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ON MINIMAL w-DIMENSIONAL SUBMANIFOLDS OF A

SPACE FORM Rm(k), WHICH ARE FOLIATED BY

(ra-l)-DIMENSIONAL TOTALLY GEODESIC

SUBMANIFOLDS OF Rm(k)

BY C. THAS

In this paper we prove that a minimal n-dimensional (n^3) submanifold of
Rm(k), foliated by (n —l)-dimensional totally geodesic submanifolds of Rm(k), is
locally contained in an 1-dimensional totally geodesic submanifold of Rm(k) (i. e.
in a space form R\k)), with lf§2n —1.

§ 1. Preliminaries

We assume throughout that all manifolds, maps, vector fields, etc.... are
differentiate of class C°°.

Let N be an n-dimensional submanifold of a Riemannian manifold Rm and
let D (resp. D) be the Riemannian connection of N (resp. Rm). If X and Y are
tangent vector fields on N, then the second fundamental form V is given by

DXY=DXY+V(X, Y).

V(X, Y) is a normal vector field on N and is symmetric in X and Y.
Let ξ be a normal vector field on N, then, by decomposing Dxξ in a tangent

and a normal component, we find

DL is a metric connection in the normal bundle NL of TV in Rm and Λ? deter-
mines at each point p of TV a self adjoint linear map NP->NP. Moreover, we
have

If elf •••, en is an orthonormal base field of N, then the mean curvature vector
H is given by

i/=-Σ V(euet).
n t=i
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If H=0 at each point of N, then N is said to be minimal.

2. Minimal fi-dimensional submanif olds of Rm(k), foliated by (n—^-dimen-
sional totally geodesic submanif olds of Rm(k) (#ι^

A space form Rm(k) is by definition a complete simply connected Rieman-
nian manifold of constant sectional curvature k (see [1]).

Suppose that the n-dimensional submanifold N of Rm(k) is a locus of
(n — l)-dimensional totally geodesic submanif olds of Rm(k). Assume that D, D
and D' are the Riemannian connections of respectively Rm(k), N and the leave
L (i. e. the totally geodesic submanifold) through the point p of TV. Then, if
x and y are L-vector fields, we find, since L is totally geodesic in Rm(k):

Dxy=D'xy.

But, if V is the second fundamental form of TV in Rm(k), then

Dxy=Dxy+V(x,y).

Moreover, if V is the second fundamental form of L in N, then

Dxy=D'xy + V'(x,y).
From all this we get

V(x,y)+V'(x,y)=0,

and thus V'(x, J O = 0 , i. e. L is also totally geodesic in N, and V(x, y)=0 for
each two L-vector fields x and y. Consider an orthonormal base field elf •••, en

of N, such that elf •••, en-1 constitute at each point of the domain of the field
an orthonormal base of the tangent space of the leave through that point.

We find, since V(et, eJ)=O i, j=l, •••, n—1,

H=^V{en,en). (2.1)

So, N is minimal iff each normal in N at each point of each leave determines
an asymptotic direction of N.

We define the normal subspace Fp at each point p of N as the subspace of
the normal space Np, spanned by the normal vectors

{V(X, Y)\\(X, Y)ΪΞ

So we have a normal subbundle F of the normal bundle NL. Using the same
n n

base field elf •••, en as above, we find, if X= Σ cίι(eι)Ό and Y= Σ b%(et)v,
t=l 1=1

V(X, Y)=*Έ {aιbn+Va")V(ίev)p, (.en)p)+a»bnV((en)ΰ, (en)p). (2.2)

So we have: OίΞdimF^n. But if N is minimal, then V((en)p, (e»)p)=0 and
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^ft—1 at each point.

THEOREM 1. // the manifold N is minimal and if dim Fp—f (/ constant
O^f^n — 1) at each point p of N, then N is (locally) contained in an (n+f)-
dimenswnal totally geodesic submanifoίd of Rm(k).

Proof. If Fp is O-dimensional at each point p of N, then N is totally geo-
desic in Rm(k).

Suppose that aim Fp=fΦθ at each point p of N and take an orthonormal
normal base field ξlf •••, ξm-n such that ξlf •••, ξf constitute an orthonormal
base of Fp at each point p of the domain of the field. Then it is clear from
(1.1) that

Av+1= " = Λ w = 0 . (2.3)

Assume that X and Y are iV-vector fields and set

V(X, Y)=YV\X, Y)ξι,
1 = 1

then we find immediately that

Vf+1= ••• =Vm-n=0 at each point. (2.4)

If R is the curvature tensor of Rm(k) and if Z is another vector field of N,
then the Codazzi equation says

m-n

(R(X, Y)ZY= Σ {(DXV')(Y, Z)-DYV'){X, Z)}ξ}

m-n m-n

+ Σ VKY, Z)Dgj- Σ VKX, Z)Dtfj=Q. (2.5)
3 = 1 3 = 1

Consider again an orthonormal base field elf •••, en of N such that elf •••, en-1

constitute at each point p of the domain of the field, a base of the tangent
space Lp of the leave L through p.

Put

/ m-n

DJ

eiξι=ZCΊιξlί+ Σ CΊ& pϊ;::?}. (2.6)
ft=l r = / + l

Then, from (2.4) and (2.5), we have

(R(eτ, en)ejY= Σ {•••}£,+ Σ 7'(β,,, O^^ft

- Σ Vι(et, β^DiJ^O i, j=l, - , n - 1 . (2.7)

But F(e,, e^)=0 i, i = l , •••, n—1 and so we find from (2.6) and (2.7)

Σ Vι(en, e,)dι=Q ι, s=l, - , n-1 r=f+l, - , m-n . (2.8)
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Now it is clear from (2.2), that, since N is minimal, Fv is spanned at each
point p by the vectors (V(en, es))p s=l, —, n—1 and so the rank of the matrix

lV\en, O].=i,.^»-i

is at each point (of the domain of the field elf •••, en) equal to /. So, it is
easy to see that (2.8) gives

Cr

u=0 ι=l, " , n-1 r=f+l, - , m-rc /=1, - , / . (2.9)

We also have

(R(en, et)eny= Σ {•••}& + Σ V1^, O ^ f *

- Σ I"(e», 0 ^ = 0 z=l, - . , 77-1. (2.10)

But H=0, so y(en, en)=0 and we find from (2.6)

Σ V\ex, en)QH=0 ι=l, - , n-1 r=/+l, - m-n .

This gives analogously

Onl=0 r=f+l, •••, m-n Z=l, •••, / . (2.11)

From (2.6), (2.9) and (2.11) we see that the subbundle F is parallel in the
normal bundle N1. This fact together with (2.3) gives that N is (locally)
contained in an (n+/)-dimensional totally geodesic submanifold of Rm(k), which
completes the proof.

Suppose now that the submanifold TV is not minimal and consider again
the orthonormal base field elf •••, en used in the proof of theorem 1, then we
have:

THEOREM 2. // the mean curvature vector HφO of the manifold N is a
vector of the normal subspace Fp spanned by the fields (V(eιy en))p ι=l, •••, n—1
at each point p of N, and if dim Fv—f (/ constant) 1^/^n—1) at each point p,
then N is (locally) contained in an (n+f)-dimensιonal totally geodesic submanifold
of Rm(k).

Proof. Take again an orthonormal base field ξlf ••• ξm-n such that ξlf •••, ξf

is a base field of F. Then, since H^F, we have again

Vf+\X, Y)= ••• =Vm~n(X, Y)=0,

for each two TV-vector fields X and Y.
Next, if we have (2.6), then we find from (2.7) again (2.9). Moreover, since

the vector fields D1

eiζ1 ι=l, •••, n— 1; 1=1, •••, / have no components in the
complementary subbundle FL, we find because of (2.10) again (2.11) and this
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completes the proof.
We try now to formulate theorem 1 and 2 in terms of the sectional curva-

ture of N.
If X and Y are vectors of Np, then, from the Gauss equation, we know

that the sectional curvature K(X, Y) of N in the two-dimensional direction of
Np spanned by X and Y, is given by

K{X, Y)=k-(V{X, Y), V(X, F)> + <F(Z, X), V(Y, Y)>.

Consider again the special base field ex, •••, en of N (used in the proofs of the

preceding theorems). Then we find, since V(elf et)=0 ι=l, •••, n—1,

K(et, en)^k-<V(eιy en), V{eτ, en)> ι = l , - , n~\ . (2.12)

A two-dimensional direction of a tangent space Np which contain (en)p (a unit
normal vector in Np on Lp) is called a normal two-dimensional direction of
Np. So, from (2.12) we see that if the dimension of the subbundle F, spanned
by V(eτ, en) i=l, •••, n—1, is / (constant; O^f^n—ΐ), at each point, then we
find at each point of N in the tangent space Lp of the leave through p, an
(n—f— l)-dimensional subspace ίp, such that for all i e / p , xΦQ: K(x, (en)p)=k.
Now we can formulate theorem 1 as follows: If AT is minimal and if at each
point p of N the tangent space Lp of the leave through p contains an (n—f— 1)-
dimensional subspace Ip (f constant O^f^n—1), such that for each vector
x^Ip, xΦO, the sectional curvature of N at p in the normal two-dimensional
direction of Np determined by x, is equal to k, then TV is (locally) contained
in an (n+/)-dimensional totally geodesic submanifold of Rm(k).

Theorem 2 can be formulated in a similar way.

THEOREM 3. // N is minimal and if for every leaf L of N the unit normal
vector field on L in N is parallel in the normal bundle of L in Rm(k), then N is
totally geodesic in Rm(k).

Proof. The unit normal vector field on L in M is locally denoted by en

(such as in the proofs of the preceding theorems). We find, if x is any vector
field of L and D the Riemannian connection of Rm(k), by decomposing Dxen in
a tangent and a normal component

But we also have, if D is the connection of N and V his second fundamental
form

Dxen=Dxen+V(x,en).

So, it is at once clear (since Dxen±en), that
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If en is parallel in the normal bundle LL and if TV is minimal, then (2.2) says
that V(X, Y)—0 for each two TV-vector fields X and Y, which completes the
proof.

Remark, if N is a n-dimensional submanifold of the euclidean space Em,
foliated by (n~l)-dimensional linear subspaces of Em, then TV is called a mono-
system. The condition dim Fp=f at each point p, which appears in the state-
ments of theorem 1 and 2, means that TV is (n—/— 2)-developable (see [3]).
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