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AND RANDOM FIXED POINT THEOREMS
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0. Introduction

Various results on random fixed point theorems were given by many
authors (cf. Bharucha-Reid [1, 2], Itoh [7, 8], Engl [3, 4] and their references).
In [8] almost all known fixed point theorems (e. g. for nonexpansive or con-
densing mappings) were extended to random cases (except for contraction
mappings that is due to Spacek [16] and Hans [5]) on general measurable
spaces. Similar results were obtained by Bharucha-Reid [2] and Engl [3, 4] on
measure spaces.

For multivalued mappings, a random fixed point theorem for contraction
mappings was proved in [7]. Then in [8], theorems for multivalued condensing
or nonexpansive mappings on measurable spaces were treated, where in the
former case lower semicontinuity as well as upper semicontinuity are assumed.
On measure spaces, Engl [3, 4] gave a theorem which makes possible to derive
random fixed point theorems from fixed point theorems for multivalued contin-
uous (in Hausdorff metric) mappings. Moreover, he obtained a complete result
of Bohnenblust and Karlin type for upper semicontinuous compact multivalued
mappings.

Other results on random equations were treated by Kannan and Salehi [11]
and Itoh [9, 10].

In this paper, by adopting the method of Engl [3, 4] we prove random
fixed point theorems for upper semicontinuous condensing multivalued mappings.
In sections 1 and 2, some results on upper semicontinuity and measurability of
multivalued mappings are presented. Then in section 3 random fixed point
theorems are given.

1. Upper Semicontinuous Multivalued Mappings

Let I b e a metric space. For any BdX and ί>>0, let cl(J3) be the closure
of B and BP={X£ΞX: d(x, B)<ρ}, where d(x, B)=inf{d(x, y): y^B}. Let 2X be
the family of all subsets of X, CD(X) all nonempty closed subsets, and K(X)
all nonempty compact subsets of X respectively. If X is a subset of a Banach
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space, denote by clco(Z) the closed convex hull of X and by CK(X) the family
of all nonempty compact convex subsets of X. Let Y be another metric space.
A mapping F: X-^CD(Y) is said to be upper semicontinuous (u. s. c.) if for any
closed subset C of Y, F'\C)={x^X: F(x)r\CΦ0\ is a closed subset of X. It
is obvious that F is u. s. c. if and only if given x e l , for each open subset V
of Y with VZ)F(x), there exists a neighborhood U of x such that F(y)dV
whenever 3/et/.

LEMMA 1.1. Let X be a separable metric space with {xk} a countable dense
subset of X and Y be a Banach space. Let F: X-^CK(Y) be an u.s.c. mapping,
then the mapping G: X—>2Y defined by

G(x)= Γ\ clco(U{F(xk): d(xk, x)<l
71 = 1

satisfies the conditions:
(i) For any X<ΞX, F(X)Z)G(X)ΦQ.

(ii) G is u. s. c.

Proof. For each n, define Gn: X-*CD(Y) by

: d{xk,
then

G(x)= Π Gn(x).
n=i

We first show that G(x) is nonempty for every i 6 l For any n, take kn such
that d(xkn, x)<l/n. Then

Since {JC A J?=IU {x} is compact and F is u. s. c , U F(xkγι)^JF(x) is compact, hence

clco({JF(xk.)) is compact. Thus

G(x)= Π GB(JC)D Π clco(W i
n = i 7i=l izn

The relation F(x)Z)G(x) is an easy consequence of F being u.s.c. Indeed, for
any p>0, take n for sufficiently large, then d(xkf x)<l/n implies F(xk)d(F(x))pt

Since (F(x))p is convex, G(x)dGn(x)c:cl((F(x))p)> which yields G(x)cF(x), Now
we prove that G is u. s. c. Let C be any closed subset of Y and {zj be a
sequence of G'KQ converging to some z^X. For each n, choose z% such that
d(zι, z)<l/2n. If </(**, Zι)<l/2n, then d(xk9 z)<l/n, hence G 2 nfc)cG n(z) and
Gn(z)r\CZ)Gzn(zι)r\Cφ$. Since F is u . s .c , there exists jn>n for which d(xk, z)
<l/jn implies F^OcCFC^))!/^ Thus 0ΦGJn(z)nCdc\((F(z))1/n). There exists
3;neG ; n(z)πC such that d(yn, F(z))f^l/n. Since F{z) is compact, some subse-
quence {ym} of {^J converges to an element y of C. If jm>n, then j>me
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Gjm(z)r\C<zGn(z)r\C. It follows that y^Gn{z)r\C for all n. This implies

J/GΞ Γ\Gn(z)rΛC=G(z)r\C,
n-l

and z^.G~\C). Hence G~\C) is closed and G is u.s.c.

Remark 1.2. Almost the same proof as above also establishes the follow-
ing : Let X be a separable metric space with {xk} a countable dense subset of
X, Y be a metric space, and F: X-*K(Y) be u. s. c. Then the mapping
G: Z - 2 F by

has the properties:
(i) For any I G Z , F(X)Z)G(X)Φ&.

(ii) G is upper semicontinuous.

§2. Measurable Multivalued Mappings

In the sequel, let (T, Jl) be a measurable space. A mapping F: 7"—>2X is
said to be {JL)-measurable if for each closed subset C of Z, F" 1 (C)={ίeT: F(t)
ΓΛCΦΘ} <^JL. F is said to be (Jl-)weakly measurable if for each open subset B
of X, F~ι(B)<^ίA. It is obvious that if F is measurable, then F is weakly
measurable. If F(t)^K(X) for all ί eT, then the converse is valid by Himmel-
berg [6, Theorem 3.1]. See also Wagner [17]. Denote by & the Borel field of
X and by J x ^ the product σ-algebra of Jl and B on TxX.

PROPOSITION 2.1. Let X be a separable metric space with {xk} a countable
dense subset of X and Y be a separable Banach space. Let F: TxX-*CK(Y) be
a mapping having the properties:

(a) For each t^T, F(t, •) is u.s.c.
(b) For each x e Z , F( , x) is weakly measurable.

Then the mapping G : TxX->2F defined by

, x e l ) satisfies the following conditions:
(i) For βαcλ ί e T αnίί X G I , F(f, Λ:)Z)G(ί,

(ii) For each teT, G(t, •) 25 w. s. c.
(iii) G is <JlX ̂ -measurable.

Proof, (i) and (ii) is clear from Lemma 1.1.
(iii) For each n, define Hn: TxZ->2 r by /ίn(ί, x)=W{F(ί, xk):

( ίeT, l e i ) , then //n is cJx^-weakly measurable. Indeed, for any open subset

B of r,
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Hn-KB)={(t, I ) G T X I : Hn(t, x)ΓλBΦ®}

= U {t£ΞT: F(t, xk)nBΦξ)}x{x£ΞX: d(x, i

Then the mapping Gn : T x X - CD{Y) defined by Gn(f, jr)=clco(#n(f, x)) is
weakly measurable by Himmelberg [6, Theorem 9.1]. If we show that

G-\C)= Π Gn-\C1/n)
71 = 1

for every closed subset C of Y, then we can conclude that G is JίX^-meas-
urable. It is obvious that

G'KC)(Z Π Gn-\C1/n).
rc=i

Conversely, if

(f, *)e Γ\Gn-\C1/n),
1

then Gn(f, x)nCi/ n^0 for all n. Since F(ί, •) is u. s. c, by the same way as in
the proof of Lemma 1.1 we have

QΦ r\Gn(t, Λr)nci(c1/n)=G(ί, x)r\C
71 = 1

Hence

Remark 2.2. Let F be as in Proposition 2.1, then i7 itself is not necessarily
Jx^-measurable (cf. Engl [3, 4]).

Remark 2.3. By a slight modification of the above proof we can prove the
following: Let X be a separable metric space with {xk} a countable dense
subset of X and Y be a metric space. Let F : TxX—>K(Y) be a mapping with
the properties:

(a) For each ίeT, F(ί, •) is u. s. c.
(b) For each I G Z , F( , X) is weakly measurable. Define G:

by

, x e l ) , then G fulfills the conditions:
(i) For each ίeT, XZΞX, F(t, x)Z)G{t,

(ii) For each t<=T, G(t, •) is u. s. c.
(iii) G is cAx ̂ -measurable.

If X is also complete, the proof of the following lemma is essentially con-
tained in [7, Proposition 4]. If X is a separable Banach space, the same is
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obtained in Engl [4] by a different method.

LEMMA 2.4. Let X be a separable metric space, F: T^CD(X) be a weakly
measurable mapping, and u: T-+X be a measurable mapping. Then d(u( ), F( ))
is a measurable function on T.

Proof. Define / : TxX-^R (the real numbers) by /(ί, x)=d(x, F(t)) (ίeT,
x&X), then / is measurable in t by Himmelberg [6, Theorem 3.3] and continu-
ous in x. Hence the function /(•, u{-))~d{u{'), F( )) on T is measurable (cf.
Himmelberg [6, Theorem 6.5]).

§ 3 . Random Fixed Point Theorems

Let Σ and 21* be the respective sets of infinite and finite sequences of

positive integers. For σ^Σ, denote (σlf •••, σn) by σ\n and let A: Σ*—*Jl.

Then

U Π Λσln
σ<ΞΣ n=i

is said to be obtained from Jl by the Souslin operation. Jl is called a Souslin
family if every set obtained from Jl in this way is also in Jl. If there exists
a complete <7-fmite measure on (T, Jl), then J is a Souslin family (cf. Wagner
[17, p. 864] and the references cited there).

For any bounded subset B of X, let γ(B)=inf{c>0: B can be covered by a
finite number of subsets of diameters less than or equal to c} A mapping
F: X-^CD(X) is said to be condensing if for any bounded subset B of X with
Γ(S)>0, r(F(B))<γ(B), where F(fl)=W{F(x): I E 5 } .

Now we prove the following random fixed point theorem by using the
results in section 2.

THEOREM 3.1. Let Jl be a Souslin family and X be a nonempty closed convex
subset of a separable Banach space Y. Let F: TxX-^CK(Y) be a mapping
satisfying the conditions

(i) For any t^Ty Fit, X) is bounded and F(t, bdX)dXy where bdX is the
boundary of X.

(ii) For any t^T, F(t, •) is u.s.c. and condensing.
(iii) For any xeZ, F( , x) is weakly measurable.

Then there exists a measurable mapping u: T-+X such that u(t)eF(t, u(t)) for all
ίeT.

Proof. Choose countable dense elements {xk} of X and define G:
CK(Y) as in Proposition 2.1, then G is JlX^-measurable. The mapping
v: TxX-^X by v(t, x)=x (ίeT, I G ! ) is Jx^-measurable. By Lemma 1.3,
f(t, x)=d(v(t, x), G(t, x)) (ίeT, i e l ) is a (Jx^measurable function on TxX.
Define H: T->2X by H(f)={xe=X: x^G{t9 x)} (ίeT), then for any fe=T, H(t) is
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nonempty and compact by Petryshyn and Fitzpatrick [14] and the method of
the proof of Smart [15, Theorem 9.2.4]. Moreover we have

Gr#={(*, X)<ΞTXX: x^H(t)}

By Leese [12] (cf. Wagner [17, Theorem 4.2]) there exists a measurable map-
ping u : T— X such that for each ίeT, u(t)<=H(t), hence w(ί)eG(ί, u(t))dF(t, u(t)\

COROLLARY 3.2. Let (T, Jί, m) be a {complete) σ-finite measure space and Y,
X, and F: TxX-^CK(Y) be as in Theorem 3.1. Then there exists a measurable
mapping u: T-^X such that z/(ί)eF(ί, u{t)) for m-a.e. (all) ίeT.

Proof. If m is complete, then Jί is a Souslin family and the conclusion
follows from Theorem 3.1.

If m is not complete, the usual method of considering the completion of
(T, Jί, m) easily yields the conclusion. We include the proof for completeness.
Let (T, Jί*, m*) be the completion of (T, Jί, m). Then by Theorem 3.1 there
exists a cJ*-measurable mapping v: T-+X for which v(t)^F(t, v(t)) for all ίeT.
Since X is separable, we may take a countable open base {Bn} of X. For each
n, v"1(Bn)=A7l\JNn, where An^Jί and Nn is contained in some Dn^JL with
m(Dn)=0. Then

D= \J
71 = 1

and rn(D)=0. Let u: T->X be a mapping defined by

v(t) if ί e T - A or

y if feZ),

where y is any fixed element of X. It is easy to observe that u is ^-measur-
able and u(t)(ΞF(t, u{t)) for every tt=T-D.

Remark 3.3. We can also state and prove similar results as above in the
case that the domain of F(ί, •) is dependent on ί e T as in Engl [3, 4]. The
proofs are almost the same as those given above. We omit the details.
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