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ON MINIMAL n-DIMENSIONAL SUBMANIFOLDS OF A
SPACE FORM R™(k), WHICH ARE FOLIATED BY
(n—1)-DIMENSIONAL TOTALLY GEODESIC
SUBMANIFOLDS OF R™(k)

By C. THAS

In this paper we prove that a minimal n-dimensional (z=3) submanifold of
R™(p), foliated by (n—1)-dimensional totally geodesic submanifolds of R™(k), is
locally contained in an 1-dimensional totally geodesic submanifold of R™(k) (i. e.
in a space form R(k)), with 1=<2n—1.

§1. Preliminaries

We assume throughout that all manifolds, maps, vector fields, etc.... are

differentiable of class C.

Let N be an n-dimensional submanifold of a Riemannian manifold R™ and
let D (resp. D) be the Riemannian connection of N (resp. R™). If X and Y are
tangent vector fields on N, then the second fundamental form V is given by

D.Y=D,Y+V(X, V).

V(X, Y) is a normal vector field on N and is symmetric in X and V.
Let & be a normal vector field on N, then, by decomposing D,£ in a tangent
and a normal component, we find

Doé=—AdX)+D3t.

D+ is a metric connection in the normal bundle N* of N in R™ and A; deter-
mines at each point p of N a self adjoint linear map N,—N,. Moreover, we

have
<V(X) Y): $>=<AE(X)’ Y> . (1'1>

If e, -+, e, is an orthonormal base field of N, then the mean curvature vector
H is given by

H———% > V<ew el)'

=1
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If H=0 at each point of N, then N is said to be minimal.

2. Minimal n-dimensional submanifolds of R™(k), foliated by (n—1)-dimen-
sional totally geodesic submanifolds of R™(k) (n=3)

A space form R™(k) is by definition a complete simply connected Rieman-
nian manifold of constant sectional curvature k (see [1]).

Suppose that the n-dimensional submanifold N of R™(k) is a locus of
(n—1)-dimensional totally geodesic submanifolds of R™(k). Assume that D, D
and D’ are the Riemannian connections of respectively R™(k), N and the leave
L (i.e. the totally geodesic submanifold) through the point p of N. Then, if
x and y are L-vector fields, we find, since L is totally geodesic in R™(k):

But, if V is the second fundamental form of N in R™(k), then

D.y=Dy+V(x, y).
Moreover, if V'’ is the second fundamental form of L in N, then
D.y=Dyy+V'(x, ).

From all this we get
Vix, )+ V'(x, »=0,

and thus V'(x, y)=0, i.e. L is also totally geodesic in N, and V(x, y)=0 for

each two L-vector fields x and y. Consider an orthonormal base field ¢,, ::-, ¢,

of N, such that ey, ---, e,-, constitute at each point of the domain of the field

an orthonormal base of the tangent space of the leave through that point.
We find, since V(e,, ¢;)=0 i, j=1, ---, n—1,

H:% View en). @1

So, N is minimal iff each normal in N at each point of each leave determines
an asymptotic direction of N.

We define the normal subspace F, at each point p of N as the subspace of
the normal space N, spanned by the normal vectors

{V(X, (X, Y)EN, XNy} .
So we have a normal subbundle F of the normal bundle N+. Using the same
base field e, -+, ¢, as above, we find, if X= ﬁ_‘,la‘(e,)p and Y= ib’(e,)p,
n-1
VX, Y)= Z (a'b"+bam)V((en)p, (en)p)+a"0"V((en)n, (¢n)p) - (2.2)

So we have: 0=dim F=n. But if N is minimal, then V((es),, (€.),)=0 and
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0=dim F<n—1 at each point.

THEOREM 1. If the manifold N 1s mununal and of dim F,=f (f constant;
0= f=<n—1) at each pownt p of N, then N 1s (locally) contained wn an (n+f)-
dimensional totally geodesic submanifold of R™(k).

Proof. 1f F, is O-dimensional at each point p of N, then N is totally geo-
desic in R™(k).

Suppose that dim F,=f+0 at each point p of N and take an orthonormal
normal base field &, -+, §n-n such that &, -+, & constitute an orthonormal
base of F, at each point p of the domain of the field. Then it is clear from

(L.1) that
Azpoy= o = Az, =0. 23)

*m-n

Assume that X and Y are N-vector fields and set
VX, V)="S VX, V)6,
then we find immediately that
Vitl= ... =Ym-n=() at each point. (2.4)

If R is the curvature tensor of R™(k) and if Z is another vector field of N,
then the Codazzi equation says

(R(X, Y)Z)*= :;1 {(Dx V)Y, Z)—-Dy VXX, Z)}§,
+5 VY, D45~ S VX, DDi,=0. (25)
Consider again an orthonormal base field e;, -+, ¢, of N such that ey, =+, ep—;
constitute at each point p of the domain of the field, a base of the tangent

space L, of the leave L through p.
Put

S m-n
Dleifz: > Cén+ ;E Cué, ;::ii','fi,nf; . (2‘6)
=1 r=f+1
Then, from (2.4) and (2.5), we have
— 5 s
(R(e., en)e,) = ;1 {}&+ [=21 Vien, es)D%,6,
s
- Vie, e)De,6,=0 1, j=1, =+, n—1. @7
But V(e,, ¢;))=0 i, j=1, ---, n—1 and so we find from (2.6) and (2.7)

s
El Vien, e)C5 ;=0 1, s=1, -, n—1; r=f+1, -, m—n. (2.8)
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Now it is clear from (2.2), that, since N is minimal, F, is spanned at each
point p by the vectors (V(e,, ¢5)), s=1, -, n—1 and so the rank of the matrix

I:Vl(en, es) o=t m-1
=1, f

is at each point (of the domain of the field ey, ---, ¢,) equal to f. So, it is
easy to see that (2.8) gives

w=0 1=1, -, n—1; r=f+1, -, m—n; I=1, -, f. (2.9)

We also have

(Rlen, eden)= % (16t £ Vilew eD3 8

— lél Vien, ea)D4,6=0  1=1, -, n—1. (2.10)
But H=0, so V(e,, ¢,)=0 and we find from (2.6)
5 Ve, edCh=0  1=1, o, n=1; r=f+1, < m—n.
This gives analogously
Ch=0 r=f+1, -, m—n; =1, -, f. (2.11)

From (2.6), (29) and (2.11) we see that the subbundle F is parallel in the
normal bundle N*. This fact together with (2.3) gives that N is (locally)
contained in an (n+f)-dimensional totally geodesic submanifold of R™(k), which
completes the proof.

Suppose now that the submanifold N is not minimal and consider again

the orthonormal base field ey, ---, ¢, used in the proof of theorem 1, then we
have:

THEOREM 2. [If the mean curvature vector H+0 of the manifold N 1s a
vector of the normal subspace F, spanned by the fields (Vie,, ), 1=1, -+, n—1
at each point p of N, and 1f dim F,=f (f constant; 1= f=n—1) at each pownt p,
then N 1s (locally) contained wn an (n+f)-dimensional totally geodesic submanifold
of R™(k).

Proof. Take again an orthonormal base field &;, --- &,,-, such that &;, -+, &,
is a base field of F. Then, since HEF, we have again

VIH(X, Y= =V™ (X, Y)=0,

for each two N-vector fields X and Y.

Next, if we have (2.6), then we find from (2.7) again (2.9). Moreover, since
the vector fields D&, =1, -+, n—1; [=1, -+, f have no components in the
complementary subbundle F+*, we find because of (2.10) again (2.11) and this
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completes the proof.

We try now to formulate theorem 1 and 2 in terms of the sectional curva-
ture of V.

If X and Y are vectors of N,, then, from the Gauss equation, we know
that the sectional curvature K(X, Y) of N in the two-dimensional direction of
N, spanned by X and Y, is given by

Consider again the special base field ey, .-+, e, of N (used in the proofs of the
preceding theorems). Then we find, since V(e, ¢,)=0 1=1, ---, n—1,

K(el: en)=k——<V(e,, en): V(eu en)> Z:]-: Tty n—1. (2'12)

A two-dimensional direction of a tangent space N, which contain (¢,), (a unit
normal vector in N, on L;) is called a normal two-dimensional direction of
N,. So, from (2.12) we see that if the dimension of the subbundle F, spanned
by Ve, e,) t=1, -, n—1, is f (constant; 0= f=<n—1), at each point, then we
find at each point of N in the tangent space L, of the leave through p, an
(n—f—1)-dimensional subspace I,, such that for all x&l,, x#0: K(x, (¢,),)=k.
Now we can formulate theorem 1 as follows: If N is minimal and if at each
point p of N the tangent space L, of the leave through p contains an (n—f—1)-
dimensional subspace [, (f constant; 0= f<n—1), such that for each vector
xel,, x+0, the sectional curvature of N at p in the normal two-dimensional
direction of N, determined by x, is equal to k, then N is (locally) contained
in an (n+f)-dimensional totally geodesic submanifold of R™(k).
Theorem 2 can be formulated in a similar way.

THEOREM 3. If N is muumal and 1f for every leaf L of N the unit normal
vector field on L wn N 1is parallel in the normal bundle of L wn R™(k), then N 1s
totally geodesic in R™(k).

Proof. The unit normal vector field on L in M is locally denoted by e,
(such as in the proofs of the preceding theorems). We find, if x is any vector
field of L and D the Riemannian connection of R™(k), by decomposing D,e, in
a tangent and a normal component

Exen:_Aen(x)‘i_D;:len .

But we also have, if D is the connection of N and V his second fundamental
form

Dzen:Dxen+ V(X: en) .
So, it is at once clear (since D.e, le,), that

Diite,=V(x, e,).
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If e, is parallel in the normal bundle L* and if N is minimal, then (2.2) says
that V(X, Y)=0 for each two N-vector fields X and Y, which completes the
proof.

Remark. If N is a n-dimensional submanifold of the euclidean space E™,
foliated by (n—1)-dimensional linear subspaces of E™, then N is called a mono-
system. The condition dim F,=f at each point p, which appears in the state-
ments of theorem 1 and 2, means that N is (n—f—2)-developable (see [3]).
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