βi)=L(tlf U),
Then

L(tlt ••• , tn> βJrλUt!, "• , tny βt)=L(tlf ••• , tn)

maps onto L(μ1)r\L(μt)=L by the specialization. This shows E{μ1)r\E{μι)(ZL.
When K is abelian, E(μ^)Γ\K is also abelian. Then it is invariant by σ. As σ
maps £(//i) onto E(μ2),

This proves the first case. In the second case E(μλ)r\K is contained in a
nilpotent extension of F. Hence it is generated by elements of prime power
degrees over F. So we only need to show that δ^E for any element
δ^E(μλ)r\K of the degree ίd for some prime /. By our assumption σm for
some m has a prime order rΦl on E. Then there exists an isomorphism
which coincides with σm on E and is the identity on F(δ). Such an isomorphism
maps E(μύ onto E(μm+1), m+lΦl. Hence δ is contained in E(μ1)r^E(μm+1)

Remark. Let k be a separably Hilbertian field and let K be the maximal
^-extension of k for some prime p. Then K is not separably Hilbertian
because it has no ^-extension. Let a be contained in some nilpotent extension
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of k, but not in K. Then K(a) is separably Hilbertian by our theorem. This
example shows that K is not necessarily separably Hilbertian even if it has a
finite extension which is separably Hilbertian.

3. Solvable extensions of separably Hilbertian fields of cohomological
dimension 1. Let ^ be a field and let K be a finite Galois extension with
Galois group H. Let

be a group extension of finite groups. We call L a field corresponding to this
extension if L is a Galois extension containing K with Galois group isomorphic
to E and π coincides with the restriction of the operation of E—G{L/k) on K.

LEMMA 8. Let k be a field and let Ω be a Galois extension of k with Galois
group G. We assume that the cohomological dimension of G is 1. Let K be any
finite Galois extension of k with Galois group H contained in Ω. Let

be any split group extension with a finite abelian kernel A. We assume that there
exists a field L in Ω corresponding to this extension. Then for any group
extension

with a finite solvable kernel N, there exists a field M in Ω corresponding to this
extension.

Proof. We assume that our assertion is true if the n—1-st commutator
subgroup is trivial. Let the n-th commutator subgroup of N be trivial. Then
the n —1-st commutator subgroup A is an abelian normal subgroup of F. By
our assumption, there exists a field Mf in Ω corresponding to the group
extension

Then we only need to find a field M corresponding to the group extension

That is, we only need to prove our assertion when TV is abelian. We now
assume N is abelian. Let / : G->H be the natural projection. As cd G=l, we
can find a continuous homomorphism g: G->F such that πg—f. Let H1—g(G)
and let Kλ be the field corresponding to the kernel of g. Then Kλ contains
K,Hy=G(KJk) and F=H1-N. Let F1=HixN be the semi-direct product by
the natural action of Hλ on N. Then F is naturally a homomorphic image of
F lβ AS
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is a split extension with an abelian kernel N, there exists a field M1 in Ω
corresponding to this extension. Then the field corresponding to the kernel
of Fλ-*F satisfies our condition.

LEMMA 9. Let k be a separably Hilbertian field, and let K be a finite Galois
extension with Galois group H. Let

be a split group extension with a finite abelian kernel A. Then there exists a
field L corresponding to this extension.

Proof. We can assume A is an /-group for some prime /. First we assume
/ is not the characteristic of k. Let n be the exponent of A. Let Kx be the
field obtained by adjoining a primitive n-th root of unity to K. Let H1~G{K1/k).
As E is a homomorphic image of a group extension

1 — Σ (Z/nZ)H1^F-+H1->l

where the kernel is a direct sum of finite copies of the group ring of Hλ over
Z/nZ, we only need to find a field corresponding to this extension. Let tισ,
i=l, •••, r, σ^Hlf be indeterminates, where r is the number of copies of
{Z/nZ)H1 in the kernel. We define the operation of Hi by σtιτ=tι>στ. Then
Hλ operates on Kλ(tισ, i=l , ••• , r, σ^Hλ). Let K1=k(a). Then the invariant
subfield of # x is generated by

Hx={e, σ, ••• , τ}, i=l , •••, r; 7=1, ••• , 7n=[#r. ft]=|#i|, over k. That is, the
invariant subfield M is purely transcendental over k. We note that K1(tισ)
K1(uιj). Then the field ^ ( V Q is a Galois extension of M with Galois
group isomorphic to F. As k is separably Hilbertian, we get a Galois extension
of k corresponding to the above group extension by substituting some values
of k for Uij. When / is the characteristic of k, we can find an irreducible
polynomial f(t, X) such that a root of fit, X)=0 generates a cyclic extension
of degree n over Kit) by using the method of Witt vector. Then we deter-
mine indeterminates tισ and the operation of H as above. If we consider a
field adjoining all the roots of fitxσy X)=0, the same argument shows the
existence of a field corresponding to the given group extension.

Remark. Let k be a separably Hilbertian field of the cohomological
dimension 1, i.e., cd Giks/k)=l, where ks is the separable closure of k. Then
kjk satisfies the conditions of Lemma 8. Examples of such fields are function
fields of one variable over an algebraically closed field and the maximal abelian
extension of the rationals.
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We can say a little more for algebraic number fields. Let k be an algebraic
number field (not necessarily of a finite degree). Let G=G(k/k). We say k or
G has the essential cohomological dimension ess cd &=esscd G=n<oo, if G
has an open subgroup H such that cάH=n. It is independent of H and
esscd&^2 for every k [8], Especially esscd&—2 if k is finite over the
rationals. Let k be an algebraic number field and let K be an algebraic
extension of k. Then K is called totally real over k if every extension in K
of every real prime of k is also real. Then the maximal totally real extension
Ω of k is a Galois extension. Let G be the Galois group of this extension.

LEMMA 10. It holds c d G ^ e s s c d G for any algebraic number field. More
precisely, cd^Grgcd^G for any odd prime number p, and cd 2G^ess cd2G.

Proof. Let p be an odd prime number. Let if be a finite totally real
extension of k. Let H and H be corresponding open subgroups of G and G,
respectively. As zάvΩ^l and as Ω has no ^-extension, we get [8]'

Hq(H, Z/pZ) = H%H, Z/pZ), q=l,2, ~

This shows cάpG^cάpG. We now consider the case p=2. We first assume
that k is of a finite degree. Then Ωx2 consists of the totally positive elements,
i. e., the elements of Ωx which are positive in any extension of any real prime
of k. Let K denote a finite Galois extension of k in Ω, and let Kx+ denote
the totally positive elements in Kx. Then

Ωx/Ωx2=\imKx/Kx

+.

As K has elements of any signature type, Kx /Kx+ is isomorphic to the direct
sum of rx copies of (Z/2Z)H, where r1 is the number of real primes of k and
H is the Galois group of K over k. This shows

HKH,Kx/Kx

+)=0, < ? = l , 2 , . . .

and

H%G, Ωx/Ωx2)=0, 0 = 1 , 2 , •••

Then it comes
, Ωx), q=2, 3, •••

This holds also for q=l, because (Kx/Kx

+)H=k*/kx

+, i.e., (Ω*/Ωxψ=kx/kx

+.
By an exact sequence

and by the above equality, the sequence

(*) Hq(G, ΩX)^H%G, 42 x)-// 3 + 1(G, μ 2 )-// ? + 1 (G, Ωx)

-^Hq+1(G, Ωx)
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is exact for q=\, 2, ••• The exact sequence

l - β x - / f l - C β ^ l

induces an exact sequence

As no real prime of k ramifies in Ω, it holds

Ω**)9 q=l, 2,

where the direct sum is taken over all the finite primes of k. As Ω% is
algebraically closed for any Sβ, cd G%=2. This shows H\G, JΩ)=0 and H\G, JΩ)
is divisible as local degrees are divisible by p°° for any prime p. ^ Then we
see φ is surjective, and H\G, Ωx)=0. We also see the kernel H2(G, Ωx) of φ
is divisible. Hence the exact sequence (*) shows cd2G^2 because (*) and the
above argument hold for any finite extension of k in Ω. When k is of infinite
degree, G is a projective limit of Gn=G(Ωn/kn) where kn are subfields of k of
finite degrees and Ωn are maximal totally real extensions of kn. Thus cd2G^2
also in this case. Then our assertion is true if esscd2G

:=2. If esscd2G=0, a
Sylow 2-subgroup of G is finite. Then a Sylow 2-subgroup of G must be
trivial as G has no finite 2-subgroup because cd2G^2. We now prove the case
esscd2G=l. Then every local subgroup G% = G% has the cohomological
2-dimension at most 1. Then the above shows H\G, JΩ)=0 and H%G, Ωx)=0.
Then cd2G^l as above.

Remark. When k is of a finite degree, the above shows cdpG=2 for every
prime p.

THEOREM 4. Let k be a separably Hilbertian algebraic number field with
esscd&^l. Let Ω be the maximal totally real extension of k. Let Λ be the
maximal solvable extension of k in Ω. Then the Galois group of A over k is a
free pro-solvable group with countable generators.

Proof.^ Let G = G(Ω/k) and G=G(Λ/k) be their Galois groups. Lemma 10
shows cdG^l . First we show that Ω/k satisfies the conditions of Lemma 8.
Let K be a totally real finite Galois extension of k with Galois group H. Let

be any split group extension with a finite abelian kernel A. We can find an
//"-module B such that A = B/C as an //-module and every element of order 2
in B is contained in C. Let
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be a split group extension. Lemma 9 shows there exists a field Lx correspond-
ing to this extension. As E is a homomorphic image of Elt we can find a
subfield L corresponding to E. As K is totally real over k and as C contains
the elements of order 2 in B, L must be totally real over k. This argument
also shows that G is not trivial, i.e., cd G = l . Hence we can apply Lemma 8
to our case. As G has countable open subgroups, we can find a basis of
neighborhoods of the identity such that

G = NOZDN{ΏN2ZD ••• ZDiV.Z) - , 2 = 0, 1, 2, •••

consisting of open normal subgroups of G. Let F be a free pro-solvable group
with countable generators. Let

be a basis of neighborhoods of the identity consisting of open normal subgroups
of F. We will prove by the induction that there exist open normal subgroups
Uι and Vτ of G and F respectively such that UiaNiΓ\Uι-1, VίaFίr\Vτ-1 and
there exists an isomorphism f%\ G/Uί = F/Vι compatible with fι-1. The case
i—0 is trivial. We assume that we get U%, V% and fτ. Then there exists a
natural homomorphism

As F is free with countable generators, there exists a surjective homomorphism
F-^G/Nι+1r\Uτ such that

is commutative. Let Vι+1 be the intersection of Fι+1 and the kernel of the
above homomorphism. Then there exists a surjective homomorphism

Let K be the Galois extension of k corresponding to Nι+1r\Uι. As the kernel
of the above homomorphism is solvable, Lemma 8 shows that there exists a
field L corresponding to this group extension, i. e., there exists a continuous
surjective homomorphism G-+F/Vι+1 such that

F/VM —>G/Nι+lΓ\Uι—>1

is commutative. As F/Vι+1 is solvable, it induces a surjective homomorphism
G->F/Vι+1 such that
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F/Vt

is commutative. Let Uι+1 be the kernel of this homomorphism. Then there
exists an isomorphism ft+1: G/Uι+1=F/Vι+1 compatible with flf Uι+1dNι+1Γ\Ut

a n d Vι+1(ZFτ+1Γ\V]1 A s U0Z)U1Z)U2ZD ••• a n d V0^V1Z)V2Z) ••• a r e _ b a s e s of

neighborhoods of G and F respectively, there exists an isomorphism G = F.

EXAMPLES. Let & be the Z-extension of the rationals. Then it is known
that esscd k^l. As k is separably Hilbertian by Theorem 3, the Galois group
of the totally real maximal solvable extension of k is free pro-solvable. Now
let k be the maximal abelian extension of an algebraic number field of a finite
degree. Then cd k=l and Theorem 4 holds for k. This is a theorem of
Iwasawa [4].

Remark. Though we stated our theorem in the case of algebraic number
fields, the same is true for every countable separably Hilbertian field with
cdife=l. For example, let F be the algebraic closure of a finite field F of
characteristic p. Let t be an indeterminate. Then we can apply our theorem
for F(t), and its maximal solvable extension has a free pro-solvable Galois
group with countable generators as was shown in [4]. Let H be a finite group
whose order is not a multiple of p. Then it has been shown that F(t) has a
Galois extension with Galois group H [2]. These and the remark at the
introduction suggest that the Galois group of the separable closure of F(t)
over F(t) be free.
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