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THE HORIZONTAL HOLONOMY GROUP OF A

FIBRE BUNDLE SPACE

BY KOUN-PING CHENG

§ 1. Introduction.

On a differentiable manifold M, the parallel translation of a vector along a
curve C has been studied in many papers and books. A topological group
H(M) was assigned to this manifold M. And we call H(M) the linear holonomy
group of M. Nijenhuis, in his paper ([1]), found out that the Lie algebra of
the restricted holonomy group H\M) of H(M) is formed by the curvature
tensor of M. On the other hand, if we consider the frame bundle B(M) as a
principle fibre bundle over M, then the Nijenhuis's theorem can be restated as
follows: The holonomy Lie algebra of H°(M) is generated by the curvature
form Ω of B(M) ([2]).

We know that a principle fibre bundle is only a special case of a fibre
bundle space. Hence, the ideal of the linear holonomy group can be extended
to the fibre bundle space. Actually, if we consider any fibre bundle space
(M, M, π) such that in M, there is a 1-form ω and ω can determine the hori-
zontal vectors of M, then M can have a horizontal holonomy group Hl(M) (see
section 2) associated with this fibre bundle space. And Hl(M) is indeed an
extended ideal of H(M).

In general, the group Hl(M) may not form a Lie group ([3]). Yet, in many
cases, Hl(M) does form a Lie group. Assume that Hl(M) is a Lie group. Let
Hl\M) denote the restricted Lie group of Hl(M). In [3], the author studied
the structure of the Lie algebra dHl\M) of Hl\M). In this paper, we can use
the results of [3] and go one step further to find an explicit expression of
the structure of dHl\M). Then, we can easily show that the Nijenhuis's
theorem is actually a very special case of the group Hl°(M).

For future use, we state Nijenhuis's theorem as follows:
"Let h°(M, p) be the restriced holonomy group. Then its Lie algebra dh\M, p)

is spanned by the matrices that arise from the Rμχ(x)m, x^M, by parallel trans-
port to p along any curves."

§ 2. Priliminary.

Let (M, M, π) be a fibre bundle space. Assume that there is a 1-form ω
on M such that ω can determine the horizontal vectors at every point P of M.
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If a curve C: I->M, I being an interval, has horizontal tangents at all points,
then C is called a horizontal curve. Consider a curve C: /—>M and let C(0)=Po.
Let Po be a point in M such^that π(P0)=P0. Suppose that there is a horizontal
curve C passing through PQ and π(C)—C. Then C is unique and called the
horizontal lift of C passing through P o .

Now, let r be a curve in M joining two points Po and Px of M. Suppose
that there is a horizontal lift C of r. Then there are two neighborhoods Uλ

of the fibre FPχ containing P λ, where Λ=0, 1, in such a way that for any point
Q0<=Fp0 there is a unique horizontal curve passing through QQ and joining a
point Qx in Ui. Hence, we can define a mapping φr: /70—•£?! by letting φr(Q0)=Qi
Such a mapping is called a horizontal mapping covering r.

Now, take a closed curve C from ^ to xλ in the base manifold M. The
fibre over ^ can be mapped onto itself by using horizontal mapping covering
£c*)# βy considering all possible closed curves with finite arc length of xlf

a group of transformations on FXl is obtained and we call this group the
horizontal holonomy group. And we denote it by Hl(M, x}).

Since we have that

Hl(M, x^HKM, x2),

for any two points xx and x2 on M, we write Hl(M) to denote the horizontal
translation group which is attached to the space M.

First, we consider the horizontal holonomy group of a Riemannian fibred
space. Let (M, M, g, π) be a Riemannian fibred space. And the length ds of
a line segment in M is given by

ds2=gjk{y, x)dyJdykJr2gja(y, x)dyJdxajrgaβ(y, x)dxadxβ,

where the Greek letters a, β, γ etc. represent the coordinate system of the
base manifold M and the English letters i, j , k etc. represent the coordinate
system of the fibre space. Define Γa as follows:

Γ1iaglj = gJa

And also define

Then Kiβ is a skew-symmetric tensor &nά^Kaβ=Kί

ciβdι is a infinitesimal vector
field of a infinitesimal translation of Hl\M) (see [3]).

Since Γi are functions of (xa) and (yι), the vertical vector fields Kβa are
functions of (xa) and (y*). We denote them Kβa(y, x). Let P be a reference
point on M. Then we have the followmgs:

DEFINITION 1. We define the following set of vector fields on FP.

S={Kβa(y, x, r)di\ a, β = l, 2, •••, n, for all x and r} ,

(*} In this paper, we assume that for any given curve C on M, the horizontal
liftings of C always exist. The sufficient condition which makes the above statement
true, has been discussed in [3].
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where K7

βίί(y, x, r)dz are these vector fields obtained by translating Kβa(y, x)
at the fibre Fx to FP horizontally along any possible curve r which connects
the points x and P.

DEFINITION 2. Let 5 be the set of vector fields defined in definition 1. If
there exists a finite subset S={Klf K2 ~ Ke) of S such that

(1) Every element of 5 is a linear combination of S over the real number.
(2) S forms a base of an involutive distribution, i. e. at every point b of

FP, {K^b), ••• Ke(b)} are linearly independent at TP and \_KX, KJφ)
belongs to the subspace generated by {Kλ{b)y •••, Ke{b)}.

In other words, S generates a submanifold of FP at every point b of FP. We
say that S is integrable.

DEFINITION 3. Let φr be an element of Hl\M, P). A vector field X<ΞFP

is said to be invariant under φr if

A vector field X^FP is called invariant under Hl°(M, P) if it is invariant under
all φr<=Hl\M, P).

DEFINITION 4. Let X be a vector field on FP. We say that X is tangent
to Hl\M, P) if (1) X generates a global 1-parameter group φ and (2) φt^Hl\M, P)
for all t^R (real number).

From [3], we have the following two theorems.
(A) If Hί°(M, P) is a Lie group and S is either integrable or invariant

under Hl\M, P), then its Lie algebra dHl\M, P) is spanned by S.
(B) Let ί/ be a neighborhood of P and let all points and curves in the

following arguments lie in U. U may be chosen so that the local horizontal
holonomy g r o u p ^ Hl*(P)=Hl\U. P). Let da> a=l, 2, •••, n be the coordinate
vector fields of U. Construct the horizontal lifting 3έ of da. Let

K={Kaβ, lKaβ, 3f], ZZKaβ, da 3§],

and R(P) be the vector space spanned by K. Then we have that
Suppose that M and M are analytic Riemannian manifolds and Γι

a are
analytic functions. If Hl*(P) is a Lie group and K is either integrable or
invariant under Hl*(P), then its Lie algebra dHl*(P)=R(P). Conversely, if K
is tangent to Hl*(P), either integrable or invariant under Hl*(P) and forming
a finite Lie algebra, then Hl*{P) is a Lie group.

§ 3. Riemannian Fibred Space.

Let (M, M, g, π) be the Riemannian fibred space considered in section two.
Define a vector field Va in a coordinate neighborhood U of M as follows: Let

c*} The local horizontal holonomy group is defined in the same way as local linear
holonomy group.
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(3.1)

Consider the inner product of Va with the vertical vector field dJf 1. e. we
have that

<va, d3y=(da, a ;>-π<3,, d3y

Hence, Va is a horizontal vector field. Since we also have that π*(Va)=da, Va

is the horizontal lifting of da. Now, let us calculate the Lie bracket of Va

and Vβ. Then we obtain that

ivβ, vj^VβV^v^β^dβPΛ-d^μ^Γjd.PΛ+ΓidjΠβd^K^s.

Therefore, we obtain the following lemma:

LEMMA 1. Let da and dβ be the coordinate vector fields of the base manifold
M. Let Va—da—Γcίdi and Vβ=dβ—Γίβdι be the horizontal lifting of da and dβ
respectively. Then

VJ.

The Geometric Interpretation of \_Vβ, Va~].
First, let us look at a general case. Let M be a differentiate manifold

and X and Y be two vector fields on M. Refer to figure one. Let CΊ be the
integral curve of X from 0 to 1 with ^ ( 0 = 1 , C2 be the integral curve of Y
from 1 to 2 with C2(t)—2, C3 be the integral curve of X from 2 to 3 with

C8(0=3 and C4 be the integral curve of Y from 3 to 4 with C4(ί)=4. By letting
t~>0, proved by Richard Faber, the tangent vector of the trace of point 4
reprsents the Lie bracket [X, F ] . Now, for the Lie bracket [_Vβ, Va~], we have
a slightly different figure. Since [9^, 9 α ]=0, Refering to figure two, we can

a

Fig. 1.
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Fig. 2.

always find a closed curve C!+C2+C3+C4 on M such that Cλ and C3 are the
integral curves of dβ and C2 and C4 are the integral curves of da. And all
Ct, ι=l, -" , 4, are of arc length s. Let b0 be an arbitrary point on Fo. Con-
sider the horizontal lifting Cf, ι = l , •••, 4, of Ct. Then Cf and Cf are the
integral curves of F^ and Cξ and Cf are the integral curves of Va. Hence,
ίVβ> Va2 represents the tangent vector of the trace of bA. On the other hand,
by letting C=C1+—CttbA represents the horizontal translation of b0 to bA

along the curve C on M, i. e.

b4=φc(b0).

Hence, by letting s—•(), the tangent vector of the trace of b4 is an infinitesimal
horizontal translation of Hl°(M, 0). This explains the geometric meaning of
lemma 1.

4. Fibre Bundle Space.

By viewing the geometric meaning of [Vβ, 1/J, we know that the Rieman-
nian metric did not play a important role. As long as the horizontal liftings
of the coordinate vector fields are defined, the infinitesimal horizontal trans-
lations are defined. Besides, if for every da the horizontal lifting Va is
defined, then from equation 3.1, those quantities Γ^ are also defined. Hence,
theorem (A) and (B) from Riemannian manifold, stated in section two, can be
extended to any fibre bundle space.
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Now, we assume that M is a fibre bundle space over M such that the
horizontal lifting of the coordinate vector fields are defined and differentiate.
Then we obtain that

THEOREM 1. // Hl\M, P) is a Lie group and the following set S' is either
integrable or invariant under Hl°(M, P), then its Lie algebra is spanned by S',
where

β, Va~] a, β=l, 2, •••, n, r is any possible curve

on M which connects the points from Q to P}.

THEOREM 2. Suppose that M and M are analytis manifolds and the horizontal
liftings of da, α = l , 2, •••, n, are described by analytic functions. If Hl*(P) is a
Lie group and the following set of vector fields R(P) is either integrable or
invariant under Hl*(P), then its Lie algebra is spanned by R(P), where

R(P)={ίVβ, VΛ KVβ, VΛ vrl •••}.

Conversely, if R(P) is tangent to Hl*(P), either integrable or invariant under
Hl*(P) and forming a finite Lie algebra, then Hl*(P) is a Lie group.

Applications:

(1) Let M be the bundle of frames over M and let the connection from
ω be given. Then it is known that if X and Y are horizontal vector fields,
then the vertical part of [Z, 7] is equal to —2Ω(X, Y) ([4], p. 35). Since
the Lie bracket of Va and Vβ is a vertical vector field, we have that

LVβ, Va3 = -2Ω(Vβ, Va)=R(da, dβ).

Also notice that the horizontal translation φr along a curve r, in this case, is
the parallel translation along the curve r. Hence, theorem 1 says,

"The Lie algebra of the restricted holonomy group H°(M, P) is spanned
by the set

{τr°R(da, dβ); for any possible curve r which connects Q and P] .

This is exactly the same statement as Nijenhuis's theorem.
(2) Let M be a fibre bundle space. We say that M admits holonomy

fibres, if at every point P of M there exists at least locally a submanifold of
dimension n orthogonal to the fibre passing through the point P.

T H E O R E M 3. Let M be a fibre bundle space. M admits holonomy fibres, if
and only if [_Vβ, Val=0, for all a, β=l, 2, •••, n.

Proof. The sufficient condition is obvious. If [Vβ, Fα] = 0, then the hori-
zontal distribution is involutive. Hence, it is integrable. For the necessary



368 KOUN-PING CHENG

condition, since there exists a submanifold orthogonal to the fibre, [_V β, Va~\
has to equal a horizontal vector. Yet, we know that \_Vβ, Va~] is a vertical
vector. Hence it is equal to zero.#

For a Riemannian fibred space, Muto proved the same theorem in [5].
(3) Let M be a Riemannian fibred space. Since the torsion tensor T is

equal to zero, we have that

Hence, the Lie algebra of Hl\M, P) (if it is a Lie group) is spanned by the
vector fields of the above form.

(4) Let M be a Riemannian fibred space with projectable metric. Then,
[_Vβy Va2=2hι

βaCι=h(Vβ, Va) ([6]), where h is the second fundamental form of
M and Ct are vertical vector fields. Hence, dHl°(M, P) is spanned by the
vector fields h(Vβ, Va).

5. The Associated Lie Algebra.

In this section, we are looking for the connection between the de Rham's
decomposition of a manifold and a special Lie algebra associated with the
linear holonomy group.

Let VR(P) be the vector space spanned by the set R(P) in theorem 2.
Suppose that VR(P) is a finite dimensional Lie algebra. By adding the set of
vector fields Va a—I, 2, •••, n to VR(P), we obtain an enlarged vector space
VR(P), i. e. VR(P) is spanned by the set

{Va, ivβ, VΛ ιιvβ, vj, vri, -}.
It is easy to show that VR(P) forms a finite Lie algebra and we call VR(P)
the associated Lie algebra of Hl*(U, P).

Now, let M be an analytic manifold with an analytic connection. Assume
that Mis a connected, simply connected and complete manifold. Then from
[1] and theorem 2, VR(P) is actually the linear holonomy group of M. Hence,
VR(P) is the associated Lie algebra of H(M).

In de Rham's theorem, let T\(P) and T2(P) be two orthogonal subspaces
of the tangent space T(P) and T(P)=T1(P) + T2(P). Suppose that 7\(P) (resp.
T2(P)) is invariant under the translation of the linear holonomy group of M.
By parallel translating 7\(P) (resp. T2(P)) to all other points of M, then this
vector distribution is integrable. Denote the integral manifold which passes
through the point P by Mλ (resp. M2). Then de Rham's theorem says that ([7]).

"M is isometric to the direct product MλxM2." Let VRX{P) (resp. VR2{P))
be the associated Lie algebra of H{MX) (resp. H(M2)). Then we have the follow-
ing lemma:

LEMMA 2. VRλ{P) and VR2(P) are ideals of VR{P) and

VR{P)=VRλ{P)+VR2{P).



THE HORIZONTAL HOLONOMY GROUP 369

Proof. Let da, a=l, 2, •••, m1 and dβ , β' = l, 2, •••, m2 be the coordinate
system of Mx and M2 respectively. Then

VR1(P)=the vector space spanned by {Va, ZVj, VT J, •••} ,

VR2(P)=the vector space spanned by {Va., [Vβ,, V ^ ] , •••} .

From de Rham's theorem, we have that

VR(P)=VR1(P)+VRt(P).

Hence, we only have to show that VR^P) (resp. WR2(P)) is an ideal of VR(P).
It is the same to show that

(1) [V«, V ^ ] = 0 .

Referring to figure 3, let d and C3 be the integral curves of da and π(C3)=Clf

i. e. C3 and d have the same M1 coordinates. Let C2 and C4 be the integral
curves of dβ> and π ( d ) = d . A vector v2^T2(P) is translated parallelly along
the curve C = d + d + d + d Then v2 is invariant along d and C3 and equal
along d and d Hence, τcf2=^2- Similarly, for any v^T^P), τcv1=v1. There-
fore, τcv—v, for any v<=T(P). By shrinking C to zero, since [V^, Vβ.~] re-
presents the infinitesimal parallel translation of a vector along the curve C, we
obtain that [Va, V>]=0.

(2)

From Jacobi's identity, we have that

-ZZVJ, v r l

= 0 + 0 - 0 .

(3) By similar consideration, we obtain that
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Moreover, we have that

(4) [ F ϊ ^ n lVβ; VrJ] = -lVv, [_VRλ{P\

-IVβ; [V r, V ^

(5) By induction, we can prove this lemma. #
Hence, we conclude that

"The de Rham's decomposition of an analytic manifold, is associated with
the decomposition of the Lie group VR(P) into the direct sum of ideals."

BIBLIOGRAPHY

[ 1 ] A. NIJENIIUIS, On the holonomy group of linear connection, Indagations 15
(1953), pp. 233-249.

[ 2 ] W. AMBROSE AND I. M. SINGER, A theorem on holonomy, Trans. Amer. Math.
Soc. Vol. 75 (1953) pp. 428-443.

[ 3 ] K. P. CHENG, Ph. D. thesis, McGill university, 1978.
[ 4 ] K. NOMIZU, Lie group and differential geometry, the Math. Soc. of Japan, 1956.
[ 5 ] Y. MUTO, On some properties of a fibred Riemannian manifold, Science report

of the Yokohama National U. Sec. 1, No. 1, 1952.
[ 6 ] S. ISHIHARA AND KONISHI, Differential geometry and fibred space, Tokyo, 1973.
[ 7 ] S. KoBAYASiπ and K. NOMIZU, Foundations of Differential Geometry, Vol. 1,

Interscience Publishers, 1963.

MCGILL UNIVERSITY, MONTREAL, P. Q., CANADA




