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ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS
OF STOCHASTIC INTEGRAL EQUATIONS

OF THE VOLTERRA TYPE

BY ICHIRO ITO

1. Introduction

The theory of stochastic integral equations has been studied from two
principal points of view. One is the theory of Itό stochastic differential equa-
tions which is an important problem in stochastic processes and has been in-
vestigated in detail as presented in the books of Friedman [2] and Gihman and
Skorohod [3], among others. The other approach to stochastic integral equa-
tions is to consider them as probabilistic versions of classical deterministic in-
tegral equations and investigate them using functional analytic concepts and
methods (see [1], [6], [7]). As shown in the book of Tsokos and Padgett, the
equations which have been discussed in the latter manner are also important in
stochastic characterization of physical situations, and have been studied by many
authors.

In the previous research [4], the present author studied linear stochastic
integral equations belonging to the latter class of equations by the method
analogous to those used in the theory of Itδ stochastic differential equations.
Although, the argument applied there is available in nonlinear cases as well as
in the linear case. And in this paper we shall discuss general stochastic integral
equations of the Volterra type. The class of equations at issue is a vast one
which includes both Itδ stochastic differential equations and nonlinear Volterra
integral equations (see [5]). We shall establish the existence and uniqueness of
stochastic processes with continuous sample paths with probability one as solu-
tions of equations, which is a generalization of the corresponding theorems in
the theory of stochastic differential equations.

Let Bit) (ί^.0) be a one-dimensional Brownian motion on a probability space
(Ω, F, P). Let Ft(t^0) be an increasing family of cr-ίields such that FtldFt2 if
t^t2, σ(B(s), O^s^t) be in Ft, and σ(B(t+s)-B(t), s^O) be independent of Ft for
all ί^O. We shall be concerned with a stochastic integral equation of the
Volterra type given by

( ΐ ) x(t)=φ(t) + [ f(t, s, *(s))dβ(s)+Γg(t, s, x(s))ds,
Jo Jo
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where φ(t) is a given Fradaρted continuous process, and f(t, s, x) and g(t, s, x)
are random functions defined for O^s^t^T and —CXD<X<OO. The first integral
on the right-hand side of (I) should be understood as the Itδ integral.

The stochastic process x(t) will be said to be a solution of (I) on [0, T] if
it is a Fradapted continuous process for which the integrals on the right-hand
side of (I) are well defined, and (I) is satisfied for all ίe[0, T] with probability
one. Here the continuous process means that the sample paths are continuous
functions with probability one.

In section 2 we shall investigate integral transformations by the stochastic
integral and obtain maximal inequalities which are necessary in the later sec-
tions. In section 3 we shall establish the existence and uniqueness of the solu-
tions. And in section 4, we shall obtain stronger results by weakening the
assumptions of the theorem in section 3.

The author wishes to express his sincere thanks to Prof. K. Kawamura for
kind encouragement and to Dr. S. Mase for helpful advices.

2. Maximal Inequality

In this section we shall investigate the integral transformation

(2.1) / W

under the following assumptions with respect to the random functions fit, s, x)
defined for O^s^t^T and —oo<χ<oo:
(Al) f(t, s, x) is continuous in (t, s, x) for each ω,
(A2) f(t, s, x) is Fs-measurable for each (t, s, x).
There is a constant K such that
(A3) \f(i, s, x)\^Ka+\x\) a.s.,
(A4) |/α, s, x,)-f{t, s, x2)\^K\x1-x2\ a.s.,
(A5) \f(tl9 s, x)-f(t2, s, x)\^K\t1-t2\ a.s..

Let x(t) be a Fradapted process with sup £[x 2 (0]< 0 0 ^ then from the assump-

tions it follows that E\ \ \f(t, s, x(s))\2ds <oo. Thus the integral transformation

I(t) is well defined and, from the definition (2.1), it is Frmeasurable. First we
notice the following lemma.

LEMMA 2.1. // sup £[x 4 (0]< 0 0 , then the integral transformation /(/), 0^

t^T, has a continuous version.

Proof Let O^u^t^T, then using an estimate for stochastic integrals and
the assumptions (A3) and (A5), we have

(2.2) Eί\I(t)-I(u)n

& s> *«)-/(«' s> x{s))dB{s)+^J(t, s, *
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s, x(s))-f(u, s, x(s)))dB(s)\+\^f(t, s,

, 5, x{s))-f{u, s, Jc(s))|ads|2+|jj/(ί, s, Λ:(

, s, *(s))-/(n, S, Jc(s))|4ds+(ί-M)Jj/(ί, s,

sup Elx

Consequently, Kolmogorov's lemma implies that I(t) has a continuous version.
This completes the proof.

From now on, the integral transformation I(t) is always considered to be a
continuous version of it.

Now let *,(*) (ι=l, 2) satisfy sup E[xz

4(0]<°° and let /(0=

—/(*, s, x2(s))}rfβ(s), O^t^T. The rest of this section is devoted to the deriva-
tion of maximal inequalities with respect to J(t) and I(t), which will be used in
the proof of main theorems.

LEMMA 2.2. // *<(*) (z=l, 2) satisfies sup

P(sup |('{/(ί, s, )-/(/, s,

where Ko is an absolute constant and

C1=288^(16T2 sup £[|x 1(ί)-* 2(OI 2]+ sup Eί\x1(t)-xt(f)\<D
OSiSΓ OSίSΓ

Proof. This lemma can be derived by a similar argument to Lemma 1 in
the author's previous paper [4]. We must remark the following estimate. If
Q^u^t^T, then

, s, x1(s))-f(t, s, x2(s)))-(f(u, s, Xl(s))-f(u, s, xt(s))))dB(s)

> s, xi(s))-f(t, s,

(2.3)

, s,

, s,

)-f(t, s,

)-/(ί, s,

)-(/(u, s, Xl(s))-f(u, s,

=8 36(/1+/t).
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Using the assumptions (A3), (A4) and (A5), we obtain

(2.4) I^E[uζ{2(f(t, s, *!(s))-/(f, 5, x2(s))Y+2(f(u, s, x£s))-f(u, s,

X{2(/(f, s, xάsy-fίu, s, Aτ1(s)))2+2(/(ί, s, x2{s))-f{u, s, jca(s)))
2} ds]

sup

(2.5)

^ p C I ^ . ί J Π C )
ossar

Therefore, from (2.3), (2.4) and (2.5), we have

(2.6) El\J(t)-J(u)n

£8'36K*(16T* sap El\Xl(s)-xAsm+ sup EllxM-xAsWlXt-uy.

To complete the proof, we have only to use the above estimate (2.6) instead
of the estimate (9) in [4] and proceed in a completely analogous manner to the
proof of Lemma 1 in [4].

The following lemma can be also derived by a completely similar method
using the estimate (2.2), hence the proof is omitted. We must, however, remark
that the assumption (A4) is not necessary in Lemma 2.3.

LEMMA 2.3. // x(t) satisfies sup £t>4(0]<°°> then

P(sup | (7(f , s, x(s))dB(s)

where Ko is an absolute constant and

C 2 =288# 4 (T 4 +8+8 sup £[x 4 (s)]).

Finally we note that another integral transformation

Γ/α, s, χ(s))ds, o ^ ^ r ,
Jo

is F radapted and continuous in t under the assumptions (A1)-(A4).

3. Existence and Uniqueness of Solutions

The aim of this section is to establish the existence and uniqueness theorem
for the solutions of stochastic integral equations (I), which corresponds to the
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well-known theorem for the solutions of stochastic differential equations (see
[2], [3]).

THEOREM 3.1. Suppose that f(t, s, x) satisfies the assumptions (A1)-(A5) and
that g(t, s, x) satisfies the assumptions (A1)-(A4). // φ(t) is a Ft-adapted con-
tinuous process with sup E[_φ\t)~]<co, then there exists a unique solution x(t) of

(I) satisfying sup EΓx2(t)l<oo.

Proof. We prove this assertion using a method similar to the standard
method in the theory of stochastic differential equations. First to prove the
existence of a solution x(t), we use the method of successive approximations.

We define xo(t)=φ(t) and

Xn(t)=φ(f)+\'f(t, S, Xn-iWdBtf+Ϋg(t, S, Xn-i(s))ds .
Jo Jo

Then we have

(3.1) Jr»+i(O-*»(O

$] s, xn(s))-f(t, s, *n.1(s))}i/B(s)

s, xn(s))—g(t, s, Xn-άsyfids.

Taking the expectation of the squares of (3.1) and using (A4), we obtain

(3.2) EZ\xn+1(f)-x»(t)\n

[ | j V , s, xn(s))-f(t, s, xn_1(s)

, s, xn{s))-g{t, s, Xn-^

JO

where M=2K\T+l). On the other hand, using (A3), we have

f, s,
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where «2= sup £[l+ώ 2(0]<°°. This together with (3.2) yields

(3.3) El\xπ+1(t)-xn(tm^2μ2(Mtr+i/(n+l)l.

Similarly, taking fourth powers in (3.1) and taking the expectation, we have

(3.4) EUxn+i(t)-xn(t)n

[ | £ f , s, xn{s))-f(t, s, *„-,(

*, s, xn(s))-g(t, s, jrn-,

g8 36£[fj[{/(f, s, xB(s))-/(f, s, x^isW

, s, xn(s))-g(t, s, Xn-άsW

where iV=8/ί:4T(3β+T2). On the other hand, we get

. This together with (3.4) yieldswhere //4= sup

(3.5)

Thus all xn(f) successively defined are well defined and, moreover, they are Ft-
adapted continuous processes owing to the continuity of φ(t).

Now taking suprema of the squares of (3.1) and using (A4), we get

vapτ\xn+1(t)-xn(t)\2

^ 2 SUP I Γ {/(ί, S, Xn(s))-f(jt, S, Xn-ά

+2 sup
O S ί g

{g(t, S, Xn(s)) — g(f, S, Xn-i(s))}ds

^2 sup Γ {f{t, s, xn(s))-f(t, s, Xn-^
Jo
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Hence it follows that

(3.6) P(sup\xn+1(t)-xn(t)\2>λ)
OύtύT

ί£P(sup {[{fit, s, xn{s))-f(t, s, x^mdBis) 2>λ/ή

Applying Lemma 2.2 to the first term on the right-hand side of (3.6) and
using (3.3) and (3.5), we obtain

(3.7) P( sup IΓ {/(/, s, xn(s))-f(t, s, Xn-άsyfidBis) 2>λ/4)

^16/i-2iίor
2288Λ:4(16T2 sup ί C U ^ O - ^ .

As to the second term on the right-hand side of (3.6), the inequality of the
Chebychev type implies that

(3.8) ^

Inserting (3.7) and (3.8) with λ=i~n into (3.6), we find that

(3.9) P ( s u p | * n + 1 ( 0 - * » ( 0 l > 2 - » )

. (16MT)n/n !+const. (16NT)n/n !+const. (AMT)n/n ! .

Since the right-hand side of (3.9) is a general term of a convergent series, the
Borel-Cantelli lemma implies that

P{ sup I * n + 1 (0-*»(01 ^ 2 - n , n ΐ oo)=l .

It follows that the partial sums
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are convergent uniformly in £e[0, T] with probability one. We denote the
limit by x(t). Since all xjf) are Fradapted and continuous, so is the uniform
limit of xn(t). It is clear that x(t) satisfies the stochastic integral equation (I),
by the routine argument in the theory of stochastic integrals if only we apply
the maximal inequality in Lemma 2.2 in place of the martingale inequality.
Therefore the assertion of existence is proved.

It remains to prove the uniqueness. Suppose x(t) and y(t) are two solutions
of (I), then

x(jt)-y(t)=\\f(t, s, x{s))-f{t, s, y(s)))dB(s)
JO

t, s, x(s))-g(t, s, y(s)))ds.

Using an analogous estimate to (3.2), we have

Applying the Gronwall inequality, we find that

El\x(Jt)-y(tm = O.
It follows that

P(x(t)=y(t))=l for each fe[0, T] .

Since both processes x(t) and y(t) are continuous, we conclude that

P(x(t)=y(f) for all fe[0, T ] ) = l .

This completes the proof of uniqueness.

COROLLARY. Under the assumptions of Theorem 3.1,

^(27 sup

Remark. The constant K on the right-hand side of the above estimates is
determined only by the growth condition (A3) with respect to / and g.

Proof of Corollary. Taking the expectation of the squares in (I) and using
(A3), we have

Hence,

^(3 sup Elφ%sft+1)+6KK1+T)[EH +
QύSiT J θ
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Applying the Gronwall inequality, we find that

]^(3 sup

Thus the first estimate is obtained.
It remains to show the latter. Taking fourth powers in (I) and then taking

the expectation and using (A3), we get

Hence, similarly as above, we obtain the desired estimate. This completes the
proof.

4. Stronger Uniqueness and Existence

In this section we prove stronger results for the existence and uniqueness
than in section 3. For this purpose, we now establish a local uniqueness
theorem.

THEOREM 4.1. Suppose that /*(£, s, x) (ι=l, 2) satisfies the assumptions (Al)-
(A5), that gi(t, 5, x) (ι—ly 2) satisfies the assumptions (A1)-(A4), and that for some
N>0 Λ(ί, s, *)=/2(f, s, x) and gί(jt, s, x)=gt(t, s, x) if \x\^N, O^s^t^T. As-
sume that φit) satisfies the conditions of Theorem 3.1. Let xt(t) ( ί = l , 2) be the
solution of the equation

t(f, s> Xi(s))dB(s)+^gi(t, s, Xi(s))ds,

with sup E[x t

2 (0]<°° . Denote by τx the largest value of t^T for which

sup I Xi(s)\ <oo. Then
O ύ t

P{ sup |Λ:I(S)—^ 2 (s) |=O)=l.

Proof. This theorem can be proved after the manner of the theory of
stochastic differential equations. Hence we only sketch the proof.

Let φi(t)=l if sup \Xi(s)\<N and ψi(t)=O otherwise. Then, noting that

ψ1(t)=l implies fβ, s, Xl(s))=f2(t, s, x^s)) and gλ(t, s, Xl(s))=g2(t, s, xλ(s)) for
s^t, we have

Φi(f)\x1(f)-xi(f)\2

2

s, Xi(s))—f2(t, s, x2(s))}dB(s)

2

t, s, X!(s))-g2(t, s, x2(s))}ds .
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Since ψ1(t)=l implies ψ1(s)=l for s^t,

)-Mt, s, x2(s))}dB(s)

167

ί, s,

+2 | J ^ ( s ) {#,(*, s, x1(s))-gt(tf s, x2(s))}ds\\

Taking the expectation and using (A4), we get

,(5) ι x1(s)-χ2(s) 12

Applying the Gronwall inequality and using the continuity of x^t) and x2{t), we
obtain

P( sup ^ ( 0 1 x 1 ( 0 - ^ ( 0 1 = 0 ) = ! .
0£tύT

It follows that Xi(t)=x2(t) w. p. 1 if O^t^τ^ Consequently P ( τ 1 ^ r 2 ) = l . Similarly
P(τ1^τ2)=l, and the theorem is proved.

We now intend to improve Theorem 3.1. Using Theorem 4.1, we can
establish an existence and uniqueness theorem under weaker conditions than in
Theorem 3.1.

THEOREM 4.2. Suppose that fit, s, x) and g(t, s, x) satisfy the assumption
(A1)-(A3) and

(A47) for any 7V>0 there is a positive constant KN such that

\f(t, s, ΛΓi)-/(ί, s, x2)\^

\g(t, s, Xi)-g(t, s, x2)\^

if \Xl\^N, \x2\^

and moreover f(t, s, x) satisfies (A5). // φ(t) is a Fradapted continuous process
with sup E[ώ\tT\<oo then there exists a unique solution x(t) of (I) satisfying

sup E[_x\t)~]<co.

Remark. This theorem asserts that the assumption (A4) can be replaced by
the weaker assumption (A47) also assuring the existence of a unique solution
of (I).

Proof. We first show the existence of a solution. Let

f{t,s,x) if \x\^N9

(4.1) fN{t, s, x)= /(ί, s, x)(2- I x I /N) if Λ/< I x

0 if \x\>2N,
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(4.2) gN(t, s, x)=
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g(t, S, X) if

g(f, s, x)(2-\x\/N) if N<\x\^2N,

0 if \x\>2N.

Then fN(t, s, x) and gχ(t, s, x) satisfy all the assumptions in Theorem 3.1.
Therefore Theorem 3.1 asserts that there exists a unique solution xN(t) satisfy-
ing sup £[xiv2(0]<°° of

(4.3) XN(t)=φ(t)+[fN(t, s, xN(s))dB(s)+\tgN(t, s, xN(s))ds.
Jo Jo

Taking suprema in (4.3), we have

sup \xN(t)\^ sup 10(01+ sup

+ S U P ,

tf(f, s, xN(s))dB(s)

rt
gN(t, s, xN(s))ds

Jo

Hence,

(4.4) P( sup |x^(s)| >7V)^P( sup |0(OI >N/3)

, s, xN(s))dB(s) >N/3)

>Nβ) .

+p(sup

+P( sup I [gvdt, s, xN(s))ds
V o g i ^ r l J o

Now the continuity of φ(t) with probability one implies that

(4.5) P( sup I φ(t) I > iY/3) — > 0 as N - co .

On the other hand, since \gN(t, s, x)\^\g(t, s, x)\ ̂ K(l+ \x\) by (4.2) and (A3),

sup
ύt<LT

At, s, xN(s))ds

Therefore, applying the Chebychev inequality and using the Corollary of
Theorem 3.1, we obtain

P(sup IΓ^α, s, xN(s))ds >Nβ)(4.6)

- 0 as yV —> oo .

As for the second term on the right-hand side of (4.4), applying Lemma 2.3 and
using the Corollary of Theorem 3.1, we find

. N~2
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(4.7) P(osupjJV^α, s, xN(s))dB(s)\>Nβ)

^81JV-4#0T
2 288tf4(T4+8+8 sup EtxAs)Ί)

=const. N~4—>0 as N —* oo .

These facts (4.5), (4.6) and (4.7) together with (4.4) imply that

(4.8) ΠmP( sup |xN(t)\>N)=0.

Let τN be the largest value of t for which sup U;v(s)|^iV. If N'>N, then

Theorem 4.1 asserts that xN(t)=xN,(t) w. p. 1 if 0^t^τN. Therefore

This together with (4.8) implies that xN(t) converges uniformly with probability
one to some limit x(t) as N—>co. Since it is clear that we can pass to the
limit in (4.3), we conclude that x(t) is a solution of (I).

We now prove the uniqueness. Let x^t) and x2(f) be two continuous solu-
tions of (I) with sup Elxt

2(t)2<oo ( ι=l, 2). Let

ί 1 if s u p U ^ I ^ M sup \x2(s)\^N,

ί 0 otherwise.

Then, using (A4r) and a similar method to the proof of Theorem 4.1, we obtain

Hence

It follows that

P(xMΦxt(jt))£P( sup I Xl(s)\ >N)+P( sup IXt(s)\ >N).
OύSύT QSSύT

Since both xλ(t) and x2(t) are continuous processes, the right-hand side of this
inequality tends to zero as JV-^oo. Therefore

Consequently, again from the continuity of xλ(t) and x2(t), we conclude that

P(xi(t)=x2(t) for 0^t^T)=l.

This completes the proof.
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