SOME REMARKS ON THE LUBIN-TATE EXTENSIONS

By Suguru Hamada

In this paper, we consider the possibility of characterization of the Lubin-Tate extensions, among the totally ramified abelian extensions over a local number field K, by means of their Galois groups.

The tamely ramified case is well known (Remark 1). In other cases, if K is a finite unramified local number field, the Lubin-Tate extension is characterized by the order and the exponent of its Galois group (Theorem). However, in general such characterization of Lubin-Tate extension is impossible; namely, we can find fields K over which their exist always other totally ramified abelian extensions whose Galois groups are isomorphic to those of Lubin-Tate extensions (Proposition 1).

Finally, we give a remark on the composite of two Lubin-Tate extensions (Proposition 2).

NOTATIONS. Z: the ring of rational integers. p: a prime number. Z_p : the ring of p-adic integers. Q_p : the field of p-adic numbers. K: a finite extension of Q_p . π : a prime element of K. p: the maximal ideal of K. U: the group of units of K. H_m : the multiplicative group $1+\mathfrak{p}^m$ $(m=1, 2, \cdots)$. q: the number of elements of the residue class field of K. ρ : a primitive (q-1)-th root of unity in K. M^{\times} : the multiplicative group of a field M. $\langle \alpha \rangle$: the cyclic group generated by α . $N_{M/N}$: the norm map of a field extension M/N. Gal(M/N): the Galois group of a Galois extension M/N.

Now, the Lubin-Tate extension $L(\pi, m)$ is defined as follows; For $f(X) = X^q + \pi X$ let $\lambda_n(n=1, 2, \cdots)$ be elements of an algebraic closure of Q_p such that $f(\lambda_1)=0$ $(\lambda_1\neq 0)$, $f(\lambda_n)=\lambda_{n-1}(n\geq 2)$ and we set $L(\pi, m)=K(\lambda_m)$.

Then $L(\pi, m)$ is a totally ramified abelian extension of K such that $N_{L(\pi, m)/K}(L(\pi, m)^{\times}) = \langle \pi \rangle H_m$ and Gal $(L(\pi, m)) \cong U/H_m$ (J. Lubin and J. Tate [3]).

THEOREM. Let K/Q_p $(p \neq 2)$ be a finite unramified extension and M/K be a finite totally ramified abelian extension. Then $M \subseteq L(\pi, m)$ for some π if and only if the exponent of Gal(M/K) is a divisor of $(q-1)p^{m-1}$. Moreover, if the order of Gal(M/K) is $(q-1)q^{m-1}$ then $M=L(\pi, m)$ for some π .

Proof. "If" part: Let $N_{M/K}(U_M) = U'$ where U_M is the group of units of M. By class field theory $\text{Gal}(M/K) \cong U/U'$. Since the exponent of Gal(M/K) is a

Received July 17, 1978

divisor of $(q-1)p^{m-1}$ we have $U^{(q-1)p^{m-1}} \subseteq U'$.

On the other hand $U = \langle \rho \rangle \times H_1$ (direct), $H_1^{q-1} = H_1$ because q-1 is a unit of Z_p , and $H_n^p = H_{n+1}$ ($n=1, 2, \cdots$) because $p \neq 2$ and K/Q_p is unramified (J. P. Serre [4]).

Hence $U^{(q-1)p^{m-1}} = H_m$ and we have $H_m \subseteq U'$. Now let $N_{M/K}(\pi_M) = \pi$ where π_M is a prime element of M then $\langle \pi \rangle H_m \subseteq \langle \pi \rangle U'$ and $L(\pi, m) \supseteq M$ by class field theory.

Moreover, if the order of $\operatorname{Gal}(M/K)$ is $(q-1)q^{m-1}$ we have $L(\pi, m)=M$ since $\lfloor L(\pi, m):K \rfloor = (q-1)q^{m-1}$.

"Only if" part: Suppose $M \subseteq L(\pi, m)$. Let $\pi' = N_{M/K}(\pi_M)$ and $U' = N_{M/K}(U_M)$, then we have $\langle \pi' \rangle U' \supseteq \langle \pi \rangle H_m$. From this it follows $U' \supseteq H_m$. We have shown the exponent of U/H_m is a divisor of $(q-1)p^{m-1}$ so the exponent of Gal(M/K) $\cong U/U'$ is also a divisor of $(q-1)p^{m-1}$.

COROLLARY. M/Q_p ($p \neq 2$) is a totally ramified abelian extension of degree $(p-1)p^{m-1}$ if and only if M=L(pu, m) for some unit u of Z_p .

The following is well known (S. Lang [2]).

REMARK 1. For arbitrary p, let K/Q_p a finite extension. Then M/K is a totally ramified abelian extension of degree q-1 if and only if $M=L(\pi, 1)$ for some π .

Proof. Since $H_1^{q-1} = H_1$ for arbitrary p and K, the proof is similar to that of Theorem.

Next we show

PROPOSITION 1. Let $K=Q_p(\zeta_n)$ where $p\neq 2$ and $\zeta_n(n\geq 2)$ is a primitive p^n -th root of unity.

Then for any $m \ge 2$, there exists a totally ramified abelian extension M over K such that $\operatorname{Gal}(M/K) \cong U/H_m$ and $M \neq L(\pi, m)$ for any prime element π of K.

For the proof, we sketch the proof of the structure theorem of H_1 of $K = Q_p(\zeta_n)$ where p is an arbitrary prime and $n \ge 1$, following to H. Hasse (H. Hasse [1]).

Let $e = [K:Q_p] = (p-1)p^{n-1}$, $e_1 = p^{n-1}$, $\pi = 1 - \zeta_n$ and R_t be a complete system of representatives of H_t/H_{t+1} (we take 1 as the representative of the class of 1).

Then every element η of H_1 is written uniquely as follows;

$$\eta = \prod_{t=1}^{\infty} \eta_t \qquad (\eta_t \in R_t) \,.$$

And for $\xi \in H_1$ such that $\xi \equiv 1 + \alpha \pi^i \mod \mathfrak{p}^{i+1}$ for some integer α in K we have

(*)
$$\begin{cases} \xi^p \equiv 1 + \alpha^p \pi^{ip} \mod \mathfrak{p}^{ip+1} & \text{if } i < e_1 \\ \xi^p \equiv 1 - \varepsilon \alpha \pi^{i+e} \mod \mathfrak{p}^{i+e+1} & \text{if } i > e_1 \end{cases}$$

where $-p = \varepsilon \pi^e$.

We set $F = \{i \mid 1 \leq i < e_1 p, (i, p) = 1\}$ then *e* integers *k* $(e_1 < k \leq e_1 p)$ are written uniquely $k = i p^{\kappa_i}$, $(i \in F$ and $n \geq \kappa_i \geq 0)$. Then every positive integer *t* is written uniquely and by (*) the corresponding R_t is given as follows; Case I. If $1 \leq t \leq e_1$ then $t = i p^{\nu_i}$, $i \in F$, $\nu_i = 0, 1, \dots, \kappa_i - 1$ and $R_t = \{(1 - \pi^i)^{a p^{\nu_i}} | 0 \leq a \leq p - 1\}$.

Case II(i). If $e_1 < t = e_1 + se + r$, $0 \le s$ and $1 \le r < e$ then $t = ip^{\kappa_i} + se$, $i \in F(i \ne 1)$ and $R_i = \{(1 - \pi^i)^{a p^{\kappa_i + s}} | 0 \le a \le p - 1\}$.

Case II (ii). If $e_1 < t = e_1 + se + e = e_1 p + se$, $0 \le s$ $R_t = \{(1 - \pi^{e_1 p})^{a_p s} | 0 \le a \le p - 1\}$. We remark $(1 - \pi)^{e_1 p} = 1$.

Thus every element η of H_1 is written uniquely as follows;

$$\eta = \prod_{t=1}^{\infty} \eta_t = (1-\pi)^{a_1} \cdot \prod_{i \in F, i \neq 1} (1-\pi^i)^{a_i} \cdot (1-\pi^{e_1 p})^{a_{e_1 p}}$$

where $a_1 \in \mathbb{Z} \mod p^n$ reduced, $a_i \in \mathbb{Z}_p$ and $a_{e_1p} \in \mathbb{Z}_p$. And

(*1)
$$\begin{cases} H_1 \cong Z/(p^n) \times Z_p \times \cdots \times Z_p & (direct) \\ \eta \longmapsto (\bar{a}_1, a_2, \cdots, a_{e_1p-1}, a_{e_1p}) \end{cases}$$

where \bar{a}_1 is the class of a_1 in $Z/(p^n)$.

Next, in order to write down the structure of H_1/H_m , in the Case I, for integer *m* such that $1 \le m \le e_1$, let m_j $(j=0, 1, \dots, n-1)$ be the number of the elements of the set G_j $(m) = \{i \mid i \in F, m/p^j \le i < m/p^{j-1}\}$ and in the Case II(i), for integer $m = e_1 + se + r$ $(0 \le s, 1 \le r < e)$, we set $I(m) = \{i \mid i \in F, ip^{\kappa_i} < e_1 + r\}$ and $J(m) = \{i \mid i \in F, e_1 + r \le ip^{\kappa_i} < e_1p\}$.

LEMMA 1. Let $K=Q_p(\zeta_n)$ where p is a prime and $n\geq 1$ then we have; Case I. If $1\leq m\leq e_1$ then

$$H_1/H_m \cong \prod_{j=0}^{n-1} C_{pj}^{m_j} \qquad (direct).$$

Case II(i). If $e_1 < m = e_1 + se + r$, $0 \leq s$, $1 \leq r < e$ then

$$H_1/H_m \cong C_{p^n} \times (\prod_{i \in I(m)} C_{p^{\kappa_i+s+1}} \times \prod_{i \in J(m)} C_{p^{\kappa_i+s}}) \times C_{p^s} \quad (direct).$$

Case II(ii). If $e_1 < m = e_1p + se$, $0 \leq s$ then

$$H_1/H_m \cong C_{p^n} \times (\prod_{i \in F, i \neq 1} C_{p^{\kappa_i + s + 1}}) \times C_{p^s} \quad (direct)$$

where C_{pu} is a cyclic group of order p^u and C_{pu}^v is the direct product of v copies of C_{pu} 's.

Proof. By the uniqueness of the representation $\eta = \prod_{t=1}^{m} \eta_t \ (\eta_t \in R_t)$ we have $\eta \in H_m$ if and only if $\eta_t = 1$ for all $t, 1 \leq t < m$.

Thus, in the Case I, $\eta = (1-\pi)^{a_1} \cdot \prod_{i \in F, i \neq 1} (1-\pi^i)^{a_i} \cdot (1-\pi^{e_1 p})^{a_{e_1} p}$ belongs to H_m if and only if

408

SOME REMARKS ON THE LUBIN-TATE EXTENSIONS

(*2)
$$a_i \equiv 0 \mod p^j$$
 for such $i \in F$ as $ip^{j-1} < m \leq ip^j$
(i. e $i \in G_i(m)$) $(j=0, 1, \cdots, n-1)$.

Analogousely, in the Case II(i) $\eta \in H_m$ if and only if

(*3)
$$\begin{cases} a_1 = 0 \mod p^n, \quad a_i \equiv 0 \mod p^{\epsilon_i + s + 1} & \text{if } i \in I(m) \\ a_i \equiv 0 \mod p^{\epsilon_i + s} & \text{if } i \in J(m) \text{ and } a_{\epsilon_1 p} \equiv 0 \mod p^s \end{cases}$$

And, in the Case II(ii) $\eta \in H_m$ if and only if

(*4)
$$\begin{cases} a_1 \equiv 0 \mod p^n, \quad a_i \equiv 0 \mod p^{\kappa_i + s + 1} & \text{if } i \in F(i \neq 1) \\ \text{and} \quad a_{e_1 p} \equiv 0 \mod p^s. \end{cases}$$

Thus, the Lemma follows from the isomorphim (*1).

LEMMA 2. Let $K=Q_p(\zeta_n)$, $p \neq 2$ and $n \geq 2$. Then for any integer $m \geq 2$ their exists a subgroup U' of H_1 such that $U' \neq H_m$ and $H_1/U' \cong H_1/H_m$.

Proof. As for the Case I of Lemma 1, let U' be the group consisting of those η ,

$$\eta = (1 - \pi)^{a_1} \cdot \prod_{i \in F, i \neq 1} (1 - \pi^i)^{a_i} \cdot (1 - \pi^{e_1 p})^{a_{e_1} p}$$

where a_1 is arbitrary, $a_{e_1p} \equiv 0 \mod p'$ if $1 \in G_i(m)$, and other a_i 's satisfy the same conditions in (*2) of Lemma 1. Then, since m > 1 $1 - \pi \in H_m$ and $1 - \pi \in U'$. Thus we have $H_m \neq U'$. While $H_1/U' \cong H_1/H_m$ because H_1/U' has also the type described in Case I of Lemma 1.

As for the Case II(i), let U' be the group consisting of those η in which $a_1=0 \mod p^n$, $a_2\equiv 0 \mod p^s$, and

$$a_{e_1p} \equiv \begin{cases} 0 \mod p^{\kappa_2 + s + 1} & \text{if } 2 \in I(m) \\ 0 \mod p^{\kappa_2 + s} & \text{if } 2 \in J(m) \end{cases}$$

and other a_i 's satisfy the same conditions in (*3). The since $n \ge 2$, $\kappa_2 = n - 1 \ge 1$, $\kappa_2 + s > s$ and $\kappa_2 + s + 1 > s$ we have $(1 - \pi^2)^{p^s} \in H_m$, $(1 - \pi^2)^{p^s} \in U'$ and $H_m \neq U'$. While $H_1/U' \cong H_1/H_m$ because H_1/U' has also the type described in Case II(i) of Lemma 1. As for the Case II(ii) the proof is similar as above.

Proof of Proposition 1. Let M be the class field which corresponds to the class group $\langle \pi \rangle U'$ where U' is that of Lemma 2. Then $U' \neq H_m$ implies $\langle \pi \rangle U' \neq \langle \pi u \rangle H_m$ for any $u \in U$, so that M is never a Lubin-Tate extension but Gal $(M/K) \cong U/U' \cong U/H_m$.

Remark 2. Lemma 2 does not hold for n=1; namely $H_1/U' \cong H_1/H_{p+1}$ if and only if $U'=H_{p+1}$.

Finally, we give a remark on the composite field of two Lubin-Tate extensions.

409

SUGURU HAMADA

PROPOSITION 2. Let p be a prime number, K a finite extension of Q_p , $L(\pi_1, n)$, $L(\pi_2, m)$ $(n \leq m)$ two Lubin-Tate extensions over K, and d the order $\pi_1 \pi_2^{-1} \mod H_n$ in the group U/H_n .

Then the inertia field of the composite field $L(\pi_1, n)L(\pi_2, m)$ is of degree d over K. $[L(\pi_1, n)L(\pi_2, m):K]=(q-1)q^{m-1}d$ and $[L(\pi_1, n)\cap L(\pi_2, m):K]=(q-1)q^{n-1}d^{-1}$.

Proof. By assumption we have $\langle \pi_1 \rangle H_n \cap \langle \pi_2 \rangle H_m = \langle \pi_2^d \rangle H_m = \langle \pi_2^d \rangle U \cap \langle \pi_2 \rangle H_m$, so we have by class field theory $L(\pi_1, n)L(\pi_2, m) = T_d L(\pi_2, m)$ where T_d is the unramified extension of degree d over K. From this we have the Proposition immediately.

EXAMPLE. $Q_2(\sqrt{3})(\sqrt{-1})$ is unramified of degree 2 over $Q_2(\sqrt{3})$ (H. Hasse [1] p 214).

For, $Q_2(\sqrt{3}) = L(-2, 2)$, $Q_2(\sqrt{-1}) = L(2, 2)$ and -1 has order 2 mod H_2 .

References

- [1] H. HASSE, Zahlentheorie, AKADEMIC-VERLAG, BERLIN (1969).
- [2] S. LANG, Algebraic Number theory, Addison-Wesley (1970).
- [3] J. LUBIN AND J. TATE, Formal complex multiplication in local fields, Ann. Math. 81 (1965) 380-387.
- [4] J.P. SERRE, Corps Locaux, Hermann, Paris (1962).

Department of Mathematics Miyagi University of Education Sendai Department of Mathematics Tokyo Institute of Technology Tokyo