K.-P. CHENG KODAI MATH. J. 2 (1979), 362–370

THE HORIZONTAL HOLONOMY GROUP OF A FIBRE BUNDLE SPACE

By Koun-Ping Cheng

§1. Introduction.

On a differentiable manifold M, the parallel translation of a vector along a curve C has been studied in many papers and books. A topological group H(M) was assigned to this manifold M. And we call H(M) the linear holonomy group of M. Nijenhuis, in his paper ([1]), found out that the Lie algebra of the restricted holonomy group $H^{0}(M)$ of H(M) is formed by the curvature tensor of M. On the other hand, if we consider the frame bundle B(M) as a principle fibre bundle over M, then the Nijenhuis's theorem can be restated as follows: The holonomy Lie algebra of $H^{0}(M)$ is generated by the curvature form Ω of B(M) ([2]).

We know that a principle fibre bundle is only a special case of a fibre bundle space. Hence, the ideal of the linear holonomy group can be extended to the fibre bundle space. Actually, if we consider any fibre bundle space (\tilde{M}, M, π) such that in \tilde{M} , there is a 1-form ω and ω can determine the horizontal vectors of \tilde{M} , then \tilde{M} can have a *horizontal holonomy group* $Hl(\tilde{M})$ (see section 2) associated with this fibre bundle space. And $Hl(\tilde{M})$ is indeed an extended ideal of H(M).

In general, the group $H(\tilde{M})$ may not form a Lie group ([3]). Yet, in many cases, $H(\tilde{M})$ does form a Lie group. Assume that $Hl(\tilde{M})$ is a Lie group. Let $Hl^{0}(\tilde{M})$ denote the restricted Lie group of $Hl(\tilde{M})$. In [3], the author studied the structure of the Lie algebra $dHl^{0}(\tilde{M})$ of $Hl^{0}(\tilde{M})$. In this paper, we can use the results of [3] and go one step further to find an explicit expression of the structure of $dHl^{0}(\tilde{M})$. Then, we can easily show that the Nijenhuis's theorem is actually a very special case of the group $Hl^{0}(\tilde{M})$.

For future use, we state Nijenhuis's theorem as follows:

"Let $h^0(M, p)$ be the restriced holonomy group. Then its Lie algebra $dh^0(M, p)$ is spanned by the matrices that arise from the $R_{\mu\lambda}(x)$; $x \in M$, by parallel transport to p along any curves."

§2. Priliminary.

Let (\tilde{M}, M, π) be a fibre bundle space. Assume that there is a 1-form ω on \tilde{M} such that ω can determine the horizontal vectors at every point P of M.

Received June 2, 1978.

If a curve $C: I \to \tilde{M}$, I being an interval, has horizontal tangents at all points, then C is called a *horizontal curve*. Consider a curve $C: I \to M$ and let $C(0)=P_0$. Let \tilde{P}_0 be a point in \tilde{M} such that $\pi(\tilde{P}_0)=P_0$. Suppose that there is a horizontal curve \tilde{C} passing through \tilde{P}_0 and $\pi(\tilde{C})=C$. Then \tilde{C} is unique and called the *horizontal lift of* C passing through \tilde{P}_0 .

Now, let r be a curve in M joining two points P_0 and P_1 of M. Suppose that there is a horizontal lift C of r. Then there are two neighborhoods \bar{U}_{λ} of the fibre $F_{P_{\lambda}}$ containing \tilde{P}_{λ} , where $\lambda=0, 1$, in such a way that for any point $Q_0 \in F_{P_0}$ there is a unique horizontal curve passing through Q_0 and joining a point Q_1 in \bar{U}_1 . Hence, we can define a mapping $\phi_r: \bar{U}_0 \rightarrow \bar{U}_1$ by letting $\phi_r(Q_0) = Q_1$. Such a mapping is called a *horizontal mapping covering r*.

Now, take a closed curve C from x_1 to x_1 in the base manifold M. The fibre over x_1 can be mapped onto itself by using horizontal mapping covering $C^{(*)}$. By considering all possible closed curves with finite arc length of x_1 , a group of transformations on F_{x_1} is obtained and we call this group the horizontal holonomy group. And we denote it by $Hl(\tilde{M}, x_1)$.

Since we have that

$$Hl(M, x_1) \cong Hl(M, x_2)$$
,

for any two points x_1 and x_2 on M, we write $Hl(\tilde{M})$ to denote the horizontal translation group which is attached to the space \tilde{M} .

First, we consider the horizontal holonomy group of a Riemannian fibred space. Let (\tilde{M}, M, g, π) be a Riemannian fibred space. And the length ds of a line segment in \tilde{M} is given by

$$ds^{2} = g_{jk}(y, x)dy^{j}dy^{k} + 2g_{j\alpha}(y, x)dy^{j}dx^{\alpha} + g_{\alpha\beta}(y, x)dx^{\alpha}dx^{\beta}$$

where the Greek letters α , β , γ etc. represent the coordinate system of the base manifold M and the English letters *i*, *j*, *k* etc. represent the coordinate system of the fibre space. Define Γ_{α}^{i} as follows:

And also define

$$K^{i}_{\alpha\beta} = (\partial_{\beta}\Gamma^{i}_{\alpha} - \partial_{\alpha}\Gamma^{i}_{\beta}) + (\Gamma^{j}_{\alpha}\partial_{j}\Gamma^{i}_{\beta} - \Gamma^{j}_{\beta}\partial_{j}\Gamma^{i}_{\alpha}).$$

 $\Gamma^i_{\alpha}g_{ij}=g_{j\alpha}$.

Then $K_{\alpha\beta}^i$ is a skew-symmetric tensor and $K_{\alpha\beta} = K_{\alpha\beta}^i \partial_i$ is a infinitesimal vector field of a infinitesimal translation of $Hl^0(\tilde{M})$ (see [3]).

Since Γ_{α}^{i} are functions of (x^{α}) and (y^{i}) , the vertical vector fields $K_{\beta\alpha}$ are functions of (x^{α}) and (y^{i}) . We denote them $K_{\beta\alpha}(y, x)$. Let P be a reference point on M. Then we have the followings:

DEFINITION 1. We define the following set of vector fields on F_{P} .

 $S = \{ \bar{K}_{\beta\alpha}(y, x, r) \partial_i; \alpha, \beta = 1, 2, \dots, n, \text{ for all } x \text{ and } r \},\$

^(*) In this paper, we assume that for any given curve C on M, the horizontal liftings of C always exist. The sufficient condition which makes the above statement true, has been discussed in [3].

KOUN-PING CHENG

where $\bar{K}_{\beta\alpha}(y, x, r)\partial_{i}$ are these vector fields obtained by translating $K_{\beta\alpha}(y, x)$ at the fibre F_{x} to F_{P} horizontally along any possible curve r which connects the points x and P.

DEFINITION 2. Let S be the set of vector fields defined in definition 1. If there exists a finite subset $\overline{S} = \{K_1, K_2 \cdots K_e\}$ of S such that

- (1) Every element of S is a linear combination of \overline{S} over the real number.
- (2) \overline{S} forms a base of an involutive distribution, i.e. at every point b of F_P , $\{K_1(b), \dots, K_e(b)\}$ are linearly independent at T_P and $[K_i, K_j](b)$ belongs to the subspace generated by $\{K_1(b), \dots, K_e(b)\}$.

In other words, \overline{S} generates a submanifold of F_P at every point b of F_P . We say that S is integrable.

DEFINITION 3. Let ϕ_r be an element of $Hl^0(\tilde{M}, P)$. A vector field $X \in F_P$ is said to be *invariant under* ϕ_r if

 $\phi_{r_*}X = X$.

A vector field $X \in F_P$ is called *invariant under* $Hl^{0}(\tilde{M}, P)$ if it is invariant under all $\phi_r \in Hl^{0}(\tilde{M}, P)$.

DEFINITION 4. Let X be a vector field on F_P . We say that X is tangent to $Hl^0(\tilde{M}, P)$ if (1) X generates a global 1-parameter group ϕ and (2) $\phi_t \in Hl^0(\tilde{M}, P)$ for all $t \in R$ (real number).

From [3], we have the following two theorems.

(A) If $Hl^{0}(\tilde{M}, P)$ is a Lie group and S is either integrable or invariant under $Hl^{0}(\tilde{M}, P)$, then its Lie algebra $dHl^{0}(\tilde{M}, P)$ is spanned by S.

(B) Let U be a neighborhood of P and let all points and curves in the following arguments lie in U. U may be chosen so that the local horizontal holonomy group^(*) $Hl^*(P)=Hl^0(U,P)$. Let ∂_{α} , $\alpha=1, 2, \dots, n$ be the coordinate vector fields of U. Construct the horizontal lifting ∂_{α}^L of ∂_{α} . Let

$$K = \{K_{\alpha\beta}, [K_{\alpha\beta}, \partial_{\tau}^{L}], [[K_{\alpha\beta}, \partial_{\tau}^{L}], \partial_{\delta}^{L}], \cdots\}(P)$$

and R(P) be the vector space spanned by K. Then we have that

Suppose that \tilde{M} and M are analytic Riemannian manifolds and Γ_{α}^{i} are analytic functions. If $Hl^{*}(P)$ is a Lie group and K is either integrable or invariant under $Hl^{*}(P)$, then its Lie algebra $dHl^{*}(P)=R(P)$. Conversely, if K is tangent to $Hl^{*}(P)$, either integrable or invariant under $Hl^{*}(P)$ and forming a finite Lie algebra, then $Hl^{*}(P)$ is a Lie group.

§3. Riemannian Fibred Space.

Let (\tilde{M}, M, g, π) be the Riemannian fibred space considered in section two. Define a vector field V_{α} in a coordinate neighborhood U of \tilde{M} as follows: Let

364

^(*) The local horizontal holonomy group is defined in the same way as local linear holonomy group.

$$V_{\alpha} = \partial_{\alpha} - \Gamma^{i}_{\alpha} \partial_{i} \,.$$

Consider the inner product of V_{α} with the vertical vector field ∂_{j} , i.e. we have that

$$\langle V_{a}, \partial_{j} \rangle = \langle \partial_{a}, \partial_{j} \rangle - \Gamma_{a}^{i} \langle \partial_{i}, \partial_{j} \rangle$$

$$= g_{aj} - \Gamma_{a}^{i} g_{ij} = g_{aj} - g_{aj} = 0$$

Hence, V_{α} is a horizontal vector field. Since we also have that $\pi_*(V_{\alpha}) = \partial_{\alpha}$, V_{α} is the horizontal lifting of ∂_{α} . Now, let us calculate the Lie bracket of V_{α} and V_{β} . Then we obtain that

$$[V_{\beta}, V_{\alpha}] = V_{\beta}V_{\alpha} - V_{\alpha}V_{\beta} = \partial_{\beta}\Gamma^{i}_{\alpha}\partial_{i} - \partial_{\alpha}\Gamma^{i}_{\beta}\partial_{i} - \Gamma^{j}_{\beta}\partial_{j}\Gamma^{i}_{\alpha}\partial_{i} + \Gamma^{j}_{\alpha}\partial_{j}\Gamma^{i}_{\beta}\partial_{i} = K_{\alpha\beta}.$$

Therefore, we obtain the following lemma:

LEMMA 1. Let ∂_{α} and ∂_{β} be the coordinate vector fields of the base manifold M. Let $V_{\alpha} = \partial_{\alpha} - \Gamma^{i}_{\alpha} \partial_{i}$ and $V_{\beta} = \partial_{\beta} - \Gamma^{i}_{\beta} \partial_{i}$ be the horizontal lifting of ∂_{α} and ∂_{β} respectively. Then

$$K_{\alpha\beta} = [V_{\beta}, V_{\alpha}].$$

The Geometric Interpretation of $[V_{\beta}, V_{\alpha}]$.

First, let us look at a general case. Let M be a differentiable manifold and X and Y be two vector fields on M. Refer to figure one. Let C_1 be the integral curve of X from 0 to 1 with $C_1(t)=1$, C_2 be the integral curve of Yfrom 1 to 2 with $C_2(t)=2$, C_3 be the integral curve of X from 2 to 3 with $C_3(t)=3$ and C_4 be the integral curve of Y from 3 to 4 with $C_4(t)=4$. By letting $t\rightarrow 0$, proved by Richard Faber, the tangent vector of the trace of point 4 represents the Lie bracket [X, Y]. Now, for the Lie bracket $[V_\beta, V_\alpha]$, we have a slightly different figure. Since $[\partial_\beta, \partial_\alpha]=0$, Refering to figure two, we can



Fig. 1.

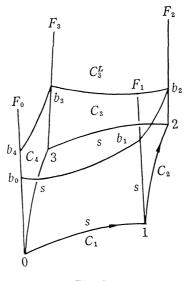


Fig. 2.

always find a closed curve $C_1+C_2+C_3+C_4$ on M such that C_1 and C_3 are the integral curves of ∂_{β} and C_2 and C_4 are the integral curves of ∂_{α} . And all $C_i, i=1, \dots, 4$, are of arc length s. Let b_0 be an arbitrary point on F_0 . Consider the horizontal lifting $C_i^L, i=1, \dots, 4$, of C_i . Then C_1^L and C_3^L are the integral curves of V_{β} and C_2^L and C_4^L are the integral curves of V_{α} . Hence, $[V_{\beta}, V_{\alpha}]$ represents the tangent vector of the trace of b_4 . On the other hand, by letting $C=C_1+\cdots C_4, b_4$ represents the horizontal translation of b_0 to b_4 along the curve C on M, i.e.

$$b_4 = \phi_C(b_0)$$

Hence, by letting $s \rightarrow 0$, the tangent vector of the trace of b_4 is an infinitesimal horizontal translation of $Hl^{0}(\tilde{M}, 0)$. This explains the geometric meaning of lemma 1.

4. Fibre Bundle Space.

By viewing the geometric meaning of $[V_{\beta}, V_{\alpha}]$, we know that the Riemannian metric did not play a important role. As long as the horizontal liftings of the coordinate vector fields are defined, the infinitesimal horizontal translations are defined. Besides, if for every ∂_{α} the horizontal lifting V_{α} is defined, then from equation 3.1, those quantities Γ_{α}^{i} are also defined. Hence, theorem (A) and (B) from Riemannian manifold, stated in section two, can be extended to any fibre bundle space. Now, we assume that M is a fibre bundle space over M such that the horizontal lifting of the coordinate vector fields are defined and differentiable. Then we obtain that

THEOREM 1. If $Hl^{0}(\tilde{M}, P)$ is a Lie group and the following set S' is either integrable or invariant under $Hl^{0}(\tilde{M}, P)$, then its Lie algebra is spanned by S', where

 $S' = \{ \phi_r [V_\beta, V_\alpha] ; \alpha, \beta = 1, 2, \dots, n, r \text{ is any possible curve} \}$

on M which connects the points from Q to P.

THEOREM 2. Suppose that \tilde{M} and M are analytis manifolds and the horizontal liftings of ∂_{α} , $\alpha=1, 2, \dots, n$, are described by analytic functions. If $Hl^*(P)$ is a Lie group and the following set of vector fields R(P) is either integrable or invariant under $Hl^*(P)$, then its Lie algebra is spanned by R(P), where

$$R(P) = \{ [V_{\beta}, V_{\alpha}], [[V_{\beta}, V_{\alpha}], V_{\gamma}], \cdots \} .$$

Conversely, if R(P) is tangent to $Hl^*(P)$, either integrable or invariant under $Hl^*(P)$ and forming a finite Lie algebra, then $Hl^*(P)$ is a Lie group.

Applications:

(1) Let \tilde{M} be the bundle of frames over M and let the connection from ω be given. Then it is known that if X and Y are horizontal vector fields, then the vertical part of [X, Y] is equal to $-2\Omega(X, Y)$ ([4], p. 35). Since the Lie bracket of V_{α} and V_{β} is a vertical vector field, we have that

$$[V_{\beta}, V_{\alpha}] = -2\Omega(V_{\beta}, V_{\alpha}) = R(\partial_{\alpha}, \partial_{\beta}).$$

Also notice that the horizontal translation ϕ_r along a curve r, in this case, is the parallel translation along the curve r. Hence, theorem 1 says,

"The Lie algebra of the restricted holonomy group $H^{0}(\tilde{M}, P)$ is spanned by the set

 $\{\tau_r \circ R(\partial_\alpha, \partial_\beta); \text{ for any possible curve } r \text{ which connects } Q \text{ and } P\}$.

This is exactly the same statement as Nijenhuis's theorem.

(2) Let \tilde{M} be a fibre bundle space. We say that \tilde{M} admits holonomy fibres, if at every point P of \tilde{M} there exists at least locally a submanifold of dimension n orthogonal to the fibre passing through the point P.

THEOREM 3. Let \tilde{M} be a fibre bundle space. \tilde{M} admits holonomy fibres, if and only if $[V_{\beta}, V_{\alpha}]=0$, for all $\alpha, \beta=1, 2, \dots, n$.

Proof. The sufficient condition is obvious. If $[V_{\beta}, V_{\alpha}]=0$, then the horizontal distribution is involutive. Hence, it is integrable. For the necessary

KOUN-PING CHENG

condition, since there exists a submanifold orthogonal to the fibre, $[V_{\beta}, V_{\alpha}]$ has to equal a horizontal vector. Yet, we know that $[V_{\beta}, V_{\alpha}]$ is a vertical vector. Hence it is equal to zero.#

For a Riemannian fibred space, Muto proved the same theorem in [5].

(3) Let \tilde{M} be a Riemannian fibred space. Since the torsion tensor T is equal to zero, we have that

$$[V_{\beta}, V_{\alpha}] = \tilde{\nabla}_{V_{\beta}} V_{\alpha} - \tilde{\nabla}_{V_{\alpha}} V_{\beta}.$$

Hence, the Lie algebra of $Hl^{0}(\tilde{M}, P)$ (if it is a Lie group) is spanned by the vector fields of the above form.

(4) Let \tilde{M} be a Riemannian fibred space with projectable metric. Then, $[V_{\beta}, V_{\alpha}] = 2h_{\beta\alpha}^{*}C_{\iota} = h(V_{\beta}, V_{\alpha})$ ([6]), where h is the second fundamental form of \tilde{M} and C_{ι} are vertical vector fields. Hence, $dHl^{0}(\tilde{M}, P)$ is spanned by the vector fields $h(V_{\beta}, V_{\alpha})$.

5. The Associated Lie Algebra.

In this section, we are looking for the connection between the de Rham's decomposition of a manifold and a special Lie algebra associated with the linear holonomy group.

Let VR(P) be the vector space spanned by the set R(P) in theorem 2. Suppose that VR(P) is a finite dimensional Lie algebra. By adding the set of vector fields V_{α} ; $\alpha=1, 2, \dots, n$ to VR(P), we obtain an enlarged vector space $V\overline{R}(P)$, i. e. $V\overline{R}(P)$ is spanned by the set

$$\{V_{\alpha}, [V_{\beta}, V_{\alpha}], [[V_{\beta}, V_{\alpha}], V_{\gamma}], \cdots\}$$
.

It is easy to show that $V\overline{R}(P)$ forms a finite Lie algebra and we call $V\overline{R}(P)$ the associated Lie algebra of $Hl^*(U, P)$.

Now, let M be an analytic manifold with an analytic connection. Assume that M is a connected, simply connected and complete manifold. Then from [1] and theorem 2, VR(P) is actually the linear holonomy group of M. Hence, $V\overline{R}(P)$ is the associated Lie algebra of H(M).

In de Rham's theorem, let $T_1(P)$ and $T_2(P)$ be two orthogonal subspaces of the tangent space T(P) and $T(P)=T_1(P)+T_2(P)$. Suppose that $T_1(P)$ (resp. $T_2(P)$) is invariant under the translation of the linear holonomy group of M. By parallel translating $T_1(P)$ (resp. $T_2(P)$) to all other points of M, then this vector distribution is integrable. Denote the integral manifold which passes through the point P by M_1 (resp. M_2). Then de Rham's theorem says that ([7]).

"*M* is isometric to the direct product $M_1 \times M_2$." Let $V\overline{R}_1(P)$ (resp. $V\overline{R}_2(P)$) be the associated Lie algebra of $H(M_1)$ (resp. $H(M_2)$). Then we have the following lemma:

LEMMA 2. $V\overline{R}_1(P)$ and $V\overline{R}_2(P)$ are ideals of $V\overline{R}(P)$ and $V\overline{R}(P) = V\overline{R}_1(P) + V\overline{R}_2(P)$.

368

Proof. Let $\partial_{\overline{\alpha}}$, $\overline{\alpha}=1, 2, \dots, m_1$ and $\partial_{\beta'}$, $\beta'=1, 2, \dots, m_2$ be the coordinate system of M_1 and M_2 respectively. Then

 $V\overline{R}_{I}(P)$ =the vector space spanned by $\{V_{\overline{a}}, [V_{\overline{\beta}}, V_{\overline{a}}], \cdots\}$,

 $V\overline{R}_2(P)$ =the vector space spanned by $\{V_{\alpha'}, [V_{\beta'}, V_{\alpha'}], \cdots\}$.

From de Rham's theorem, we have that

$$V\overline{R}(P) = V\overline{R}_1(P) + V\overline{R}_2(P).$$

Hence, we only have to show that $V\overline{R}_1(P)$ (resp. $V\overline{R}_2(P)$) is an ideal of $V\overline{R}(P)$. It is the same to show that

(1) $\begin{bmatrix} \nabla \overline{R}_1(P), \ \nabla \overline{R}_2(P) \end{bmatrix} = 0.$

Referring to figure 3, let C_1 and C_3 be the integral curves of $\partial_{\overline{\alpha}}$ and $\pi(C_3)=C_1$, i. e. C_3 and C_1 have the same M_1 coordinates. Let C_2 and C_4 be the integral curves of $\partial_{\beta'}$ and $\pi(C_2)=C_4$. A vector $v_2 \in T_2(P)$ is translated parallelly along the curve $C=C_1+C_2+C_3+C_4$. Then v_2 is invariant along C_1 and C_3 and equal along C_2 and C_4 . Hence, $\tau_C v_2=v_2$. Similarly, for any $v_1 \in T_1(P)$, $\tau_C v_1=v_1$. Therefore, $\tau_C v=v$, for any $v \in T(P)$. By shrinking C to zero, since $[V_{\overline{\alpha}}, V_{\beta'}]$ represents the infinitesimal parallel translation of a vector along the curve C, we obtain that $[V_{\overline{\alpha}}, V_{\beta'}]=0$.

(2)
$$[[V_{\overline{\alpha}}, V_{\overline{\beta}}], V_{\gamma'}] = 0.$$

From Jacobi's identity, we have that

$$\begin{bmatrix} \begin{bmatrix} V_{\overline{\alpha}}, V_{\overline{\beta}} \end{bmatrix}, V_{r'} \end{bmatrix} = -\begin{bmatrix} V_{r'}, V_{\overline{\alpha}} \end{bmatrix}, V_{\overline{\beta}} \end{bmatrix} - \begin{bmatrix} V_{\overline{\beta}}, V_{r'} \end{bmatrix}, V_{\overline{\alpha}} \end{bmatrix}$$
$$= 0 + 0 = 0.$$

(3) By similar consideration, we obtain that

$$[V\overline{R}_{1}(P), V_{\gamma'}]=0.$$

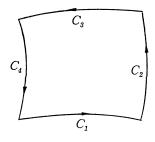


Fig. 3.

KOUN-PING CHENG

Moreover, we have that

(4)
$$[V\bar{R}_{1}(P), [V_{\beta'}, V_{\gamma'}]] = -[V_{\gamma'}, [V\bar{R}_{1}(P), V_{\beta'}]]$$
$$-[V_{\beta'}, [V_{\gamma'}, V\bar{R}_{1}(P)]] = 0.$$

(5) By induction, we can prove this lemma. # Hence, we conclude that

"The de Rham's decomposition of an analytic manifold, is associated with the decomposition of the Lie group VR(P) into the direct sum of ideals."

BIBLIOGRAPHY

- [1] A. NIJENHUIS, On the holonomy group of linear connection, Indagations 15 (1953), pp. 233-249.
- [2] W. AMBROSE AND I.M. SINGER, A theorem on holonomy, Trans. Amer. Math. Soc. Vol. 75 (1953) pp. 428-443.
- [3] K.P. CHENG, Ph. D. thesis, McGill university, 1978.
- [4] K. NOMIZU, Lie group and differential geometry, the Math. Soc. of Japan, 1956.
- [5] Y. MUTO, On some properties of a fibred Riemannian manifold, Science report of the Yokohama National U. Sec. 1, No. 1, 1952.
- [6] S. ISHIHARA AND KONISHI, Differential geometry and fibred space, Tokyo, 1973.
- [7] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, Vol. 1, Interscience Publishers, 1963.

McGill University, Montreal, P.Q., Canada