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A BIHARMONIC NORMAL OPERATOR

BY PAUL A. NICKEL

ABSTRACT*. When a biharmonic singularity s(x) is given on a boundary
neighborhood A of a Riemannian manifold R, there arises a rather natural question
about the biharmonic extendability of this singularity to p(x) which is bihar-
monic on all of R. For harmonic singularities s(x)^H(A), the question was
answered by L. Sario (1952), who showed that although s(x) may not be
harmonically extendable, nevertheless, in terms of the regular singularity
L(f), s+L(f) is so extendable. Here, L: C(dA)-+H(A) is a bounded linear
operator resembling the Dirichlet operator and is called normal. Analogously,
in terms of H\A), the set of biharmonic singularities on A, a biharmonic
normal operator L: C(dA)xC(dA)-+H2(A) is to resemble a Dirichlet operator
and as an operator, is to be bounded. The purpose of the present effort is
then to establish that, given a biharmonic normal operator L, each biharmonic
singularity s(x) has a biharmonic extension modulo a regular biharmonic
function L(f, g).

Examples may be obtained by applying the extension process to particular
choices of L and s(x) in particular, when s(x) has a fundamental biharmonic
singularity at a, then a biharmonic Green's function with singularity at a is
obtained.

In his basic paper [4], L. Sario introduced a normal operator whose purpose
was the construction of harmonic functions with certain prescribed behavior
near the ideal boundary of a Riemann surface W. A full account of the ap-
plications of this operator, as well as an account of its own intrinsic interest,
are given in, among others, the monograph of Rodin and Sario [1]. The issue
of primary concern is, how does one accomplish showing that given a harmonic
singularity s(z) defined on a boundary neighborhood W'dW, there is a harmonic
p(z) defined on a Riemann surface W for which p{z)—s{z) is a regular singul-
arity L(f). Here, in terms of a, the compact border of the bordered W, L is
a continuous linear mapping similar to a Dirichlet operator. Explicitly, L is a
linear mapping from C(α) to the set of regular singularities HB(W')\ that is,
the set of bounded harmonic functions with 0 flux. In this sense, p(z) is said
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to have the same behavior as s(z) at the boundary. For a given operator L
and singularity function s(z), establishing the existence of p^H(W) for which
p{z)—s{z) is a regular singularity in W is generally called the "principal
function problem."

When the carrier of the harmonic functions and singularities is replaced
by an iV-dimensional Riemannian manifold R with boundary neighborhood A,
the so-called principle function problem may again be posed, and, such has
been resolved in Sario, Schiffer, Glasner [6].

The analogous issue for biharmons functions is rather evident; that is,
given a biharmonic singularity s(x) defined on a boundary neighborhood AaR,
can one show that s(x) has a biharmonic continuation to R, modulo a regular
biharmonic function L(f, g), where L is to be a linear operator resembling an
operator which solves a biharmonic Dirichlet problem. The purpose here is to
present the initial steps in the development of such a biharmonic normal
operator. The setting of this presentation is to be a Riemannian manifold R
and the notation is to be consistent with that of Sario, et al [5]. So the
locally compact, noncompact boundary neighborhood A bordered by a is taken
as R—Ωa, where Ωa is a regular subregion that is, the harmonic Dirichlet
problem is solvable in Ωa, In particular, a function h(x) is called harmonic
when Δh=Q, where Δ is the usual Laplace-Beltrami operator. Moreover, the
biharmonic Dirichlet problem is solvable in a regular region Ω as well that
is, in such a region there exists a biharmonic function u(x) with prescribed
values and Laplacian on the boundary dΩ. And finally, flux integrals are

ί *du, where d is the dimension raising differential operator, and * is the
β

Hodge operator carrying p-foτm$ to N—p forms. As usual, the orientation on
β=dD is that induced by D.

A careful examination of the original work of L. Sario [4], reveals that a
good deal of the machinery presented there can, and will with appropriate
interpretation, have meaning as well as use in the biharmonic case. Of course
there are important differences. For example, in harmonic theory, if restrictions
of harmonic functions to A are to be singularity functions, then of course

I *ds=0 is required of each singularity s(x). On the other hand, \ *du need
Ja J a

not be 0 for biharmonic functions u on R. But, in terms of va(x), quasihar-
monic on Ωa and vanishing on a=dΩa, it follows from the biharmonic Green's
formula

(1) \u*dΔv—dv*du—v*dJu+Δu*dv=Q
Ja

that \ *du=\ Δu*dva. Hence this flux condition is included in the defining
Ja Ja

requirements on biharmonic singularities as well as on this candidate for a
normal biharmonic operator. With the analysis to follow is establshed the
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existence of such an operator that might reasonably be called normal, all in
the spirit of the harmonic normal operator that has gone before it [4].

1. In terms of the boundary neighborhood A~R—Ωa, with smooth compact
boundary α, and va, quasiharmonic on Ωa and vanishing on dΩa—a=dA, a
biharmonic normal operator L a linear transformation from C(α)xC(α) into
H\A)r\C\Ά) which satisfies:

( i ) L(J,g)\a=f and ΔL(f,g)\a=g,

(ii) f *dL(f,g)=[ ΔL*dva and f *dΔL(f,g)=Q,

(iii) SupA\L(f,g)\^\\f\\+λ\\g\\
for some λ depending only on L, and Sup A\JL(f, g)\^ί\\g\\.

(iv) L(/, 0) is harmonic on A and satisfies L(l, 0)=l.

In terms of the projection operator Pa: H2(A)r\C2(Ά)-*C(a)xC(a), with Pa(u)—
(u\a, Δu\a), the defining property (i) may be written as Pa° L(f, g)=(f, g).

A function s(x) belonging to H\A)r\C\A) is called a biharmonic singularity

if \ *ds=\ Δs*dva and \ *dΔs=0. The function p(x) biharmonic on R is
J a J a J a

said to have the singular behavior of s(x) with respect to L if

(2) p-s = L°Pa{p-s)

is valid in A; that is p—s is a regular singularity because p—s—L(f, g). On
the other hand, when p—s is a regular singularity then of course L° Pa(p—s)
= L°Pa°L(f, g)=L(f, g)=p-s is valid in A

2. The Main Theorem. Suppose that L is a biharmonic normal operator
defined with respect to the boundary neighborhood A of the Riemannian mani-
fold R, and that s(x) is a biharmonic singularity on A. Then there exists p,
biharmonic on R such that p(x)—s(x) is a regular biharmonic singularity for
L. Furthermore, such a p(x) is unique among those for which p(xo)=Δp(xo)=O.

The proof, presented in numbers 3, 4, 5, and 6, consists of solving an
operator equation equivalent to (2) in a manner reminiscent of, but significantly
different from, the harmonic case [1], [2].

3. The Operator Equation. Let Ωz)Ωa be a regular region, and denote by
D(f, g) the solution in Ω to the biharmonic Dirichlet problem with boundary
values given by PdΩ°D(f, g)=(f, g). If for T: C(dΩ)xC(dΩ)->C(dΩ)xC{dΩ),
given by T(φ, ψ)=PdΩ° L°Pa° D(φ, ψ), the functional equation

(3) (I-T)(φ,φ)=PdΩ(s-LoPa(s))
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has a solution, then the problem of finding a biharmonic p(x) which has the
boundary behavior of s(x) is solved by taking

on A
(30 p(x)=\

[ D(φ, φ) on Ω.

Of course, such a functional equation does have a solution if T is completely
continuous and has kernal 0 in an appropriately selected Banach space [7].
Furthermore, it now follows that such a p{x) is well defined because on Ar\Ω,
the biharmonic functions D(φ, φ) and L° Pa° D(φ, φ)Jrs — L°Pa(s) agree since
their values and Laplacians themselves agree on the boundary a^JDΩ.

4. The Complete Continuity of T. In the space B=C(dΩ)xC(dΩ), the
norm |||(/, g)\\ is taken as the usual sum of sup norms | |/| | + ||g||. And now the
inequalities

(4) supβ |Z>(/, g)\ = \Mf, g)h^\\f\\+μ\\g\\,

(5) supa\ΔD(J, g)\ = \\ΔD(f, g)Lύ\\g\\

are established as preparation for showing that T is completely continuous on
the Banach space B.

Of course (5) is valid, since ΔD(f, g) is continuously equal to g on dΩ.
To verify that (4) is valid, we represent D(f, g) in terms of its Laplacian H(x)
and the harmonic Green's function gΩ{x, y), as

D(f, gXx)=\Qg0(x, y)*H{y)+h{x)

where h(x) is harmonic on Ω with values / on dΩ. In fact, the integral term
I(x) is equal to 0 on dΩ and has Laplacian equal to H(x)=g(χ) there. But
gΩ(x, y) is of constant negative sign with flux + 1 and of course the subharmonic

I gΩ{Xy yhly-Gl(x) attains its minimum —μΩ at an interior point of Ω. Hence

the integral part of the expression for D(f, g) is estimated as \I(x)\ ^ ^ s u p y(ΞΩ

\H(y)\=μΩmaxy^Ω\g(y)\. Of course sup x^Ω\(h(x))\ = ||/||, and the estimate
(4) follows.

The boundedness of T now follows easily from the estimates (4) and (5)
along with the defining (iii) of L. That is, since ΘΩdA and acΩ, we write

\\\T(f, g)\\\=\\\PdΩ°L°Pa°D(f, gl\=\\L'Pa-IKf, g)\9Ω\\ + UL°Pa°D(f, g)\dΩ\\

f, g)\\a+λ\\ΔD(f, g)\\a + \\JD(f, g)\\a
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from which it follows that T is bounded.
Next suppose that (fn, gn) is a bounded sequence on C(dΩ)xC(dΩ). Then,

of course hn=ΔL° Pa°D(fn, gn) is, with the estimate (5) and the defining (iii),
a bounded sequence of harmonic functions on A, and has, as usual, a subsequence,
say (hn) again, which converges uniformly to the harmonic h(x) on compact
sets of A. Of course dΩ is such a compact set, and so hn\dΩ> the second
component of T(/ n , gn), converges in norm. In terms of the biharmonic
un=L°Pa°D(fn, gn), the first component is then un\dΩ-

We now require a regular region Ωr slightly larger than Ω, as well as a
boundary neighborhood A' slightly smaller than A. So we choose Ω'a and Ω'
for which ΩaaΩa(ZΩ/

cί(ZΩc:Ω(zΩ'', and set A', with boundary a' equal to
R—Ω'a. Of course dΩcA'r\Ω'.

In these terms, the boundary of Ω'c\A' is a/{JdΩ', and its Green's function
is gΩ>πA'(x> y)> Since hn(x)-*h(x) uniformly on compact sets of A, it follows

that wn(x) = \ gΩ'oΛx, y)*hn{y) converges uniformly to w(x) —
JΩ'DA'

\ gΩ'ΠA'ix, y)*h{y). In fact, Δwn(x)-*Δw{x), since Δwn—hn and Δw—h.
JΩ'ΠA

Now w(x) is biharmonic and vanishes on a'^JdΩ'. Hence, in terms of the
harmonic vn(x), with vn\a,UdQ' = un\a,ΌdΩ', it follows that un(x)=wn(x)+vn(x).
However,

Vn I a'UdΩ' = L°Pa° D(fn, gn) \ a,udΩ> ,

so the sequence vn is bounded, and has a subsequence, again υn, converging
uniformly to the harmonic v(x) on compact sets of Afr\Ωr. In particular, the
sequence un(x) of biharmonic functions converges uniformly to u(x)=w(x)Jrv(x)
on dΩ itself. Since T(fn, gn)—(un\dΩ, hn\do) with each component converging
uniformly, it follows that T(fn, gn) converges in norm.

5. The Vector Space. V(~\W. The objective now is to use the Riesz-
Schauder Theorem [7] to establish that the operator equation (I—T)(φ, φ)
=PdΩ(s-Da° L°Pa(s)) has a solution in the space C(dΩ)xC(dΩ). Since T is
already compact, it of course remains to show that the kernal K of I—T is
zero. But if (φ, φ)^K, then with (30 there is a biharmonic p on R given by

ί D{φ, φ) on Ω ,
P=\

{ L°Pa°D(φ, φ) on A.

Now the harmonic Δp attains extreme values on dΩ, in particular, at interior
points of R, and of course is constant. Since Δp\dΩ—φf it follows that φ is
constant as well.

Hence, we borrow from Rodin-Sario [1] the space XdCidΩ) for which

I φ*dω=0, where ω is the harmonic measure of Ar\Ω, satisfying ω | 5 β = 0
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and ω | α = l .
So in terms of V=C(dΩ)xX, if (φ,ψ)&Kr\V, then ^=const.=0. Hence,

we conclude from the defining (iv) that p=D(φ, 0)\JL°Pa°D(φ, 0) is itself
harmonic and again constant. It follows that in the space V, the kernal K of
T is the one dimensional (fe, 0). Next, the domain space of T is further
restricted with using the biharmonic measure σ of Sario [3]: that is Δσ—ω
with σ vanishing on the boundary a^JdΩ and ω vanishing on dΩ.

DEFINITION. In terms of the biharmonic measure σ the space WdC(dΩ)

xC(dΩ) is {(φ,φ); \ φ*dω+φ*dσ=0}.
J dΩ

PROPOSITION, (a) In the Banach space VΓ\W, the kernal K of I—T is (0, 0).
The linear operator T takes Vr\Winto Vr\W. (c) The singularity s—L°Pas

Vr\W.
(b)

Proof of (a). It has been shown that if (φ, φ)^Kr\V, then (φ, ψ)=(k, 0).
But (k, 0) can belong to W only if k=0, and (a) is established.

Proof of (b). The verification that T: 7— V is just that of [1] with V
here in the role of X there. That is, the second component of T(φ, ψ) is
JL°Pa°D(φ, ψ)\dΩ, and with Green's theorem along with the condition ω=0 on
dΩ, we can write

\ JL°Pa° D(φ, ψ)*dω=\ JL°Pa° D(φ, ψ)*dω-ω*dΔL ° Pa ° D(φ, φ)

= 1 ΔD(φ,ψ)*dw
J α

= [ ΔD(φ, ψ)*dω+[ ω*dΔD{φ, ψ)=0 .
JdΩ Ja

Of course the term I *dΔL°Pa°D(φ, φ)—0 since L satisfies the flux condition
J a

(ii), and the fact that T : V-+ V follows from the observation that for ψ^V,

\ ΔD(φ,ψ)*dw=\ ψ*dω=0.
J dΩ J dΩ

To show that W is invariant under T, we must consider the components
L°Pa°D(φ,ψ) and ΔL°Pa°D(φ, ψ) of T(φ, ψ) for (φ, φ) in W. By means of
an application of Green's formula (1) with the region D as Ωf\A and boundary
3D as dΩΌa, we obtain

ί L°Pa° D(φ, ψ)*dω+ΔL o Pa o D(φ, ψ)*dσ
JdΩ

= f D(φ, ψ)*dω+ΔD{φ, ψ)*dσ-*dL°PaoD(φ, φ)
Ja
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= [ φ*dω+ψ*dσ+\ *dD(φ, ψ)-*dL°Pa° D(φ, φ)
JdΩ J a

= f *dD{φ,φ)-*dL°Pa°D(φ,ψ).
Ja

However, from the defining (i) and (ii) for L, it follows that \ *dL°Pa° D(φ, ψ)
J a

= \ ΔL*dva—\ ΔD(φ, ψ)*dva. On the other hand, in the region Ωa we have
J a J a

already applied Green's theorem with the biharmonic functions taken as

u—D{φyφ) and v=va to see that \ *dD(φ, φ)=\ ΔD(φ, ψ)*dva. Since this
J a J a

means I *dD—*dL°Pa°D=0, it follows that T(φ, φ)^W, and (b) is established.
Ja

Proof of (c). To see that s — L°Pa(s) belongs to Vr\W, it will be sufficient
to apply Green's theorem again to the appropriate components, namely
s—L°Pas\dΩ and Δs—ΔL°Pas\dQ. With first using Green's formula for harmonic
functions, we obtain

(Δs-ΔL°Pa(s))*dω=[ ω*d(Δs-ΔL°Pa(s))+[ (Δs-ΔL°Pa(s))*dω
dΩ JdΩ Ja

-[ ω*d(Δs-ΔLoPa(s))=0.
J

Hence it follows that s—L«Pα(s)E V.
Similar considerations along with another application of (1) are next used

to show that s—L°Pa(s) belongs to W as well. The integral or the appropriate
components is

(
dΩ

But, with the definition, each singularity s satisfies \ *ds=\ Δs*dva, and on
Ja Ja

the other hand, due to the defining (i) and (ii) for the operator L, it

follows that l *d(L°Pa(s))=\ ΔL°Pa(s)*dva = \ Δs*dva. Hence we have that
J a J a J a

[ *d(s-L°Pa(s))=0 and it follows that s-L«fα(s) does belong to W. With
Ja

this, the proof of (c) is complete, as is the proof of the proposition.
Now, by virtue of the Riesz-Shauder theory [7], we are assured of a

solution of the functional equation (3) in Vr\W, and with this solution, we
may construct, from (3'), the biharmonic p(x) for which p—s is a regular
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biharmonic singularity; that is, p—s=L°Pa(p—s) on A. The theorem is now
established with demonstrating the uniqueness.

6. Uniqueness. If px and p2 are biharmonic and satisfy (2), then of course
q=p1—p2 is defined on R and satisfies q=L°Pa(q) on A. So s u p J J g | =
s u p j ΔL °Pa(q)\ ŝ IIΔq|| a holds for the harmonic Δq which then has an interior
point at which its maximum is attained. Hence, Δq is constant, and with the
hypothesis, equal to 0. Now, with the defining properties (iii) and (iv), the
same may now be said for the harmonic p, and this means, of course that

7. A Principal Example. As an analogy with the Lλ operator of harmonic
theory [Rodin-Sario 2], we shall construct here a biharmonic normal operator
Ln. The manifold R is taken as the interior of a subregion of a manifold Rr

containing R wherein the border is called β. Then the boundary neighborhood
A is R—Ωa, where Ωa is a regular subregion with ΩadR. And now, Ln(f, g)
is to be the biharmonic function for which Pa ° Ln(f, g) as usual, and Pβ ° Ln

=(k, I), where these constants are adjusted to meet the flux requirements (ii).
The construction is in part reminiscent of harmonic theory [4]. Because,

in terms of u, the solution to the biharmonic Dirichlet problem in A, with

Pa(u)=(f, g) and Pβ(u)=(0, 0), we take v as u—τ (\ *dΔu/\ *dΔτ) where τ is a

biharmonic measure on A [Sario 3] that is, τ is 0 on a\J β, with Laplacian

equal to 0 on a and 1 on β. Certainly v now satisfies the condition \ ̂ dΔv—Q,
Ja

while Δυ is constant, say /, on β. It follows, from the maximum principle
that |/|<^||g||. Next, w is taken as hibarmonic on A, with Paiw)—Pa{v)—{f,g)
and Pβ(w)=(k, I). Here, k is to be selected in terms of integrals of the functions
/ and g, the constant / already chosen and the biharmonic measure σ on A

for which Δσ=ω with ω—1 on a and 0 on β. That is, since \ *dωφθ, k may
Jβ

be chosen to satisfy

(6) \ f*dω—g*dva

Jrg*dσ=-\ k*dω-\-l*dσ .
Jα J β

But according to Green's formula, the companion relation for the biharmonic

w

(60 \ f*dw—*dwJrg*dσ=\ k*dω-{-l*dσ
J a J β

is valid. And now with a comparison of (6) and (60 we observe that

\ Δw*dυa=Λ g*dυa=\ *dw. Of course Ln(f, g) is then taken as w, and the
J a J a J a

defining conditions (i) and (ii) are certainly satisfied.
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Furthermore, when g is 0, we would have that w is harmonic for any
choice of k. But the choice dictated by the comparison of (6) and (6') is then

1 f*dω— \ k*dω. (This of course is the same old familiar condition that is
Jar J β

needed to assure that the harmonic w have zero flux.) Trivially, if f=l
identically, then k—\, and the defining (iv) is verified.

Hence there remains only the verification of (iii), the second part of which

is similar to the harmonic theory [Rodin-Sario 1], In fact, since \ *ddLn~0,
J β

it follows that Ln cannot be an extreme value on β, and so sup A\dL11(f, g)\

For the purpose of studying sup AI w(x) \, as in section 4, we represent
w(x) in terms of the harmonic Green's function gA(x, y) as

(7) w(x)=\ gA(x, y)*dw(y)+h(x)

where h(x) is harmonic and has the data of w(x) on a\J β. Hence the integral
part of (7) can be estimated as | I(x) | ̂ μΛ(\\g\\ V/)=μA\\g\\, where //A=sup A(—Gl(x)).
Since $upA\h(x)\ ^ | | / | | V \k |, an estimate for w(x) is obtained from (6) which
defines k that is

\k I ^ *dw)"1[J Jf\\*dω+\\g\\(*dυa + *dσ)+\\g\\ \β

= \\f\\+b\\g\\

The result is \w(x)\^μA\\g\\ + \\f\\+b\\g\\ = \\f\\+λ\\g\\ and the defining prop-

erty (iii) is verified.

8. The Biharmonic Green's Function γ. Certainly now it is natural to
attempt the construction of the Green's function γ by means of an application
of the Ln operator. Unfortunately, such a construction using Ln as one com-
ponent in a direct sum of operators is not possible in the present stage of this
theory. Nevertheless, the Green's function can be realized from the construction
of an operator Lγ, and during the course of this construction, it will be easy
enough to observe the reason for the failure of the present version of this
theory to have the usual direct sum property.

Suppose that R is a regular submanifold of the manifold R' and for a^R,
choose Va a parametic ball such that VaClVaCZR(ZRc:Rf. In terms of the
coordinate x in Va, qva(x) is to denote the fundamental biharmonic singularity
which satisfies PdΩa(qva)—Φ, 0) and whose Laplacian has flux +1. The Green's
function γR(x, a) is then to have the singular behavior of qVa(x) near a, and
in terms of β=dR, is to satisfy Pβ(γR)=(0, 0).

Of course the main theorem must be applied in a setting of a punctured
manifold Ra=R—a, wherein a boundary neighborhood Nβ in R is formed by
first taking the regular subregion Ωo for which VaC.Ωoc:Ωoc:R, and then
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forming Nβ=R—Ω0. In the punctured Ra, the regular region Ωa is taken as
Ω0—Va and the boundary neighborhood in Ra is then A~Ra—Ωa. Now in
Ra, A—(Va —a)^Nβ and has boundary dA= —dΩa = a=—(aι

Jra0), where aι=—dVa

and aQ=dΩ0. In these terms, it is consistent to call va, va% and vao those
functions which are quasiharmonic on Ωa, Va, and Ωo and 0 on the boundaries
a, alf and a0 respectively.

We call the operator L from which the Green's function is to be realized
by Lr(f,g)=w with w\Nβ — w0 and w\γo~w% for Lr inside and outside re-
spectively. First, wτ is taken as the solution of the biharmonic Dirichlet
problem in Va with Pai(wι)=(fι, gt). Next, w0 is to be biharmonic with
Pao(wo)—(fo, go) and Pβ(wo)=(k, I). The choice of the constant / for which the

flux \ *dΔw=§ is made again as it was for the Ln operator. On the other
J β

hand, the constant k must be chosen to satisfy a somewhat different matching
equation

(9) I fo*dω+go*dσ—go*dva + \ gi(*dva —*dva)=\ k*dw+l*dσ.
JaQ Jaz Jβ

Such a k depending on /0, g0, f% and g% can certainly be chosen because

\ *dωΦθ. With k so selected, the biharmonic w0 then satisfies the companion
j β

equation

(90 I Wo*dω+dwo*dσ — *dwo=\ k*dωJrl*dσ.

Since \ *dwτ = \ gi*dva., a comparison of (9) and (90 yields

\ *dwo=\ gϋ*dva — \ *dwτ—gi*dva,
JaQ Ja0 Jat

and this of course is just the flux requirement I *dLγ— \ dLγ*dva. Hence
Ja Ja

the operator Lr(f, g) satisfies the defining (ii).
With a comparison of (6) for defining L11(f,g)\β with (9) for defining

Lr(f, g) I β, we see directly that (iii) for Lγ is verified in just the same manner
as it was for Ln. And the same can be said for the condition (iv).

To complete the construction of γ(x, a), we need only select an appropriate
biharmonic singularity s(x). To start, s(x) is taken as the fundamental nega-
tive biharmonic singularity qVa(x) which satisfies Pdva(Qva)=(0f 0) and has flux

\ *dJqVa= + l. Then in Nβ, s(x) is taken with Pβ 0(s)=(0, 0) and Pβ(s)=(m, n).

The constants again taken so that the flux conditions are satisfied. That is,

Js=t, where t = n(l—ώ) and n—{—1)/\ *dω. In terms of the orientation
J β
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induced on a by Ωa, we have \ *dJs=Q. As usual, m is then taken to satisfy
Ja

the equation

(10) — \ *dqVa=\ m*dω-\-n*dσ.
J<*1 J β

With m so defined, and s(x) taken in Nβ as 0 on α and m on β, the so-called

companion equation for s(x) is

(100 ί *ds=[ s*dω-\-Δs*dσ
Ja0 Jβ

and from comparing these, we have that \ *ds=Q. Since \ Js*dva=0 as well,
J a J a

it follows that \ *ds=\ Δs*dva and the flux conditions for the singularity

s(x) are satisfied.
Finally, by virtue of an application of the Main Theorem with the operator

L and system of biharmonic singularities as just described, there exists the
biharmonic p=sJrLΐoPa(ρ—s)} where Pβ(p)=(κ, κf), a pair of constant. In
terms of u for which Δu—κf on R and u\β=ιc, the Green's function γ is p—u.
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