S. ITOH KODAI MATH. J. 2 (1979), 293–299

MEASURABLE OR CONDENSING MULTIVALUED MAPPINGS AND RANDOM FIXED POINT THEOREMS

By Shigeru Itoh

0. Introduction

Various results on random fixed point theorems were given by many authors (cf. Bharucha-Reid [1, 2], Itoh [7, 8], Engl [3, 4] and their references). In [8] almost all known fixed point theorems (e.g. for nonexpansive or condensing mappings) were extended to random cases (except for contraction mappings that is due to Špaček [16] and Hanš [5]) on general measurable spaces. Similar results were obtained by Bharucha-Reid [2] and Engl [3, 4] on measure spaces.

For multivalued mappings, a random fixed point theorem for contraction mappings was proved in [7]. Then in [8], theorems for multivalued condensing or nonexpansive mappings on measurable spaces were treated, where in the former case lower semicontinuity as well as upper semicontinuity are assumed. On measure spaces, Engl [3, 4] gave a theorem which makes possible to derive random fixed point theorems from fixed point theorems for multivalued continuous (in Hausdorff metric) mappings. Moreover, he obtained a complete result of Bohnenblust and Karlin type for upper semicontinuous compact multivalued mappings.

Other results on random equations were treated by Kannan and Salehi [11] and Itoh [9, 10].

In this paper, by adopting the method of Engl [3, 4] we prove random fixed point theorems for upper semicontinuous condensing multivalued mappings. In sections 1 and 2, some results on upper semicontinuity and measurability of multivalued mappings are presented. Then in section 3 random fixed point theorems are given.

1. Upper Semicontinuous Multivalued Mappings

Let X be a metric space. For any $B \subset X$ and p > 0, let cl(B) be the closure of B and $B_p = \{x \in X : d(x, B) < p\}$, where $d(x, B) = \inf\{d(x, y) : y \in B\}$. Let 2^x be the family of all subsets of X, CD(X) all nonempty closed subsets, and K(X)all nonempty compact subsets of X respectively. If X is a subset of a Banach

Received May 4, 1978

SHIGERU ITOH

space, denote by $\operatorname{clco}(X)$ the closed convex hull of X and by CK(X) the family of all nonempty compact convex subsets of X. Let Y be another metric space. A mapping $F: X \rightarrow CD(Y)$ is said to be *upper semicontinuous* (u.s.c.) if for any closed subset C of Y, $F^{-1}(C) = \{x \in X: F(x) \cap C \neq \emptyset\}$ is a closed subset of X. It is obvious that F is u.s.c. if and only if given $x \in X$, for each open subset V of Y with $V \supset F(x)$, there exists a neighborhood U of x such that $F(y) \subset V$ whenever $y \in U$.

LEMMA 1.1. Let X be a separable metric space with $\{x_k\}$ a countable dense subset of X and Y be a Banach space. Let $F: X \rightarrow CK(Y)$ be an u.s.c. mapping, then the mapping $G: X \rightarrow 2^Y$ defined by

$$G(x) = \bigcap_{n=1}^{\infty} \operatorname{clco}(\bigcup \{F(x_k) : d(x_k, x) < 1/n\}) \qquad (x \in X)$$

satisfies the conditions:

- (i) For any $x \in X$, $F(x) \supset G(x) \neq \emptyset$.
- (ii) G is u. s. c.

Proof. For each *n*, define $G_n: X \rightarrow CD(Y)$ by

$$G_n(x) = \operatorname{clco}(\cup \{F(x_k): d(x_k, x) < 1/n\}) \quad (x \in X),$$

then

$$G(x) = \bigcap_{n=1}^{\infty} G_n(x) \, .$$

We first show that G(x) is nonempty for every $x \in X$. For any *n*, take k_n such that $d(x_{k_n}, x) < 1/n$. Then

$$G_n(x) \supset \operatorname{clco}(\bigcup_{i \ge n} F(x_{k_i}))$$
.

Since $\{x_{k_n}\}_{n=1}^{\infty} \cup \{x\}$ is compact and F is u.s.c., $\bigcup_{n=1}^{\infty} F(x_{k_n}) \cup F(x)$ is compact, hence $\operatorname{clco}(\bigcup_{i \ge n} F(x_{k_i}))$ is compact. Thus

$$G(x) = \bigcap_{n=1}^{\infty} G_n(x) \supset \bigcap_{n=1}^{\infty} \operatorname{clco}(\bigcup_{i \ge n} F(x_{k_i})) \neq \emptyset.$$

The relation $F(x) \supset G(x)$ is an easy consequence of F being u.s.c. Indeed, for any p>0, take n for sufficiently large, then $d(x_k, x) < 1/n$ implies $F(x_k) \subset (F(x))_p$. Since $(F(x))_p$ is convex, $G(x) \subset G_n(x) \subset \operatorname{cl}((F(x))_p)$, which yields $G(x) \subset F(x)$. Now we prove that G is u.s.c. Let C be any closed subset of Y and $\{z_i\}$ be a sequence of $G^{-1}(C)$ converging to some $z \in X$. For each n, choose z_i such that $d(z_i, z) < 1/2n$. If $d(x_k, z_i) < 1/2n$, then $d(x_k, z) < 1/n$, hence $G_{2n}(z_i) \subset G_n(z)$ and $G_n(z) \cap C \supset G_{2n}(z_i) \cap C \neq \emptyset$. Since F is u.s.c., there exists $j_n > n$ for which $d(x_k, z)$ $< 1/j_n$ implies $F(x_k) \subset (F(z))_{1/n}$. Thus $\emptyset \neq G_{j_n}(z) \cap C \subset \operatorname{cl}((F(z))_{1/n})$. There exists $y_n \in G_{j_n}(z) \cap C$ such that $d(y_n, F(z)) \leq 1/n$. Since F(z) is compact, some subsequence $\{y_m\}$ of $\{y_n\}$ converges to an element y of C. If $j_m > n$, then $y_m \in$ $G_{j_m}(z) \cap C \subset G_n(z) \cap C$. It follows that $y \in G_n(z) \cap C$ for all n. This implies

$$y \in igcap_{n=1}^{\infty} G_n(z) \cap C = G(z) \cap C$$
 ,

and $z \in G^{-1}(C)$. Hence $G^{-1}(C)$ is closed and G is u.s.c.

Remark 1.2. Almost the same proof as above also establishes the following: Let X be a separable metric space with $\{x_k\}$ a countable dense subset of X, Y be a metric space, and $F: X \rightarrow K(Y)$ be u.s.c. Then the mapping $G: X \rightarrow 2^Y$ by

$$G(x) = \bigcap_{n=1}^{\infty} \operatorname{cl}(\bigcup \{F(x_k) : d(x_k, x) < 1/n\}) \qquad (x \in X)$$

has the properties:

(i) For any $x \in X$, $F(x) \supset G(x) \neq \emptyset$.

(ii) G is upper semicontinuous.

§2. Measurable Multivalued Mappings

In the sequel, let (T, \mathcal{A}) be a measurable space. A mapping $F: T \rightarrow 2^X$ is said to be (\mathcal{A}) -measurable if for each closed subset C of X, $F^{-1}(C) = \{t \in T : F(t) \cap C \neq \emptyset\} \in \mathcal{A}$. F is said to be (\mathcal{A}) -weakly measurable if for each open subset Bof $X, F^{-1}(B) \in \mathcal{A}$. It is obvious that if F is measurable, then F is weakly measurable. If $F(t) \in K(X)$ for all $t \in T$, then the converse is valid by Himmelberg [6, Theorem 3.1]. See also Wagner [17]. Denote by \mathcal{B} the Borel field of X and by $\mathcal{A} \times \mathcal{B}$ the product σ -algebra of \mathcal{A} and \mathcal{B} on $T \times X$.

PROPOSITION 2.1. Let X be a separable metric space with $\{x_k\}$ a countable dense subset of X and Y be a separable Banach space. Let $F: T \times X \rightarrow CK(Y)$ be a mapping having the properties:

(a) For each $t \in T$, $F(t, \cdot)$ is u.s. c.

(b) For each $x \in X$, $F(\cdot, x)$ is weakly measurable.

Then the mapping $G: T \times X \rightarrow 2^Y$ defined by

$$G(t, x) = \bigcap_{n=1}^{\infty} \operatorname{clco}(\bigcup \{F(t, x_k) : d(x_k, x) < 1/n\})$$

 $(t \in T, x \in X)$ satisfies the following conditions:

(i) For each $t \in T$ and $x \in X$, $F(t, x) \supset G(t, x) \neq \emptyset$.

(ii) For each $t \in T$, $G(t, \cdot)$ is u.s. c.

(iii) G is $\mathcal{A} \times \mathcal{B}$ -measurable.

Proof. (i) and (ii) is clear from Lemma 1.1.

(iii) For each *n*, define $H_n: T \times X \to 2^Y$ by $H_n(t, x) = \bigcup \{F(t, x_k): d(x_k, x) < 1/n\}$ $(t \in T, x \in X)$, then H_n is $\mathcal{A} \times \mathcal{B}$ -weakly measurable. Indeed, for any open subset *B* of *Y*,

SHIGERU ITOH

$$H_n^{-1}(B) = \{(t, x) \in T \times X : H_n(t, x) \cap B \neq \emptyset\}$$
$$= \bigcup_{k=1}^{\infty} \{t \in T : F(t, x_k) \cap B \neq \emptyset\} \times \{x \in X : d(x, x_k) < 1/n\} \in \mathcal{A} \times \mathcal{B}.$$

Then the mapping $G_n: T \times X \rightarrow CD(Y)$ defined by $G_n(t, x) = \operatorname{clco}(H_n(t, x))$ is $\mathcal{A} \times \mathcal{B}$ -weakly measurable by Himmelberg [6, Theorem 9.1]. If we show that

$$G^{-1}(C) = \bigcap_{n=1}^{\infty} G_n^{-1}(C_{1/n})$$

for every closed subset C of Y, then we can conclude that G is $\mathcal{A} \times \mathcal{B}$ -measurable. It is obvious that

$$G^{-1}(C) \subset \bigcap_{n=1}^{\infty} G_n^{-1}(C_{1/n}).$$

Conversely, if

$$(t, x) \in \bigcap_{n=1}^{\infty} G_n^{-1}(C_{1/n}),$$

then $G_n(t, x) \cap C_{1/n} \neq \emptyset$ for all *n*. Since $F(t, \cdot)$ is u.s.c., by the same way as in the proof of Lemma 1.1 we have

$$\emptyset \neq \bigcap_{n=1}^{\infty} G_n(t, x) \cap \operatorname{cl}(C_{1/n}) = G(t, x) \cap C.$$

Hence

$$\bigcap_{n=1}^{\infty} G_n^{-1}(C_{1/n}) \subset G^{-1}(C) \,.$$

Remark 2.2. Let F be as in Proposition 2.1, then F itself is not necessarily $\mathcal{A} \times \mathcal{B}$ -measurable (cf. Engl [3, 4]).

Remark 2.3. By a slight modification of the above proof we can prove the following: Let X be a separable metric space with $\{x_k\}$ a countable dense subset of X and Y be a metric space. Let $F: T \times X \rightarrow K(Y)$ be a mapping with the properties:

(a) For each $t \in T$, $F(t, \cdot)$ is u.s.c.

(b) For each $x \in X$, $F(\cdot, x)$ is weakly measurable. Define $G: T \times X \rightarrow K(Y)$ by

$$G(t, x) = \bigcap_{n=1}^{\infty} \operatorname{cl}(\bigcup \{F(t, x_k) : d(x_k, x) < 1/n\})$$

 $(t \in T, x \in X)$, then G fulfills the conditions:

(i) For each $t \in T$, $x \in X$, $F(t, x) \supset G(t, x) \neq \emptyset$.

- (ii) For each $t \in T$, $G(t, \cdot)$ is u.s.c.
- (iii) G is $\mathcal{A} \times \mathcal{B}$ -measurable.

If X is also complete, the proof of the following lemma is essentially contained in [7, Proposition 4]. If X is a separable Banach space, the same is

296

obtained in Engl [4] by a different method.

LEMMA 2.4. Let X be a separable metric space, $F: T \rightarrow CD(X)$ be a weakly measurable mapping, and $u: T \rightarrow X$ be a measurable mapping. Then $d(u(\cdot), F(\cdot))$ is a measurable function on T.

Proof. Define $f: T \times X \rightarrow R$ (the real numbers) by f(t, x) = d(x, F(t)) $(t \in T, x \in X)$, then f is measurable in t by Himmelberg [6, Theorem 3.3] and continuous in x. Hence the function $f(\cdot, u(\cdot)) = d(u(\cdot), F(\cdot))$ on T is measurable (cf. Himmelberg [6, Theorem 6.5]).

§3. Random Fixed Point Theorems

Let Σ and Σ^* be the respective sets of infinite and finite sequences of positive integers. For $\sigma \in \Sigma$, denote $(\sigma_1, \dots, \sigma_n)$ by $\sigma \mid n$ and let $A: \Sigma^* \to \mathcal{A}$. Then

$$\bigcup_{\sigma\in\varSigma}\bigcap_{n=1}^{\infty}A_{\sigma\mid n}$$

is said to be obtained from \mathcal{A} by the Souslin operation. \mathcal{A} is called a *Souslin* family if every set obtained from \mathcal{A} in this way is also in \mathcal{A} . If there exists a complete σ -finite measure on (T, \mathcal{A}) , then \mathcal{A} is a Souslin family (cf. Wagner [17, p. 864] and the references cited there).

For any bounded subset B of X, let $\gamma(B) = \inf \{c > 0 : B \text{ can be covered by a finite number of subsets of diameters less than or equal to <math>c\}$. A mapping $F: X \rightarrow CD(X)$ is said to be *condensing* if for any bounded subset B of X with $\gamma(B) > 0$, $\gamma(F(B)) < \gamma(B)$, where $F(B) = \bigcup \{F(x) : x \in B\}$.

Now we prove the following random fixed point theorem by using the results in section 2.

THEOREM 3.1. Let \mathcal{A} be a Souslin family and X be a nonempty closed convex subset of a separable Banach space Y. Let $F: T \times X \rightarrow CK(Y)$ be a mapping satisfying the conditions.

(i) For any $t \in T$, F(t, X) is bounded and $F(t, bdX) \subset X$, where bdX is the boundary of X.

(ii) For any $t \in T$, $F(t, \cdot)$ is u.s. c. and condensing.

(iii) For any $x \in X$, $F(\cdot, x)$ is weakly measurable.

Then there exists a measurable mapping $u: T \rightarrow X$ such that $u(t) \in F(t, u(t))$ for all $t \in T$.

Proof. Choose countable dense elements $\{x_k\}$ of X and define $G: T \times X \rightarrow CK(Y)$ as in Proposition 2.1, then G is $\mathcal{A} \times \mathcal{B}$ -measurable. The mapping $v: T \times X \rightarrow X$ by v(t, x) = x $(t \in T, x \in X)$ is $\mathcal{A} \times \mathcal{B}$ -measurable. By Lemma 1.3, f(t, x) = d(v(t, x), G(t, x)) $(t \in T, x \in X)$ is a $(\mathcal{A} \times \mathcal{B})$ -measurable function on $T \times X$. Define $H: T \rightarrow 2^x$ by $H(t) = \{x \in X: x \in G(t, x)\}$ $(t \in T)$, then for any $t \in T$, H(t) is

SHIGERU ITOH

nonempty and compact by Petryshyn and Fitzpatrick [14] and the method of the proof of Smart [15, Theorem 9.2.4]. Moreover we have

Gr
$$H = \{(t, x) \in T \times X : x \in H(t)\}$$

= $\{(t, x) \in T \times X : f(t, x) = 0\}$
 $\in \mathcal{A} \times \mathcal{B}$.

By Leese [12] (cf. Wagner [17, Theorem 4.2]) there exists a measurable mapping $u: T \rightarrow X$ such that for each $t \in T$, $u(t) \in H(t)$, hence $u(t) \in G(t, u(t)) \subset F(t, u(t))$.

COROLLARY 3.2. Let (T, \mathcal{A}, m) be a (complete) σ -finite measure space and Y, X, and $F: T \times X \rightarrow CK(Y)$ be as in Theorem 3.1. Then there exists a measurable mapping $u: T \rightarrow X$ such that $u(t) \in F(t, u(t))$ for m-a.e. (all) $t \in T$.

Proof. If m is complete, then \mathcal{A} is a Souslin family and the conclusion follows from Theorem 3.1.

If *m* is not complete, the usual method of considering the completion of (T, \mathcal{A}, m) easily yields the conclusion. We include the proof for completeness. Let (T, \mathcal{A}^*, m^*) be the completion of (T, \mathcal{A}, m) . Then by Theorem 3.1 there exists a \mathcal{A}^* -measurable mapping $v: T \to X$ for which $v(t) \in F(t, v(t))$ for all $t \in T$. Since X is separable, we may take a countable open base $\{B_n\}$ of X. For each $n, v^{-1}(B_n) = A_n \cup N_n$, where $A_n \in \mathcal{A}$ and N_n is contained in some $D_n \in \mathcal{A}$ with $m(D_n) = 0$. Then

$$D = \bigcup_{n=1}^{\infty} D_n \in \mathcal{A}$$

and m(D)=0. Let $u: T \rightarrow X$ be a mapping defined by

$$u(t) = \begin{cases} v(t) & \text{if } t \in T - D, \text{ or} \\ y & \text{if } t \in D, \end{cases}$$

where y is any fixed element of X. It is easy to observe that u is \mathcal{A} -measurable and $u(t) \in F(t, u(t))$ for every $t \in T-D$.

Remark 3.3. We can also state and prove similar results as above in the case that the domain of $F(t, \cdot)$ is dependent on $t \in T$ as in Engl [3, 4]. The proofs are almost the same as those given above. We omit the details.

Acknowledgement

The author is grateful to Professors H. Umegaki and W. Takahashi for their valuable advice in preparing this paper.

References

- [1] BHARUCHA-REID, A. T., Random integral equations. Academic Press, New York and London (1972).
- [2] BHARUCHA-REID, A.T., Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641-657.
- [3] ENGL, H., Random fixed point theorems. Proceedings on a Symposium on Nonlinear Equations in Abstract Spaces (V. Lakshmikantham, Ed.), Academic Press, (to appear).
- [4] ENGL, H., Fixed point theorems for random operators on stochastic domains. Dissertation, Johannes Kepler Universität Linz, Austria (1977).
- [5] HANŠ, O., Reduzierende zufällige Transformationen. Czechoslovak Math. J. 7 (1957), 154-158.
- [6] HIMMELBERG, C. J., Measurable relations. Fund. Math. 87 (1975), 53-72.
- [7] ITOH, S., A random fixed point theorem for a multivalued contraction mapping. Pacific J. Math. 68 (1977), 85-90.
- [8] ITOH, S., Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. (to appear).
- [9] ITOH, S., Nonlinear random equations with monotone operators in Banach spaces. Res. Rep. Inf. Sci. No. A-45 (1977).
- [10] ITOH, S., Random differential equations associated with accretive operators. Res. Rep. Inf. Sci. No. A-46 (1977).
- [11] KANNAN, R. AND H. SALEHI, Random nonlinear equations and monotonic nonlinearities. J. Math. Anal. Appl. 57 (1977), 234-256.
- [12] LEESE, S. J., Multifunctions of Souslin type. Bull. Austral. Math. Soc. 11 (1974), 395-411.
- [13] LEESE, S. J., Multifunctions of Souslin type: Corrigendum. Bull. Austral. Math. Soc. 13 (1975), 159-160.
- [14] PETRYSHYN, W. V. AND P. M. FITZPATRICK, Fixed-point theorems for multivalued noncompact inward maps. J. Math. Anal. Appl. 46 (1974), 756-767.
- [15] SMART, D. R., Fixed point theorems. Cambridge University Press, London (1974).
- [16] Šраčек, A., Zufällige Gleichungen. Czechoslovak Math. J. 7 (1957), 154-158.
- [17] WAGNER, D. H., Survey of measurable selection theorems. SIAM J. Control Optimization 15 (1977), 859-903.

DEPARTMENT OF INFORMATION SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY.