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BOUNDARY VALUE PROBLEMS FOR REAL LINEAR
PARTIAL DIFFERENTIAL EQUATIONS

OF FIRST ORDER

BY HARUKI YAMADA

§ 1. Introduction.

Let ΩdRn be a bounded connected open set with C°°-boundary Σ=dΩ. We
consider the following equation.

(1.1) Lu=
ι=l

where bι(x), c(x), /(x)eC°°(i2) and all the functions are assumed to be real
valued. We shall concern the problem: When, for suitably chosen closed
subset Γ^Σ, is the following statement true?

For any /eC°°(i2) and g<E_C°°(Γ), there is one and
[Wm~] only one solution u^Cm(Ω) of

Lu=f, u\Γ=g,

where m=l, 2, ••• oo. Though, as is well known, the problem of solving first
order partial differential equation (1.1) is reduced to solving system of first
order ordinary differential equations

(1.2) ^-=b\x), z=l,2, .. n,

it is only a local result and our problems are related to global behavior of
solution curves of (1.2). Our problems are also related to the first boundary
value problems for second order equations with non-negative characteristic
form investigated by Kohn-Nierenberg [2], Oleinik [3] and others. Though
our equation (1.1) is a very special case of these degenerate second order
equations, some of the difficulties in these problems are related to our problems
and some meanings of conditions imposed to these problems are clarified by
our settings.

We can pose the problem "under what conditions for L, Ω and Γ, is the
statement [PFm] true ?" for general second order equations with not necessary
non-negative characteristic forms. We shall not concern this problem in this
note but show some simple examples at the end of this note.
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§ 2. The general case.

We use the following notation.

(2.1) L°u= Σ f c ι 0 0 - | ^ - .
i OX

At first we note a result concerning C^-solvability of the first order equations.

PROPOSITION 2.1. The following conditions are equivalent.

a) L°C~(β)=C°°(β),
b) (L°+c)C0O(Ω)=Coo(<Ω) for any C{X)<ΞC~(Ω) ,

c) There is a function φ^C°°(Ω) such that L°L°φ>0 on Ω ,_

d) There is no complete integral curve of L° contained in Ω .

For a simple proof we refer to [1], p. 212.

Remark. From the condition c) it follows that there are no critical points
of the vector field

b(x)=(b\x), ~,b\x))

in Ω. The relation between global solvability of (1.1) and periodic orbits of
(1.2) seems not to be clarified yet.

Before investigating our problem, we note some examples which are
compared with the results concerning solvability of boundary value problems.

E X A M P L E 2.1. L°u = -j^-, Ω={{X, y); Kx2+y2<4}. Then c) is valid for

φ=x2 and (LOJrc)u=f is globally solvable on Ω.

EXAMPLE 2.2. L°u~x-= hv-^— and Ω is the same as above. Then c)
dx ay

is valid for φ—x2jry2 and (LOJrc)u=f is globally solvable.

EXAMPLE 2.3. L°u — y-^ x-~— and Ω is the same as above. Then d)
dx oy

is not valid since the vector field b(x, y)=(x, —y) has an integral curve x2

-iry
2—%/2 completely contained in Ω.

Now we shall concern solving the boundary value problem. At first we
consider the problem : What conditions on Γ must be imposed to ? Put

Σ0={xeΣ; Σf
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where v{x)=v=(vly •••, vn) is the exterior unit normal vector of Σ at X<BΣ.

PROPOSITION 2.2. Suppose b(x)Φθ on Ω. Further, suppose that there are no

periodic orbits of (1.2) which are completely contained in Ω. Then for [Wm~] to

be true it is necessary to take Γ=Σ+ or Γ=Σ-.

Proof. Let * ( 0 = ( * i ( 0 , — * n (0) be a solution of

dxt

at
-=bι(x), ι=l, •••, n.

When we write, for a solution u^Cm(Ω) of (1.1), U(t)=u(x(t)), F(t)=f(x(t)),
C{t)=c{x{t)), we have

(2.2) ^

Accordingly, when we prescribe the value U(0)=uU*) at t = 0 U(0)=*°), the
solution of (2.2) has the form

(2.3)

along the curve C: χ = χ(t), here h(t) is defined by the solution of

~jf=C(t), Λ(0)=0.

Now we return to the problem

(2.4) Lu=f, u\Γ=g. __

We first note that for [Wm~] to be valid, Γ jpust be the closure Γ of its
interior points Γ. In fact, if Γ contain x^Γ—Γ there is a neighbourhood ω
of x0 such that ω—Γr\(o is dense in ω. Thus when we suppose that [Wm] is
true, the value of u on ω—Γr\ω must be determined by the data on Γ. But
when we vary the data on Γr\ω, the solution may become discontinuous on
the set of the trajectry of flow from ω determined by (1.2). Thus Γ must be
the closure of its inner points. Next suppose that the data are given on
Γ^Σ+. Since Σ+ is an open set in Σ we can take x oe2'+—Γ such that for
some neighbourhood ω of x0, ω(ZΣ+—Γ. The union of trajectries of flows
x{t) which start from ω make an open set U in Ω and on this set we cannot
determine the value of u(x) only from / and g. Thus, for the uniqueness of
the solution, it is necessary that Γ&Γ+.

Next, suppose that Σ^Γ. We first note that Γ must not include any
inner points of Σo. In fact if xo^Γ is an inner point of Σo, by transforming
the coordinate system near x0 such that

Σ: xn=0,
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we have b(x)=(b\x), •••, bn-\x), 0) on Σ near x0. From this it follows that

for the flow x{t) through x0 at t=0, there is an open interval (a, b) (a<0<b)

such that x(t)(ΞΓ for all ίe(α, b). This contradicts the fact that we may

take any boundary data on Γ. Thus if Σ+^Γ, Γ must contain an ίnnerp oint

x1 of Σ-. Take a neighbourhood ω of xx such that ω C Γ π ί - . Let UciΩ be

the set of trajectries through ω and let ώ=UnΣ—ω. Since ώ contain inner

points of Σ, it may not happen that ώdΣ0. Thus ώr\Σ+Φφ and from the

assumption Σ+ClΓ, the contradiction follows. That the case ΓrλΣ+Φφ and

Γr\Σ-Φφ is impossible follows in a similar way.
In the above case, it is not required any conditions concerning c(x). Next

we consider the case when c(x)>0 in Ω and b{x) is arbitrary.

PROPOSITION 2.3. Suppose that c(x)<0 on JJ(resp. c(x)>0). Then for Γ=Y+

(resp. Σ-), the solution of (2.4) is unique.

Proof. It is sufficient to prove that for any solution u^C°°(Ω) of (2.4), we
have

max \u\^ max {sup \f/c\, max \g\}—M.
Ω Ω Σ+

If we put v±=M±u, since M^sup \f/c\, we have

(2.5) L(v±)=cM±f^0 in Ω.

On the other hand, v= may take a negative minimum value only on Σ+. In

fact, suppose on the contraly, v± take a negative minimum value at some point

xo^Ω, it follows that dv±/dxl=0 (ϊ=l, •••, n) at x0 and we have L(v±)>0 at

x0 since f±(xo)<0. This contradicts (2.5). Similarly, we can show that any

negative minimum value may be not taken at any xo^Σ—Σ+ either. Since

v±=M±u=M±g^0 on Σ+, we have v±^0 on Ω and sup \u\^M. This proves

the proposition. Ω

Remark. In the above proposition, we cannot relax the condition c(x)>0
to c

EXAMPLE 2.4. Let Ω={(x, y); K i 2 + / < 4 } , Lu=y-^-x-^

Then all the boundary points belong to Σo. But for c(x)=0, all wΞconst. are
solutions of (2.4). Note that in this case Γ=φ.

In the following we consider our problem for Γ=Σ+ or Σ-.

PROPOSITION 2.4. Suppose b(x)Φθ on Ω, Σ0=φ. Further, suppose that there

are no periodic orbits of (1.2) which are completely contained in Ω. Then for

any c(x)eC^Ω), [WΌJ is true when we choose Γ=Σ+ or Γ=Σ-.
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The proof is trivial.

Remark. Conditions Σ0=φ and the absence of periodic orbits are both
essential for the validity of the proposition. We show this by the following
examples.

EXAMPLE 2.5. (cf. Ex. 2.1.). For Lu=^- and Ω={(x, y); K i 2 + / < 4 } ,

[_Wτn~] is not true for Γ=Σ+ and Γ=Σ-. Singularities of solutions may ap-
pear, for example, only on the line y—±l, O^x^VT when Γ=Σ+.

EXAMPLE 2.6. Let Lu = a-~+b'jL+cu=f and Ω={(x,y); l/4<x2jry2

<9/4}, where

b=b(x, 3;)—y(x2jry2-

Then
dx dy
dt " ' dt

~Ό

has a periodic orbit x2+y2=l, and we see Σ—Σ+, Σ0~φ and (a, b)Φθ every-
where on Ω. But, for example, for Γ=Σ+, [TfJ is true if and only if

, s'mθ)dθΦ0.

As the above example shows, the situation changes drastically if a periodic
orbit exists. Suppose that there is a periodic orbit x(t) of (1.2) which pass
xQ(=Ω at f=0 and has the minimal positive period T. Then, for any solution
utΞCm(Ω) of Lu=f, we have (2.3) and since U(T)=U(0) it must hold that

Jo

Hence Lu=f has a smooth solution on this curve if and only if ehcT">Φθ, that
is,

[TC(t)dt = [T c(x(t))dtΦQ.
Jo Jo

Further, then, the values U(ύ)=u(x(t)) on this curve are uniquely determined
only by f(x) without determining any initial data.

PROPOSITION 2.5. Suppose b(x)Φθ on Ω, and Σ=Σ+. Then, for Γ=Σ+,
a) There is a sufficiently large positive number c0 which depends on b{x) and

m such that [_Wm~] is true, for any c^C°°{Ω) with c(x)^~c0,
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b) // c(x)>0 on Ω, [Wm~] is not true.
Proof, a) is a consequence of a more general result which will be stated

as Proposition 2.7. To prove b) we note that from the assumptions, any orbit
x(t)in Ω through some xo^Σ at f=0 has α-limit set CdΩ (see e.g. [4] §53.).
Of course any orbit through a point eC is a periodic orbit in Ω. Then, for
f(x)—c(x), we have

Hence if c(x)>0 on Ω, h(t)-+—oo as t^—co and thus U(t)-*+00 on this curve
unless £7(0)=1. This proves b).

Remark 1. Condition c(x)^ — c0 in a) is not necessary for certain cases.
It seems that we can relax the condition to c(x)<0 on certain parts of Ω.

Remark 2. b) holds true when we only assume that c(x)>0 on at least one
α-limit set C of the flows determined by (1.2).

EXAMPLE 2.7. Let Lu = y^-x^-+c{x, y)u=f,Ω={(x, y) K i 2 + / < 4 } .

Then Σ=Σ0. We have that [_Wm~] is true for Γ—φ if and only if

[2πc(r cos t, rsin t)dtΦθ for all r e [ l , 2] .
Jo

(cf. Ex. 2.3. and §3) Especially c(x)Φθ on Ω is sufficient.
For the example of b), see Example 2.6.
Next we consider the case when Σ^Φφ. Then [Wm~] may not true even

when b(x)Φθ on Ω and ever any conditions on c(x) are imposed.

EXAMPLE 2.8. Let Lu=4^—4x2-^-+cu=f, Ω={(x, y) * 2 + / < l } . Then

[Wm] is not true and the singularity may appear only on the curve y =—2x2+lr

^O for Γ=Y+. (see also Ex. 2.5).

PROPOSITION 2.6. Suppose b(x)Φθ on Ω and further suppose that Σo has no

inner points and no periodic orbits contained in Ω exist. Then for Γ—Σ+ we

have
a) // [_Wm~] is true, then for any flow x(t) through xo^Σo at t=Q, there is

no neighbourhood ω of x0 such that x(t)^Ωr^ω when t is small.

b) //, for any xo^Σo, there is no neighbourhood ω such that x(t)^Ωr\ω
— {x0} when t is small, then [TΓm] is valid.
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Proof, a) Suppose that there is a flow x{t) through xo^Σo at ί=0 such
that x(t)^Ωr\ω for small t. Then from the continuity of solutions with re-
spect to initial values and parameters and the fact that Σo has no inner points,
there is one parameter continuous family xε of points on Σ such that

*o=#εL=o, xε^Σ+ when ε >0, xε^Σ- when ε<0.

The values of u at xε for ε<0 are determined by data given on a set σ of
points of Σ+, but since there are no periodic orbits, we see dist (x0, σ)>0 and
these values are independent of the initial values at xε^Σ+, ε>0. Thus there
may exist a singular solution with singularities on the curve x(t), t<0, start-
ing from xQ. This proves a).

b) Since Σo has no inner points, we have, by integration, one and only
one solution u{x) for given boundary value g on Γ. Now suppose that this
solution have a singularity at some x^Ω, then u must be singular at every
point on the curve x(t) through x0. Since there are no periodic orbits and
b(x)Φθ, there are two end points x+, x-<=Σ of χ = x(t), x+^Σ+, x-^Σ- (cf.
[4] Chap. 7). x+^Σ+ is impossible since the solution is smooth with respect
to initial values and parameters. Thus it must be X<ΞΣ0. But in this case,
from the assumption, x+ must be an inner point of Σ+ and x+ may not be a
singular point, this proves b).

When we remove the condition b(x)Φ0 on Ω, it seems that we cannot use
the method of integration of the differential equation (1.2). We note the
following result due to [2], [3] which is a restriction of more general result
concerning second order equations.

PROPOSITION 2.7. Suppose that Σ+ is closed in Σ. Then for any fixed m,
there is a large positive constant c0 such that for any c{x)^Cc°(Ω) with c(x)^ — c0

on Ω, [Wm~] is true for Γ=Σ+.

Remark. c0 depends on the values of b{x) and its second order derivatives
on Ω.

We omit the proof but refer to [2], [3].

COROLLARY 2.8. Suppose that Σ+ is closed in Σ. If there is a function
ψ^C^{Ω) such that

(2.6) ±bι-^-Φ0 on Ω.
ι = i OXX

then [Woo] is valid for Γ=Σ+ and for any

Proof. Without loss of generality, we

Ω. When we put u = eλψv, the equation (1.1) is rewritten by

Proof. Without loss of generality, we can assume that Σ bι °^ <0 on
ι = l OX%
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Thus if we take λ>0 sufficiently large such that c+λ Σ b%-~-~< — cQ on Ω, we
i=i dxv

can use Proposition 2.7.
For the existence of φ^C°°{Ω) such that (2.6) is valid, it is necessary that

b(x)Φθ on Ω. Further we must impose some topological conditions relating
the integrability of (1.2) on Ω. For example we have

COROLLARY 2.9 Suppose that Σ+ is closed in Σ, Ω is simply connected and

(2.7) ir-=-ψ-, J,k = l,-,n, Kx)Φ0onΩ.
OXj OXk

Then [Woo] is true for Γ=Σ+ for any C{X)EΞC°°{Ω).

Proof. The condition (2.7) is a integrability condition and it is well known
that under this condition there is a function φ^C°°(Ω) such that grad φ=b(x).
For this φ, the condition (2.6) is valid.

Of course when the topological condition on Ω is not satisfied the con-
clusion is no longer true.

EXAMPLE 2.9. Let Lu=—-~~9 ^ - — * JL-\-Cu=f, Ω={(x,y);
x2+y2 ox x2Jry2 dy

K i 2 + / < 4 } . Then, except that Ω is simply connected, all the conditions of
the corollary are satisfied. But as we have already seen in Example 2.7, [\Vm~]
is not true when

ί 2π
c(r cos t, r sin t)dt=O

0

for some ΓG[1, 2].

§ 3. Two dimensional case.

As we have already seen, when we assume that b(x)=pθ or c(x)^ — c0 on
Ω, certain conditions for the validity of [Wm] are obtained. But in general,
when both of these conditions are not valid, the general picture is not clari-
fied yet.

in the following, we see some conditions for some simple equations. That
is, we shall treat the equations

(3.1) ί , M + 6 + /

with

(3.2) a(x, y)=px+qy, b{x, y)=

p, q> r, s^R, ps—qrφO.
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We shall determine conditions of the validity of [Wm~] for this equation and
for ΩdR2 which contains the origin. We can generalize our results slightly
by replacing the above a, b with the following a, b :

ά(x, y)=px+qy+o(\x\

b{x, y)=

But the formulations are very complicated and we shall omit this case.
We first note two simple necessary conditions for Ω.

PROPOSITION 3.1. For the validity of [Wm~] for Γ=Σ+ or Γ=Σ-, it is nec-

essary that
a) Ω is simply connected,
b) For any P0^Σ0, the flow P(t)=(x(t), y(t)) through Po at t=0 satisfies

the following condition

(3.3) There are no interval (tlf t2) (tί<O<t2) such that
on (tlf t2) and P{tλ),

Proof. We treat only the case Γ—Σ+. a) Suppose that there are compact
components of R2—Ω. Take P0^Σ such that the flow P(t) from Po intersects
some bounded component M of R2—Ω but does not intersect its inner points.
Let Pλ^M be a point where P(t) first meets M and P 2 G M be a point where
P(t) separates from M. Then the value of u on the curve P(t), so especially
the value u(P2) at P=P2, are determined by the data given on the part of Σ
which are boundary points of unbounded component of R2—Ω. On the other
hand, since P2^Σ+r\dM, the value u(P2) at P=P2 is also determined by the
data which are given arbitrary on Σ+r\dM. This is a contradiction and this
proves a). The proof of b) is a easy task.

Put

Λ= \p Ί
I r s ]

and let λ, μ be eigenvalues of A. From the assumption ps—qrφO, we have
λ μΦO. Under these circumstances we prove the following theorem.

THEOREM 3.2. Let ΩaR2 be a simply connected open set with C°°-boundary
and O^Ω. For the equation (3.1), (3.2), we assume the condition (3.3). Then

a) // λ, μ^R and λ-μ>0, then [_Wm~] is valid for Γ=Σ if and only if
c(0)/max(Λ, μ)+m<0. [WΌJ is valid for Γ=φ if and only if max (λ, μ)-c(0)>0.

b) // λ, μ&R and Re λ=aΦθ, then [_wj] is valid for Γ=Σ if and only if
c(0)/α+m<0. [Wool is valid for Γ=φ if and only if α c(0)>0.

c) // λ, μ&R and Re λ=0, then [PFΌJ is valid for Γ=φ if c(x, y)Φθ on Ω.

Proof. It is well known that by a real linear transformation of the coor-
dinate systems we can reduce (3.1) to one of the following normal forms (see
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e.g. [4]):

( I ) λxux+λyuy+cu=f, λΦQ,

(II) λxux+μyuy + cu~f, λ-μ>0,

(III) λxux+(kx+λy)uy + cu=f, λφO, k>0,

(IV) (ax+βy)ux+(-βx+ay)uy+cu=f, aΦO, β^O,

(V) βyux-βxuy + cu=f, βΦQ,

(VI) λxux

j

rμyuy

jrcu=f, λ-μ<0.

Here and hereafter, we shall use the abridgements such as ιιx=du/dx, etc.
Note that a) corresponds to the cases (I), (II) and (III), b) corresponds to (IV),
c) corresponds to (V). (For the case (VI) see the remark after the proof).

It is easy to see that when we prove the statements of the theorem for
small disc ωdΩ with center Oeβ2, the theorem follows for general Ω. By
streching the coordinates we can assume that ω={(x, y) x2jry2<l}. Thus it
is sufficient to prove the theorem for this ω and for the normalized equations
(I)~(V). Further we note that c(O)Φθ is a necessary condition for the validity
of lWmΊ. In fact, if c(0)=0, it must follow that /(0)=0 and [_Wm~] is not true.
Hence by streching the coordinates further, we may assume that \c(x, >-)l =^o>0
on ώ for some positive constant c0.

a) We shall consider the equation (I). Without loss of generality we may
assume that Λ>0. If we put

(3.4) x = eλtco$θ, y = eλt$iτιϋ,

(I) can be written by

dU ι C U = F

dt '

where we used the notations U=U(t, θ)=u(en cos#, g^sintf), etc. Thus the
solution of (I) along the flow determined by (3.4) (which starts from a point
on the circle χ2+y2=l at ί=0 and tends to (0, 0) as ί—•—00) can be written
by

u{x, y)=U(t, θ)=e-h«

where

h(t, ff)=\lC(t, θ)dt=\tc(eλt cosθ, eλtsinθ)dt
Jo Jo

Especially

(3.5) υ(x, y)=V(t, θ)=e'h«-θ^ F(t,
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is a solution. We first prove that this solution is C°° at (x, y)=(0, 0) as long
as c(Q)/λ+mΦθ (m=0, 1, 2, •••). When c^co>O on ω, h—> — oo as t-> — oo and
when c ^ —co<O on α>, h—>co as ί—> — c>o. In both cases we can use the
LΉospitaΓs theorem and have

lim V(t, θ)= lim e"M Fehdt=\im -JTΊΓ=- / m .

Next, by differentiating (I) with respect to x and y, we have

Hence, if we prove that uxx, uxy, uyy are bounded when (x, jy)—»(O, 0) (the
limits may depend on the path (x, y)-+(0, 0)), we have that ux and uy have
limits when (x, y)-*(0, 0) which are not depending on the path provided that
c(f))+λφl. On the other hand, if £(0)+Λ=0, then it follows that fx(0)—cx(O)u(0)
=Λ(0)-ca.(0)/(0)/c(0)=0, Λ(0)-cy(0)/(0)/c(0)=0. This shows that compatibility
conditions on / at (x, y)=(Q, 0) arise. By differentiating the equatios (I) succes-
sivly, we have compatibility conditions on / when c(ΰ)+λm=0 (m=0} 1, 2, •••).

Now we shall prove that any derivatives of V=V(t, θ) with respect to x
and y are bounded provided that c(0)+λmΦ0. Since Vx=Vttx

JrVθθx = Vtcosθ
/λeλt + Vθ s'mθ/λeλt we have to prove that lim Vt/en and lim Vθ/eλt are bounded.

If we note Vt = -htV+F=-CV+F, Vtt = -CtV-CVt+F, Ct=ct=cxλen

+ cyλeλt sin/9, etc., we have that the quantity

lim - ί ^ - = lim -^-l-heV+e-Λ' {Fθ + hθF)ehdt\

is bounded. On the other hand, from lim Vt/eλt= lim (F—CV)/eλt= lim (Ft—CtV

—CVt)/λeλt, we have that the quantity

lim —jT(l+^r)Vt= lim —* * -
t -* — P \ A J t -» — / P

is bounded. Thus ŵ  is bounded as (x, 3̂ )—>(0, 0) if l + c(0)/Λ^0. Similarly we
can prove that all the derivatives of V with respect to x and y are bounded
and hence VeC°° at (*, 3θ=(0, 0). When c(0)>0, by combining Proposition 2.3,
the result stated in a) follows.

Now we assume that c(0)^ — co<O. Then by Proposition 2.3, we must
prescribe data g(x, y)=G(θ) on x2+y2=L Since we have a C°°-solution V=v
of (I) for any given /, we have only to prove the theorem when f=0. Then
the solution with u\Σ=g is given by

u(x, y)=U(t, 0)=β-Λ

We shall prove that when c(0) + λm<0, the derivatives of u = U with respect
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to x and y up to order m are bounded. (In fact these tend to 0 as /—»—oo).
Since Ux=cosθ-Ut/λeλt+sm θ'Uθ/λeu=e~h-λt{-c cosθ'G(θ)/λ-\-(Gθ(θ)-hθG(θ))
sin θ/λ) and since /ι—>oo as t-> — oo, Ux is bounded if and only if —h — λt are
bounded as ί-» — co and hence if and only if c(0)/Λ+l<0. By the similar
arguments, we know that the derivatives of U with respect to x and y up
to order m are bounded if and only if c(0)/Λ+m<0, and then these derivatives
are all tending to 0 as (x, jy)—KO, 0). Hence we have proved a) for (I). The
statements for (II) and (III) are proved by similar arguments,

b) In this case, when we put

(3.6) x=eat cos (θ-βt), y = eat sin (θ-βt),

we have

u(x, y)=U(t, θ)=e~h(it θ>\u(0, θ)+[F(t, θ)eha.θ>dt\
I Jo J

along the flow defined by (3.6). That v(x, y)=V(ί, θ) defined by (3.5) is C°° at
(0, 0) is proved by the same way as a). On the other hand, there are no com-
patibility conditions for /. In fact, by differentiating (IV) with respect to x
and y, we have

βux

Jr(aJrc)uy=f-cyu-jr(**),

where (*) and (**) are those terms which tend to 0 with (x, y) provided that
the second order derivatives of u are bounded. Since

no compatibility conditions may arise and the same is true for higher order
derivatives. The rest of the proof is similar to that of a) and we omit it.

c) When we put

x = rcosθ, y = r sin θ,

we have

u(x, y)=U(r, θ)=e-hir

where

h(r, θ) = [θC(r, θ)dθ=[βc(r cos θ, r sin
Jo Jo

By the periodicity condition on U(r, θ) with respect to θ, we have

U(r, 2π)=U(r, Q)=e'h(r'2
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and hence

U(r, 0)=j

provided that ehcr>2π>-lφd, that is,

[2*c(r cos θ, rsmβ)dθΦ0.
Jo

Since lim U(r, 0)=/(0)/c(0), we have
r-*0

lim£/(r, ^ ) = e - C C 0 ) ^ -
r-*0 I

Further, as in b), there arise no compatibility conditions of / since e. g.

_C β = C

8 + j8 2 >0.
P c

Thus we only have to prove that when cΦO on ω, then all the derivatives of
U with respect to x and y are bounded as (x, y)—>(0, 0). By differentiating
with respect to x, we have Ux=—s'mθ Uθ/rJrCθsθ'Ur. It is clear that lim Ur

r-*0

is bounded and also lim Uβ/r=\Ίm (—CU-\-F)/r—lim (—CrU—C£/r+Fr) is bounded.
r-»0 r-»0 r->0

Thus Ux is bounded as (x, 3 )̂̂ (0, 0). Similarly, it can be shown that all the
derivatives are bounded as (x, y)—>(0, 0) and thus we have completed the proof.

Remark. (VI) is the case in which the conditions b(x, y)—(λx, μy) vanishes
at (x, y)=(0, 0) and Σ0Φφ are connected in a essential manner. In this case,
it seems that we have to impose conditions on c not only at (x, y)=(0, 0) but
on some set in Ω. These cases, i.e. the case in which b(x)=Q and Σ0Γ\Σ+Φφ
(ΣoΓλΣ-Φφ) occur, will be treated in some general context in our subsequent
note.

§ 4. Examples of the first boundary value problem for second order equations.

In the following, by using our preceding results, we shall present some
examples of the first boundary value problem for second order equations. First
we restate our problem which we have already stated in § 1. For given second
order equation

72, riΔiι 71. rii I

T 77— V ΠlJ —

defined on Ω with alJ, b\ ceC°°(i2), find some closed set Γ^Σ=dΩ such that
the statement [Wm~] is true.
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It is well known that for elliptic equations, as the first boundary value
problem (i. e. Dirichlet problem), [_W*Γ\ is true for Γ=Σ as long as min {—c(x)}

Ω

is sufficiently large positive number. Further, it is known that some kind of
degenerate elliptic equations have this properties (see e. g. [2], [3]). This
property is related to non-existence of non-degenerate characteristic curves.
Thus we may expect that for the validity of [Wm], it is necessary that

Σ α^fif^O for all (x, ξ)(=ΩxRn.
ι i

But it is not true in general situation as we shall see by the following examples.
Thus the problem "to investigate the relations between L, Ω, Γ under which
[WmD is true" arises. We shall show some of the examples but shall not
attempt to study such a problem in this note.

EXAMPLE 4.1. Let Ω={(x, y); x2+y2<l} and

; a,

It is clear that for the validity of [PFTO], βΦO is a necessary condition. Then
i) If β<0, ίWool is true for Γ=φ,

ii) If β>0 and α2>4/3, [WoJ is true for Γ=φ.
In fact, by taking clt c2^R such that c1+c2=a> c1c2=β, we have that

L — LιL2 where L^—y-^ x-z \-c1f j = l, 2.
ox oy

Thus i), ii) follows from Theorem 3.2. By returning to the arguments of the
proof, we have that for [_WΌo~] to be true it is not necessarily assumed that
Cj^R. More precisely, when we consider complex valued function c(x) in the
arguments after Example 2.6, we have that we have only to assume that

= [T c(x(t))dtΦ2πkι,
Jo

By applying this arguments we have that [VFJ is true for (4.1) if and only if
clf c2φkι, k^Z. For the simplicity we assume further a=0 and consider the
following equation

Then we have that [_WJ\ is true for (4.2) if and only if

βΦn\ n
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We can generalize this by assuming that β is no longer constant. Then
if there is a C°°-solution c(x, y) of the equation

J dx ' dy

we can rewrite (4.2) by

= L+L_ where L± = y-x x—r—±c .
dx dy

Thus, if we further assume that

c(rcost, rsin t)dtΦ2πki,

then [WoJ is true. Note that if we attempt to find c(x, y) by integrating
ordinary differential equation

dx dv

we have that C(t)—c(x(t), y(t)) must be a solution of Riccati's equation

where B(t) = β(x(t), y{t)).

EXAMPLE 4.2 Let Ω be as above and

g
c;

Then, for Γ=Σ, [_Wm~] is true if and only if m<c and for Γ—φ, [_WJ\ is true
if and only if c<0. In fact L can be written by

T T T T 3 ^ I 1 Γ 3 . 3

ox oy ox dy

and the result follow from Theorem 3.2. Note that the above equation has
no non-negative characteristic form.

EXAMPLE 4.3. Let Ω be as above and

Then
i) If β<0 and a<—2m + l or if β<m{a—1)—m2, then [W^m] is true for

Γ=Σ,
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ii) If ;3>0, α > l , then [ W J is true for Γ=φ,
iii) If β>0, α < l , then [Wm~\ is not true for Γ=Σ and Γ=φ.
In fact, by taking clf c2^R such that c1 + c 2 = α —1, cιc2=β, we have

and thus the above result follow from Theorem 3.2. Especially by taking
a=l, we have the following result: For

[Wm~] is true if β<~m2. (cf. Example 4.1).

EXAMPLE 4.4. Let

; a,

If Ω is as above, [WJ] is valid for

Γ={(x, y); x*+y*=l, x+y>0} or Γ-{(x, 3O x*+y*=l, x+y<0\

if and only if βΦO. On the other hand, if we take

Ω={(χ, y);

then [_Wm~] is not valid for any choice of a, β and Γ.
We hope to return to consider the problem stated at the begining of this

section and related problems of propagations of singularities of solutions at a
later time.
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