REMARKS ON SQUARE-INTEGRABLE BASIC COHOMOLOGY SPACES ON A FOLIATED RIEMANNIAN MANIFOLD

Dedicated to Professor T. Otsuki on his 60th birthday

By Haruo Kitahara

B.L. Reinhart [7] showed that on compact foliated manifold with "bundlelike" metric, the cohomology of basic differential forms is isomorphic to the harmonic space of a certain semidefinite Laplacian. It is well known that the complex

 $d'': o \longrightarrow \wedge^{0, 0}(M) \longrightarrow \wedge^{0, 1}(M) \longrightarrow \wedge^{0, 2}(M) \longrightarrow \cdots$

is not elliptic. We shall define the completion $L_2^{0,s}(M)$ of compactly supported basic (0, s)-forms and discuss the squareintegrable basic cohomology spaces in complete case analogous to K. Okamoto and H. Ozeki [2] on a Hermitian manifold.

§1. Definitions

Let M be an n dimensional C^{∞} manifold which, topologically, is connected, orientable, paracompact Hausdorff space. We shall assume given on M a foliation E of codimension q, and we may find about each point a coordinate neighbourhood with coordinates $(x^1, \dots, x^p, y^1, \dots, y^q)$ (n=p+q) such that

(i) $|x^{i}| \leq 1, |y^{\alpha}| \leq 1,$

(ii) The integral manifolds of E are given locally by $y^1 = c^1, \dots, y^q = c^q$ for constants c^{α} satisfying $|c^{\alpha}| \leq 1$. (Here and hereafter, Latin indices run from 1 to p, and Greek indices from 1 to q.)

Such a coordinate neighbourhood will be called flat, while each of slices given by a set of equations $y^{\alpha} = c^{\alpha}$ will be called a plaque. If U is a flat neighbourhood, the quotient space of U by its plaques will be called the local base and be denoted by U_y .

We may assume that there exist in U differential forms w^\imath and vectors v_α such that

(i) $\{\partial/\partial x^i\}$ forms the base for the space of cross-sections of E in U at each point,

Received December 17, 1977

HARUO KITAHARA

(ii) $\{w^1, \dots, w^p, dy^1, \dots, dy^q\}$ and $\{\partial/\partial x^1, \dots, \partial/\partial x^p, v_1, \dots, v_q\}$ are dual bases for the cotangent and tangent spaces at each point of U respectively. Hence, $w^i = dx^i + \sum_{\alpha} a^i_{\alpha} dy^{\alpha}$ and $v_{\alpha} = \partial/\partial y^{\alpha} + \sum_{\alpha} b^i_{\alpha} \partial/\partial x^i$.

Throughout this note, all local expressions for differential forms and vectors will be taken with respect to these bases.

§2. Square-integrable basic cohomology spaces

On a foliated manifold we may have the decomposition of differential forms into components in following way: Any $C^{\infty}-m$ -form ϕ may be expressed locally as

$$\sum_{\substack{i_1 \leq \cdots \leq i_r \\ \cdots \leq \alpha_s}} \sum_{r+s=m} \phi_{i_1 \cdots i_r \alpha_1 \cdots \alpha_s}(x, y) w^{i_1} \wedge \cdots \wedge w^{i_r} \wedge dy^{\alpha_1} \wedge \cdots \wedge dy^{\alpha_s}.$$

We then define $\prod_{r,s}\phi$ to be the sum of all these terms with a fixed r and s. Since under change of flat coordinate system, $\{\{dy^{a}\}\}\$ goes into $\{\{dy^{*a}\}\}\$ and $\{\{w^{i}\}\}\$ goes into $\{\{w^{*i}\}\}\$, this operator $\prod_{r,s}$ is independent of the choice of coordinate system. Here by $\{\{\cdot\}\}\$ we mean the vector space generated by the set $\{\cdot\}$. $\prod_{r,s}\phi$ is called the component of type (r, s) of ϕ . The type decomposition of forms induces a type decomposition of the exterior derivative d by the rule $(\prod_{t,u}d)\phi=\sum_{r,s}\prod_{r+t,s+u}d\prod_{r,s}\phi$. Let $\prod_{1,0}d=d'$ and $\prod_{0,1}d=d''$. In general, there will be a component $\prod_{-1,2}d$; since we are interested only in forms of type (0, s), we shall not introduce a notion for this component.

PROPOSITION 2.1. (cf. [7]) If ϕ is of type (0, s), then $d\phi = d'\phi + d''\phi$. Moreover, $d'\phi = 0$ if and only if ϕ depends only upon y, in the sense that locally

$$\phi = \sum \phi_{\alpha_1 \cdots \alpha_s}(y) dy^{\alpha_1} \wedge \cdots \wedge dy^{\alpha_s}.$$

DEFINITION 2.1. A form of type (0, s) which is annihilated by d' will be called a basic form.

DEFINITION 2.2. A riemannian metric is bundle-like if and only if it is representable in each flat neighbourhood by an expression of the form

$$ds^2 = \sum g_{ij}(x, y)w^i w^j + \sum g_{\alpha\beta}(y)dy^{\alpha}dy^{\beta}$$
.

Hereafter, we assume that the riemannian metric on M is bundle-like and all leaves are compact.

Remark. In this paragraph, we may replace "all leaves are compact" by "the volume of M is finite", then the compact support of the basic form is replaced by the tranversally compact support, i.e. $\phi_{\alpha_1\cdots\alpha_s}(y)dy^{\alpha_1}\wedge\cdots\wedge dy^{\alpha_s}$ has compact support in variable y's in local expression, and, for example, we may consider the torus foliated by a family of irrational spirals.

Let $\wedge^{0,s}(M)$ be the space of all C^{∞} -basic form of type (0, s) and $\wedge^{0,s}_{0}(M)$ the subspace of $\wedge^{0,s}(M)$ composed of forms with compact supports. Restricted to

188

 $\wedge^{0,*}(M) = \sum_{s=0}^{\infty} \wedge^{0,s}(M)$, $d''^2 = d^2 = 0$, so we may consider the cohomology of $\wedge^{0,*}(M)$ and d''. (This is called the base-like cohomology by B. L. Reinhart [7].) B. L. Reinhart [7] introduces the *"-operation on $\wedge^{0,s}(M)$, and defined by

$$*''\phi = \sum_{\substack{\alpha_1 \leq \cdots \leq \alpha_s \\ \beta_1 \leq \cdots \leq \beta_{q-s}}} \operatorname{sgn} \binom{1 \cdots \alpha_s}{\alpha_1 \cdots \alpha_s} \beta_1 \cdots \beta_{q-s} (\det(g_{\alpha\beta}))^{1/2}$$
$$g^{\alpha_1 \nu_1} \cdots g^{\alpha_s \nu_s} \phi_{\nu_1 \cdots \nu_s} dy^{\beta_1} \wedge \cdots \wedge dy^{\beta_{q-s}}.$$

According to B. L. Reinhart [7], we may define a riemannian metric on $\wedge^{0.s}(M)$ by

$$\langle \phi, \, \psi
angle = \phi \wedge {}^{* \prime \prime} \psi \wedge d \, x^1 \wedge \, \cdots \, \wedge d \, x^{\, p}$$
 ,

and obtain a pre-Hilbertian metric on $\wedge_{o}^{0,s}(M)$ by

$$\begin{aligned} (\phi, \, \psi) &= \int_{\mathcal{M}} \langle \phi, \, \psi \rangle \\ &= \int_{\mathcal{M}} \phi \wedge *'' \psi \wedge d \, x^1 \wedge \, \cdots \, \wedge d \, x^p \, . \end{aligned}$$

The differential operator d'' maps $\wedge^{0,s}(M)$ into $\wedge^{0,s+1}(M)$. We define δ'' : $\wedge^{0,s}(M) \to \wedge^{0,s-1}(M)$ by

$$\delta''\phi = (-1)^{q_{s+q+1}*''}d''*''\phi.$$

Then we have

$$(d''\phi, \phi) = (\phi, \delta''\phi)$$

for $\phi \in \bigwedge_{o}^{0, s} M$), $\phi \in \bigwedge_{o}^{0, s+1} (M)$.

Let $L_2^{0,s}(M)$ be the completion of $\wedge_{\sigma}^{0,s}(M)$ with respect to the inner product (,). We will denote by ∂ the restriction of d'' to $\wedge_{\sigma}^{0,s}(M)$ and by θ the restriction of δ'' to $\wedge_{\sigma}^{0,s}(M)$. Define

$$\bar{\partial} = (\theta)^*$$
 and $\bar{\theta} = (\partial)^*$

where ()* denotes the adjoint operator of () with respect to the inner product (,). Then $\bar{\partial}$ (resp. $\bar{\theta}$) is a closed, densely defined operator of $L_2^{0,s}(M)$ into $L_2^{0,s+1}(M)$ (resp. $L_2^{0,s-1}(M)$). Let $D_{\bar{\partial}}^{0,s}$ (resp. $D_{\bar{\partial}}^{0,s}$) be the domain of the operator $\bar{\partial}$ (resp. $\bar{\theta}$) in $L_2^{0,s}(M)$. We put

$$Z^{0,s}_{\bar{\boldsymbol{\theta}}}(M) = \{ \phi \in D^{0,s}_{\bar{\boldsymbol{\theta}}} | \bar{\boldsymbol{\theta}} \phi = 0 \}$$
$$Z^{0,s}_{\bar{\boldsymbol{\theta}}}(M) = \{ \phi \in D^{0,s}_{\bar{\boldsymbol{\theta}}} | \bar{\boldsymbol{\theta}} \phi = 0 \}.$$

Since $\bar{\partial}$ and $\bar{\theta}$ are closed operators, $Z^{0,s}_{\bar{\partial}}(M)$ and $Z^{0,s}_{\bar{\theta}}(M)$ are closed in $L^{0,s}_{2}(M)$. Let $B^{0,s}_{\bar{\partial}}(M)$ and $B^{0,s}_{\bar{\theta}}(M)$ be the closure of $\bar{\partial}(D^{0,s-1}_{\bar{\partial}})$ and $\bar{\theta}(D^{0,s+1}_{\bar{\theta}})$ respectively.

DEFINITION 2.3. $H_2^{0,s}(M) = Z_{\overline{\partial}}^{0,s}(M) \bigoplus B_{\overline{\partial}}^{0,s}(M)$ is the square-integrable basic cohomology spaces, where \bigoplus denotes the orthogonal complement of $B_{\overline{\partial}}^{0,s}(M)$.

It is easy to see that

HARUO KITAHARA

$$H_{2}^{0,s}(M) = Z_{\overline{2}}^{0,s}(M) \cap Z_{\overline{a}}^{0,s}(M)$$
.

Since $Z_{\overline{\partial}}^{0,s}(M)$ and $Z_{\overline{\partial}}^{0,s}(M)$ are closed in $L_2^{0,s}(M)$, $H_2^{0,s}(M)$ has canonically the structure of a Hilbert space.

THEOREM 2.1. (The orthogonal decomposition theorem)

 $L_{2}^{0,s}(M) = H_{2}^{0,s}(M) \oplus B_{\overline{a}}^{0,s}(M) \oplus B_{\overline{a}}^{0,s}(M)$.

Proof is analogous to L. Hörmander [3], in fact, we have only to notice that $B_{\overline{\theta}}^{0,s}(M)$ and $B_{\overline{\theta}}^{0,s}(M)$ are mutually orthogal and $B_{\overline{\theta}}^{0,s}(M)^{\perp} \cap B_{\overline{\theta}}^{0,s}(M)^{\perp} = H_{2}^{0,s}(M)$, where \perp denotes the orthogonal complement in $L_{2}^{0,s}(M)$.

Then we have the Dolbeault-Serre type theorem.

THEOREM 2.2. If the bundle-like metric on M is complete, then,

 $H_2^{0,s}(M) = H_2^{0,q-s}(M)$ (isomorphic as Hilbert space).

In fact, we have only to notice that the following diagram is commutative.

$$\begin{array}{c} \wedge_{o}^{0,s}(M) \xrightarrow{*''} \wedge_{o}^{0,q-s}(M) \\ \bar{\theta} \bigvee & \bar{\theta} & (-1)^{s*''} & \bar{\theta} & \bar{\theta} \\ \wedge_{o}^{0,s-1}(M) \xrightarrow{(-1)^{s*''}} & \wedge_{o}^{0,q-s+1}(M) \end{array}$$

COROLLARY 2.1. (cf. [7]) If dim $H_2^{0,s}(M)$ is finite, then dim $H_2^{0,s}(M)$ =dim $H_2^{0,q-s}(M)$.

§3. Harmonic forms in complete bundle-like metric

Hereafter, we assume that the bundle-like metric is complete and all leaves are compact.

PROPOSITION 3.1.

$$N^{\scriptscriptstyle 0,s}_{\partial^{\star}}(M) \cap L^{\scriptscriptstyle 0,s}_{2}(M) \subset Z^{\scriptscriptstyle 0,s}_{\overline{\partial}}(M)$$

 $N^{\scriptscriptstyle 0,s}_{\partial^{\star}}(M) \cap L^{\scriptscriptstyle 0,s}_{2}(M) \subset Z^{\scriptscriptstyle 0,s}_{\overline{\partial}}(M)$,

where $N_{d}^{0,s}(M) = \{ \phi \in \wedge^{0,s}(M) \mid d'' \phi = 0 \}$ and $N_{\delta}^{0,s}(M) = \{ \phi \in \wedge^{0,s}(M) \mid \delta'' \phi = 0 \}$.

In order to prove this proposition, we need some facts analogous to A. Andreotti and E. Vesentini [1].

We consider a differentiable function μ on R (the reals) satisfying

(i) $0 \leq \mu \leq 1$ on R,

- (ii) $\mu(t)=1$ for $t\leq 1$,
- (iii) $\mu(t)=0$ for $t \ge 2$.

It is known that a geodesic orthogonal to a leaf is orthogonal to all leaves (cf. B. L. Reinhart [6]). We fix a point o in M, and for each point p in M, we

denote by $\rho(p)$ the distance between leaves through o and p. Then we set

$$w_k(p) = \mu(\rho(p)/k)$$
 for $k=1, 2, 3, \cdots$.

LEMMA 3.1. Under the above notations, there exists a positive number A, depending only on μ , such that

- (i) $||d''w_k \wedge \phi||^2 < \frac{nA^2}{k^2} ||\phi||^2$
- (ii) $\|d''w_k \wedge *''\phi\|^2 < \frac{nA^2}{k^2} \|\phi\|^2$

for all $\phi \in \wedge^{0, s}(M)$, where $\|\phi\|^2 = (\phi, \phi)$.

In order to prove this lemma, we have to notice that the function $\rho(p)$ is a locally Lipschitz function and, at points where the derivatives exist, it holds

$$\sum g^{\alpha\beta} v_{\alpha}(\rho) v_{\beta}(\rho) < n$$

Then we have

$$|d''w_k|^2 = \sum g^{\alpha\beta} v_{\alpha}(w_k) v_{\beta}(w_k) < \frac{nA^2}{k^2}$$

where A is a positive number depending only on $\sup \left| \frac{d\mu}{dt} \right|$.

We remark that $d'w_k = 0$ and $w_k \phi$ has compact support for each $\phi \in \wedge^{0,s}(M)$. Then we have that $w_k \phi \in D^{0,s}_{\overline{\theta}} \cap D^{0,s}_{\overline{\theta}}$ for $\phi \in \wedge^{0,s}(M)$, and that

$$\bar{\partial}(w_k\phi) = d''(w_k\phi)$$
$$\bar{\theta}(w_k\phi) = \delta''(w_k\phi).$$

Now we prove Proposition 3.1. Let ϕ be in $N^{0,s}_{d'} \cap L^{0,s}_2(M)$. By the above remarks

$$\bar{\partial}(w_k\phi) = d''(w_k\phi)$$
$$= d''w_k \wedge \phi + w_k d''\phi$$
$$= d''w_k \wedge \phi .$$

Hence, by Lemma 3.1, we have

$$\|\bar{\partial}(w_k\phi)\|^2 < \frac{nA^2}{k^2} \|\phi\|^2.$$

Putting $\phi_k = w_k \phi$, we we have

$$\bar{\partial}\phi_k \longrightarrow 0 \quad (k \longrightarrow \infty) \qquad (\text{strong}).$$

On the other hand, $\phi_k \to \phi$ $(k \to \infty)$ (strong). Since $\bar{\partial}$ is a closed operator, we see that ϕ is in $D^{0,s}_{\bar{\partial}}$ and $\bar{\partial}\phi=0$. This proves $\phi \in Z^{0,s}_{\bar{\partial}}(M)$. In the same way, we have $N^{0,s}_{\bar{\partial}} \cap L^{0,s}_{2}(M) \subset Z^{0,s}_{\bar{\partial}}(M)$. This proves Proposition 3.1.

HARUO KITAHARA

DEFINITION 3.1. The Laplacian acting on $\wedge^{0,*}(M)$ is defined by

 $\Box = -(d''\delta'' + \delta''d'').$

For any $\phi \in L^{0,s}_2(M) \cap \wedge^{0,s}(M)$, we have

(3.1)
$$(d''\phi, d''\alpha)_{B(k)} + (\delta''\phi, \delta''\alpha)_{B(k)} = (-\Box\phi, \alpha)_{B(k)}$$

for all $\alpha \in \bigwedge_{B(k)}^{0,s}(M)$, where $\bigwedge_{B(k)}^{0,s}(M)$ is the space of all forms of type (0, s) with compact support contained in B(k) and B(k) is an open tube of radius k of the leaf through the fixed point o in M. For $\alpha = w_k^2 \phi$, we have

$$d'' \alpha = w_k^2 d'' \phi + 2w_k d'' w_k \wedge \phi$$

$$\delta'' \alpha = w_k^2 \delta'' \phi + (-1)^{q_{s+q+1}} *'' (2w_k d'' w_k \wedge *'' \phi).$$

Substituting in (3.1), we have

(3.2)
$$\|w_{k}d''\phi\|_{B(k)}^{2} + \|w_{k}\delta''\phi\|_{B(k)}^{2}$$
$$\leq |(\Box\phi, w_{k}^{2}\phi)_{B(k)}| + |(d''\phi, 2w_{k}d''w_{k}\wedge\phi)_{B(k)}|$$
$$+ |(\delta''\phi, *''(2w_{k}d''w_{k}\wedge*''\phi))_{B(k)}|.$$

On the other hand, the Schwartz inequality gives the following

$$|(d''\phi, 2w_{k}d''w_{k}\wedge\phi)_{B(k)}| \leq \frac{1}{2}(||w_{k}d''\phi||_{B(k)}^{2}+4||d''w_{k}\wedge\phi||_{B(k)}^{2})$$
$$|(\delta''\phi, *''(2w_{k}d''w_{k}\wedge*''\phi))_{B(k)}| \leq \frac{1}{2}(||w_{k}\delta''\phi||_{B(k)}^{2}+4||d''w_{k}\wedge*''\phi||_{B(k)}^{2})$$

and

$$|(\Box \phi, w_{k}^{2}\phi)_{B(k)}| \leq \frac{1}{2} \left(\frac{1}{\sigma} \|w_{k}\phi\|_{B(k)}^{2} + \sigma \|\Box \phi\|_{B(k)}^{2}\right)$$

for every $\sigma > 0$.

Substituting in (3.2),

$$||w_{k}d''\phi||_{B(k)}^{2}+||w_{k}\delta''\phi||_{B(k)}^{2}$$

$$< \sigma \|\Box \phi\|_{B^{(k)}}^2 + \left(\frac{1}{\sigma} + \frac{8nA^2}{k^2}\right) \|\phi\|_{B^{(k)}}^2.$$

Letting $k \to \infty$, we have

$$\|d''\phi\|^2 + \|\delta''\phi\|^2 < \sigma \|\Box\phi\|^2 + \frac{1}{\sigma} \|\phi\|^2$$

for every $\sigma > 0$. In particular, setting $\Box \phi = 0$ and letting $\sigma \to \infty$, we have

LEMMA 3.2. Let the bundle-like metric on M be complete and all leaves be compact. If $\phi \in L^{0,s}_{a}(M) \cap \wedge^{0,s}(M)$ such that $\Box \phi = 0$, then $d''\phi = 0$ and $\delta''\phi = 0$, i.e. $\phi \in N^{0,s}_{a}(M) \cap N^{0,s}_{\delta'}(M)$.

192

From Proposition 3.1 and Lemma 3.2, we have the following theorem.

THEOREM 3.1. Let the bundle-like metric on M be complete and all leaves be compact. If $\phi \in L^{0,s}_2(M) \cap \wedge^{0,s}(M)$ such that $\Box \phi = 0$, then $\phi \in H^{0,s}_2(M)$.

Remark. The bundle-like metric can be deformed to a continuous complete metric if all leaves are compact, but the deformed metric can not be C^{∞} -metric (cf. [4, 5]).

Remark. It is well known by I. Vaisman [8] that for a compact oriented foliated riemannian manifold M, the space $\mathcal{H}^{r,s}(M)$ of foliated harmonic forms is a subspace of the de Rham cohomology space $H^{r,s}(M)$.

BIBLIOGRAPHY

- A. ANDREOTTI AND E. VESENTINI, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 313-362.
- [2] Κ. ΟΚΑΜΟΤΟ AND Η. ΟΖΕΚΙ, On square-integrable ∂-cohomology spaces attached to hermitian symmetric spaces, Osaka J. Math 4 (1967), 95-110.
- [3] L. HÖRMANDER, L^2 -estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math. 113 (1965), 89-152.
- [4] H. KITAHARA, The existence of complete bundle-like metrics, Ann. Sci. Kanazawa Univ. 9 (1972), 37-40.
- [5] H. KITAHARA, The existence of complete bundle-like metrics, II, Ann. Sci. Kanazawa Univ. 10 (1973), 51-54.
- [6] B.L. REINHART, Foliated manifolds with bundle-like metrics, Ann. of Math.69 (1959), 119-132.
- [7] B.L. REINHART, Harmonic integrals on foliated manifolds, Amer. J. Math. 81 (1959), 529-536.
- [8] I. VAISMAN, Variétés riemanniennes feuilletées, Czechoslovak Math. J. 21 (1971), 46-75.

DEPARTMENT OF MATHEMATICS College of Liberal Arts Kanazawa University