HIGHLY CONNECTED POINCARÉ COMPLEXES

Dedicated to Professor A. Komatu on his 70th birthday

By Seiya Sasao and Hideo Takahashi

Introduction.

We are interested in the following problem proposed by Wall in [2] "Classify up to homotopy ($n-1$)-connected Poincaré complexes of dimension $2 n+1$ and $2 n+2 . "$

In this paper we shall discuss the case of dimension $2 n+2$ under some additional conditions. Let K be a Poincaré complex which is ($n-1$)-connected and of dimension $2 n+2$. If K has the same rational homology as the sphere, then the homology $H_{*}(K ; Z)$ is as follows

$$
\begin{aligned}
& H_{0}(K ; Z)=Z=H_{2 n+2}(K ; Z) \\
& H_{n}(K ; Z)=G=H_{n+1}(K ; Z) \\
& H_{i}(K ; Z)=0 \quad \text { for other dimensions, }
\end{aligned}
$$

where G denotes a finite abelian group. We denote by $P(n, n+1 ; G)$ the complex K such as above and call it a Poincaré complex of type ($n, n+1 ; G$). Then our main results are

Theorem A. Let $n \geqq 3$ and $G \otimes Z_{2}=0$. Then $P(n, n+1 ; G)$ has the same homotopy type as the connected sum of $P\left(n, n+1 ; G_{1}\right)$ and $P\left(n, n+1 ; G_{2}\right)$ if G is a direct sum of G_{1} and G_{2}.

Theorem B. Under the same conditions as Theorem A, if $P(n, n+1 ; G)$ is S-reducible ut's homotopy type is unique with respect to n and G.

By applying these theorems to the case of manifolds we shall prove
Theorem C. Let M be $a(n-1)$-connected rational homology sphere which is a smooth manıfold of dimension $2 n+2$ with no 2 -torsion. Then M is uniquely determined up to homotopy by homology for $n \equiv 0,1 \bmod 4$.

The case of $G \otimes Z_{2} \neq 0$ (essencially, G is a 2-group) is more complicated, therefore we shall discuss it in the subsequent paper.

The plan of this paper is as follows. First, in § 1, we study the homotopy of Moore spaces and in $\S 2$ characterize Poincaré complexes of type $(n, n+1 ; G)$. In $\S 3$ we shall prove Theorem A and B, and in $\S 4$ the proof of Theorem C shall be given. Throughout this paper we assume that groups G, H, \cdots are finite abelian with no 2-torsion and $n \geqq 3$.

§ 1. Homotopy of Moore spaces.

We denote by M_{G}^{n} the Moore space of type (n, G) and by \# the integer $2 n+1$. We first note the following easy

Lemma 1.1. $\pi_{i}\left(M_{G}^{n}\right)$ is trivial for $i=n+1, n+2$.
Now we define a homomorphism

$$
\mu_{I I}^{G}: \pi_{\#}\left(M_{G}^{n} \vee M_{H}^{n+1}\right) \longrightarrow \operatorname{Hom}(G, H)
$$

by

$$
\begin{aligned}
\mu_{H}^{G}(f)=\mu_{f} \cap: G=H^{n+1}\left(M_{G}^{n} ; Z\right)=H^{n+1}(c(f) ; Z) \longrightarrow \\
H_{n+1}(c(f) ; Z)=H_{n+1}\left(M_{H}^{n+1} ; Z\right)=H,
\end{aligned}
$$

where $c(f)$ denotes the mapping cone for a map $f: S^{\#} \rightarrow M_{G}^{n} \vee M_{H}^{n+1}$ and μ_{f} is the oriented generator of $H_{2 n+2}(c(f) ; Z)$. Let h be a $\operatorname{map} M_{G}^{n} \vee M_{H}^{n+1} \rightarrow M_{G^{\prime}}^{n} \vee M_{H^{\prime}}^{n+1}$. Clearly h is decomposed into the sum of four maps;

$$
h_{1}: M_{G}^{n} \longrightarrow M_{G^{\prime}}^{n}, h_{2}: M_{G}^{n} \longrightarrow M_{H^{\prime}}^{n+1}, h_{3}: M_{H}^{n+1} \longrightarrow M_{G^{\prime}}^{n} \text { and } h_{4}: M_{H}^{n+1} \longrightarrow M_{H^{\prime}}^{n+1} .
$$

Then, from the commutative diagram

$$
\begin{gathered}
\begin{array}{c}
H^{n+1}(c(f) ; Z) \\
h_{1}^{*} \uparrow
\end{array} \underset{\mu_{f} \cap}{H_{n+1}} H_{n+1}(c(f) ; Z) \\
H^{n+1}(c(h f) ; Z) \xrightarrow{\mu_{n+1} \cap} H_{n+1}(c(h f) ; Z),
\end{gathered}
$$

we obtain
Lemma 1.2. (The naturality of μ_{H}^{G}) $\mu_{H^{\prime}}^{G^{\prime}}(h f)=h_{4 *} \mu_{H}^{G}(f) h_{1}^{*}$.
Now we prove
Proposition 1.3. $\pi_{\#}\left(M_{G}^{n} \vee M_{H}^{n+1}\right)=\pi_{\#}\left(M_{G}^{n}\right) \oplus \pi_{\#}\left(M_{H}^{n+1}\right) \oplus \operatorname{Hom}(G, H)$
Proof. The proof follows from the standard isomorphism

$$
\pi_{\#}\left(M_{G}^{n} \vee M_{H}^{n+1}\right)=\pi_{\#}\left(M_{G}^{n}\right) \oplus \pi_{\#}\left(M_{H}^{n+1}\right) \oplus \partial \pi_{\#+1}\left(M_{G}^{n} \times M_{H}^{n+1}, M_{G}^{n} \vee M_{H}^{n+1}\right)
$$

if we can show that the restriction μ_{H}^{g} on the third factor is an isomorphism. Thus, by using isomorphisms

$$
\pi_{\#+1}\left(M_{G}^{n} \times M_{H}^{n+1}, M_{G}^{n} \vee M_{H}^{n+1}\right)=\pi_{\#+1}\left(M_{G}^{n} \wedge M_{H}^{n+1}\right)=\pi_{\#+1}\left(M_{G \otimes H}^{2 n+1} \vee M_{G * H}^{2 n+2}\right),
$$

where \wedge denotes the smash product, the proof can be reduced to the case of $G=Z_{p^{2}}$ and $Z_{p \jmath}$. Let α be the generator of

$$
\pi_{\mp+1}\left(M_{G}^{n} \times M_{H}^{n+1}, M_{G}^{n} \vee M_{H}^{n+1}\right) \cong H_{\#+1}\left(M_{G}^{n} \times M_{H}^{n+1}, M_{G}^{n} \vee M_{H}^{n+1} ; Z\right) .
$$

Then there exists a map $\varphi: c(f) \rightarrow M_{G}^{n} \times M_{I I}^{n+1}(f=\partial \alpha)$ such that $\varphi_{*}: H_{2 n+2}(c(f), Z)$ $\rightarrow H_{2 n+2}\left(M_{G}^{n} \times M_{H}^{n+1} ; Z\right)$ is surjective and $\varphi \mid M_{G}^{n} \vee M_{H}^{n+1}=$ identity. Consider the commutative diagram

$$
\begin{gathered}
Z_{p i}=H^{n+1}(c(f) ; Z) \xrightarrow[\mu_{p}]{\mu_{f} \cap} H_{n+1}(c(f) ; Z)=Z_{p j} \\
Z_{p^{i}}=H^{n+1}\left(M_{G}^{n} \times M_{H}^{n+1} ; Z\right) \xrightarrow[\varphi_{*}\left(\mu_{f}\right) \cap]{ } H_{n+1}\left(M_{G}^{n} \times M_{H}^{n+1} ; Z\right)=Z_{p j} .
\end{gathered}
$$

Then the proof is obtained from $\varphi_{*}\left(\mu_{f}\right) \cap 1=p^{\jmath-k}(1)(k=\min (\imath, j))$.
Now we investigate the N-fold suspension

$$
E^{N}: \pi_{\#}\left(M_{\imath}^{n} \vee M_{\imath}^{n+1}\right) \longrightarrow \pi_{\#+N}\left(M_{\imath}^{n+N} \vee M_{\imath}^{N+1+n}\right) \quad(N \longrightarrow \infty),
$$

where M_{\imath}^{n} denotes M_{G}^{n} for $G=Z_{p \imath}$. First, in the decomposition given by Proposition 1.3 , we can easily obtain

$$
E\left(\operatorname{Hom}\left(Z_{p^{2}}, Z_{p^{2} 2}\right)\right)=0 \quad \text { and } \quad E^{-N}(0) \cap \pi_{\#}\left(M_{\imath}^{n+1}\right)=\left[\pi_{n+1}\left(M_{\imath}^{n+1}\right), \pi_{\#+1}\left(M_{\imath}^{n+1}\right)\right],
$$

where [,] denotes the Whitehead product. Next, let $M_{\imath, \infty}^{n}$ be the reduced product for M_{\imath}^{n}. Using $\pi_{\#+1}\left(M_{\imath, \infty}^{n}, M_{\imath}^{n}\right)=0$ and the homotopy exact sequence of the pair ($M_{\imath, \infty}^{n}, M_{\imath}^{n}$), we have

Lemma 1.4. $E: \pi_{\#}\left(M_{\imath}^{n}\right) \longrightarrow \pi_{\#+1}\left(M_{\imath}^{n+1}\right)$ is injective.
For the investigation of $E: \pi_{\#+1}\left(M_{\imath}^{n+1}\right) \rightarrow \pi_{\#+2}\left(M_{2}^{n+2}\right)$ we define a homomorphism $h_{n}: \pi_{2 n}\left(M_{\imath}^{n}\right) \rightarrow Z_{p^{2}}$ as follows. Let $c(f)=M_{\imath}^{n} \cup e^{\#}$ be the mapping cone for a map $f: S^{2 n} \rightarrow M_{\imath}^{n}$ and let α, β, γ be generators of $H^{n}\left(c(f) ; Z_{p^{2}}\right), H^{n+1}\left(c(f) ; Z_{p^{2}}\right)$ and $H^{2 n+1}\left(c(f) ; Z_{p \imath}\right)$ respectively. Then put $\mu f \cap(\alpha \cup \beta)=h_{n}(f)$.

Lemma 1.5. (1) $h_{n}\left(E \pi_{2 n-1}\left(M_{r}^{n-1}\right)\right)=0$
(2) if n is even, h_{n} is trivial
(3) if n is odd, h_{n} is surjective

Proof. (1) follows from the definition of h_{n} and (2) is deduced from applying the Bockstein operator. For (3), consider the boundary homomorphism ∂ : $\pi_{2 n+1}\left(M_{\imath, \infty}^{n}, M_{\imath}^{n}\right)=Z_{p^{\imath}} \rightarrow \pi_{2 n}\left(M_{\imath}^{n}\right)$. We assert

$$
h_{n}(\partial(1))=\text { a generator of } Z_{p^{2}} .
$$

Clearly there exists a map $\psi: c(f) \rightarrow M_{\imath, \infty}^{n}$ such that $\psi \mid M_{\imath}^{n}=$ identity and $\psi_{*}: H_{2 n+1}(c(f) ; Z)=Z \rightarrow H_{2 n+1}\left(M_{\imath, \infty}^{n} ; Z\right)$ is surjective. Then our assertion follows from the cohomologyring structure of $M_{\imath, \infty}^{n}$.

Lemma 1.6. $E^{2}: \pi_{\#}\left(M_{\imath}^{n}\right) \rightarrow \pi_{\#+2}\left(M_{\imath}^{n+2}\right)$ is injective.
Proof. Consider the diagram

$$
\pi_{\#+2}\left(M_{\imath, \infty}^{n+1}\right) \underset{\jmath}{\longrightarrow} \pi_{\#+2}\left(M_{\imath, \infty}^{n+1}, M_{\imath}^{n+1}\right) \longrightarrow \underset{Z_{p \imath}}{\pi_{\#+1}^{\downarrow}\left(M_{\imath}^{n+1}\right)} \underset{\substack{h_{2} \\ Z_{p^{\imath}}}}{\pi_{\#}\left(M_{\imath}^{n}\right)} \pi_{\#+1}\left(M_{\imath, \infty}^{n+1}\right)
$$

If n is even, the proof follows from lemma 1.4 and (1) of lemma 1.5.
If n is odd, j is surjective by (1) and (3) of lemma 1.5 , and hence i is injective. Thus the proof is completed.

Thus, from combining lemmas, we have
Proposition 1.7. The kernel of E^{N} is the subgroup

$$
\left[\pi_{n+1}\left(M_{2}^{n+1}\right), \pi_{n+1}\left(M_{2}^{n+1}\right)\right] \oplus \operatorname{Hom}\left(Z_{p^{2}}, Z_{p^{2}}\right) .
$$

Now let ι_{n+1} be the generator of $\pi_{n+1}\left(M_{\imath}^{n+1}\right)$ and define the map $\nu_{r}: M_{\imath}^{n} \vee$ $M_{\imath}^{n+1} \rightarrow M_{\imath}^{n} \vee M_{\imath}^{n+1}$ by $\nu_{r} \mid M_{\imath}^{n+1}=$ identity and $\nu_{r} \mid M_{\imath}^{n}=$ identity $+r_{\iota_{n+1}} \circ i d / S^{n}$. For the later, we note

Lemma 1.8. For $\imath d \in \operatorname{Hom}\left(Z_{p^{2}}, Z_{p^{2}}\right) \subset \pi_{\#}\left(M_{\imath}^{n} \vee M_{\imath}^{n+1}\right)$ we have $\nu_{r_{t}}(i d)=r\left[\iota_{n+1}, \iota_{n+1}\right]$ $+\imath d$.

Proof. Since $E^{N}(\imath d)=0$, by Proposition 1.8, $\nu_{r_{r}}(\imath d)$ has a representation

$$
\nu_{r:}(\imath d)=x\left[\epsilon_{n+1}, \iota_{n+1}\right]+y(i d)
$$

for some integers x and y. Then $y=1$ follows from the naturality of cupproduct and $x=r$ is easily deduced from the cohomology ring structure of the mapping cone for $\imath d$.
§ 2. Poincaré complexes of type ($n, n+1 ; G$).
First we note
Lemma 2.1. $P(n, n+1 ; G)$ has the same homotopy type as the mapping cone for a map $f: S^{\#} \rightarrow M_{G}^{n} \vee M_{G}^{n+1}$.

Remark: This is not true in the case of $G \otimes Z_{2} \neq 0$.
Proof. Let X be a Poincaré complex of type ($n, n+1 ; G$. Since $\pi_{i}(X)=0$ $(0 \leqq i \leqq n-1)$ and $\pi_{n}(X)=G$, we may regard M_{G}^{n} as a subcomplex of X. Then we have

$$
\pi_{n+1}(X) \cong \pi_{n+1}\left(X, M_{G}^{n}\right) \cong H_{n+1}\left(X, M_{G}^{n}\right) \cong H_{n+1}(X) \cong G,
$$

using lemma 1.1 and the homotopy-homology exact sequence of the pair (X, M_{G}^{n}). Hence there is a map $g: M_{G}^{n+1} \rightarrow X$ such that

$$
g_{*}: H_{n+1}\left(M_{G}^{n+1} ; Z\right) \longrightarrow H_{n+1}(X ; Z)
$$

is an isomorphism. Then, since the map $\imath d \vee g: M_{G}^{n} \vee M_{G}^{n+1} \rightarrow X$ induces an isomorphism of homology up to dimension $2 n+1$ the proof is completed by the standard argument.

Thus, from the point of view of homotopy, we can replace a complex of type ($n, n+1 ; G$) with $c(f)$.

Lemma $2.2 c(f)$ is a Poincaré complex if and only if $f\left(\in \pi_{\#}\left(M_{G}^{n} \vee M_{G}^{n+1}\right)\right)$ is contained in the subgroup

$$
\pi_{\#}\left(M_{G}^{n}\right) \oplus \pi_{\#}\left(M_{G}^{n+1}\right) \oplus \text { Aut } G .
$$

Proof. The part "only if" follows from the definition of decomposition in Proposition 1.3. For the part "if" we must show that two homomorphisms
(1) $\mu_{f} \cap: H^{n+1}(c(f) ; Z) \longrightarrow H_{n+1}(c(f) ; Z)$
(2) $\mu_{f} \cap: H^{n+2}(c(f) ; Z) \longrightarrow H_{n}(c(f) ; Z)$
are both isomorphisms, where μ_{f} denotes the generator of $H_{2 n+2}(c(f) ; Z)$.
Clearly (1) holds by the definition. Let $Z_{p^{2}}, Z_{p}$, be two direct summands of G and let $p_{i}\left(p_{j}\right)$ be the projection $G \rightarrow Z_{p^{2}}\left(Z_{p^{j}}\right)$. Since p_{2}, p_{j} naturally induce the maps

$$
\hat{p}_{i}: M_{G}^{n} \longrightarrow M_{\imath}^{n} \text { and } \quad \hat{p}_{j}: M_{G}^{n+1} \longrightarrow M_{\jmath}^{n+1} \quad\left(M_{\imath}^{n}=M_{Z_{p}}^{n}\right),
$$

we have the map

$$
\hat{p}_{i} \vee \hat{p}_{j}=p: M_{G}^{n} \vee M_{G}^{n+1} \longrightarrow M_{\imath}^{n} \vee M_{\jmath}^{n+1} .
$$

On the other hand, by lemma 1.2, we may suppose that f has a representation $f=\alpha \oplus \beta \oplus \imath d$ (Proposition 1.3). Then we have

$$
\begin{array}{rlrl}
p_{*}(f) & =\hat{p}_{i^{*}}(\alpha) \oplus \hat{p}_{j^{*}}(\beta) \oplus i d & & \text { if } \\
& =Z_{p^{i}}=Z_{p j} \tag{2.4}\\
& =\hat{p}_{i^{*}}(\alpha) \oplus \hat{p}_{j^{*}}(\beta) & & \text { if } \quad Z_{p^{i}} \neq Z_{p j},
\end{array}
$$

using lemma 1.2. Let \hat{p} be the map: $c(f) \rightarrow c(p f)$ which is the natural extension of p and consider the commutative diagram

We assert that

$$
\begin{aligned}
\mu_{p f f} \cap Z_{p^{i}} & =0 & & \text { if }
\end{aligned} \quad \begin{array}{ll}
Z_{p^{i}} \neq Z_{p \jmath} \\
& =Z_{p^{2}}
\end{array} \quad \begin{array}{ll}
\text { if } & \\
Z_{p^{i}}=Z_{p \jmath}
\end{array}
$$

The case of $Z_{p^{\imath}} \neq Z_{p j}$. By (2.4) there exists a map

$$
q: c(p f) \longrightarrow c\left(\hat{p}_{i} \alpha\right) \vee c\left(\hat{p}_{j} \beta\right)
$$

such that $q \mid M_{2}^{n} \vee M_{j}^{n+1}=\imath d$ and $q_{*}\left(\mu_{p f}\right)=\mu \hat{p}_{i^{\alpha}}+\mu \hat{p}_{j} \beta$. Since $\mu_{\hat{p}_{i} \alpha}$ and $\mu \hat{p}_{j \beta}$ are both trivial we have that $\mu_{p f} \cap$ is also trivial.

The case of $Z_{p \imath}=Z_{p \jmath}$. For our purpose it is sufficient to consider Z_{p}-coefficient instead of Z-coefficient. Then we can take generators $x\left(\in H^{n}\left(c(p f) ; Z_{p}\right)\right)$ and $y\left(\in H^{n+1}\left(c(p f) ; Z_{p}\right)\right)$ such that $\beta_{2} x$ and $\beta_{1} y$ both generators, where β_{2} denotes the Bockstein operator. Thus, using Kronecker product and (2.3), we have

$$
\begin{aligned}
\left\langle x, \mu_{p f} \cap \beta_{\imath} y\right\rangle & = \pm\left\langle x \cup \beta_{\imath} y, \mu_{p f}\right\rangle= \pm\left\langle\beta_{\imath} x \cup y, \mu_{p f}\right\rangle \\
& = \pm\left\langle y, \mu_{p f} \cap \beta_{\imath} x\right\rangle= \pm 1 .
\end{aligned}
$$

These show our assertion, and therefore the proof of (2) is completed.
3. The proof of Theorem A and B.

First we replace a space of type ($n, n+1 ; G$) with $c(f)$ by lemma 2.1. Let $G=G_{1} \oplus G_{2}$ and let $Z_{v i}(x), Z_{p j}(y)$ be direct summands of G_{1} and G_{2} respectively. By the decomposition

$$
\begin{aligned}
& \pi_{\#}\left(M_{G}^{n} \vee M_{G}^{n+1}\right)=\pi_{\#}\left(M_{G}^{n}\right) \oplus \pi_{\#}\left(M_{G}^{n+1}\right) \oplus \operatorname{Hom}(G, G) \\
= & \pi_{\#}\left(M_{G_{1}}^{n}\right) \oplus \pi_{\#}\left(M_{G_{2}}^{n}\right) \oplus \pi_{\#}\left(M_{G_{1}}^{n+1}\right) \oplus \pi_{\#}\left(M_{G_{2}}^{n+1}\right) \oplus\left[G_{1}, G_{2}\right] \oplus \operatorname{Hom}(G, G),
\end{aligned}
$$

where we identify G_{i} with $\pi_{n+1}\left(M_{G_{i}}^{n+1}\right)$, we may suppose that f has the representation

$$
f=\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}+\sum_{x, y} s[x, y]+i d .
$$

For fixed $Z_{p i}\left(x_{0}\right)$ and $Z_{p}\left(y_{0}\right)$, let p_{0} be the map $M_{G}^{n} \rightarrow M_{2}^{n}$ induced by the projection $G_{1} \rightarrow Z_{p^{2}}\left(x_{0}\right)$ and let p_{0}^{r} be the composite map

$$
M_{G_{1}}^{n} \longrightarrow \text { prop }^{\longrightarrow} \longrightarrow M_{\imath}^{n} / S^{n}=S^{n+1} \xrightarrow[r y_{0}]{\longrightarrow} M_{G_{2}}^{n+1} .
$$

Consider the map $F_{r}: M_{G}^{n} \vee M_{G}^{n+1} \rightarrow M_{G}^{n} \vee M_{G}^{n+1}$ defined by $F_{r} \mid M_{G_{1}}^{n+1}=$ identity, $F_{r} \mid M_{G_{2}}^{n+1}=$ identity, $F_{r} \mid M_{G_{2}}^{n}=$ identity and $F_{r} \mid M_{G_{1}}^{n}=$ identity $+p_{0}^{r} . \quad F_{r}$ is clearly a homotopy equivalence and we prove
(1) $F_{r^{*}}\left(\alpha_{2}\right)=\alpha_{2}, \quad F_{r^{*}}\left(\beta_{\imath}\right)=\beta_{\imath} \quad(\imath=1,2)$
(2) $F_{r^{*}}([x, y])=[x, y]$
(3) $F_{r^{*}}\left(\alpha_{1}\right)=\alpha_{1}+p_{0}^{r} *\left(\alpha_{1}\right)$
(4) $F_{r^{*}}(\imath d)=\imath d+r\left[x_{0}, y_{0}\right]$.

For, (1) and (2) are obvious by the definition of F_{r} and (3) follows from $E \pi_{2 n}\left(M_{G_{1}}^{n-1}\right)=\pi_{2 n+1}\left(M_{G_{1}}^{n}\right)$. Since it is easy to obtain

$$
F_{r^{*}(\imath d)}=\imath d+\sum_{x, y} a[x, y]
$$

we must determine a for each x, y. Now consider the commutative diagram

$$
\begin{aligned}
& \begin{array}{c}
M_{G_{1}}^{n} \vee M_{G_{1}}^{n+1} \vee M_{G_{2}}^{n} \vee M_{G_{2}}^{n+1} \longrightarrow M_{G_{1}}^{n} \vee M_{G_{1}}^{n+1} \vee M_{G_{2}}^{n} \vee M_{G_{2}}^{n+1} \\
p_{x}^{n} \vee p_{y}^{n+1} \vee p_{x}^{n} \vee p_{y}^{n+1} \downarrow
\end{array} \\
& M_{\imath}^{n} \vee M_{\imath}^{n+1} \vee M_{\jmath}^{n} \vee M_{\jmath}^{n+1} \xrightarrow[G_{r}]{\longrightarrow} M_{\imath}^{n} \vee M_{\imath}^{n+1} \vee M_{\jmath}^{n} \vee M_{\jmath}^{n+1}=X_{x, y},
\end{aligned}
$$

where $G_{r}=\imath d \vee \imath d \vee \imath d \vee \imath d\left((x, y) \neq\left(x_{0}, y_{0}\right)\right)$, p_{x}^{n} is the map $M_{G}^{n} \rightarrow M_{\imath}^{n}$ induced by the projection $G \rightarrow Z_{p^{i}}(x)$, and

$$
G_{r}=\left(\imath d+r y_{0} \circ M_{\imath}^{n} / S^{n}\right) \vee \imath d \vee \imath d \vee \imath d \quad\left((x, y)=\left(x_{0}, y_{0}\right)\right) .
$$

Then we have

$$
G_{r^{\prime}}(\imath d)=\imath d+a[x, y] .
$$

Let α_{x}, β_{x} be generators for $H^{n+1}\left(M_{2}^{n} ; Z_{p k}\right)$ and $H^{n+1}\left(M_{2}^{n+1} ; Z_{p k}\right)(k=\mathrm{mim}$ $(\imath, j))$ respectively and we denote by $\hat{X}_{x, y}$ the mapping cone for $\imath d \in \pi_{\#}\left(X_{x, y}\right)$. In the cohomology ring $H^{*}\left(\hat{X}_{x, y} ; Z_{p k}\right)$, we have

$$
\alpha_{x} \cup \beta_{x}=a \text { generator and } \beta_{x} \cup \beta_{y}=0
$$

On the other hand, in the cohomology ring $H^{*}\left(c\left(G_{r}(\imath d)\right)\right.$, we have $\beta_{x} \cup \beta_{y}=$ $a(1)$. Hence the proof of (4) follows from

$$
\begin{aligned}
a(1)=G_{r^{*}}\left(\beta_{x}\right) \cup G_{r^{*}}\left(\beta_{y}\right) & =\beta_{x} \cup \beta_{y}=0 \quad\left((x, y) \neq\left(x_{0}, y_{0}\right)\right) \\
& =\beta_{x} \cup\left(r \alpha_{x}+\beta_{y}\right)=r(1) \quad\left((x, y)=\left(x_{0}, y_{0}\right)\right) .
\end{aligned}
$$

Thus the proof of Theorem A is completed by using iteratedly F_{r} for various r.

Especially we have
Corollary 3.1. Let $G=\sum_{p} \sum_{i} \sum_{p^{2}}$ be the direct-sum decomposition of G. Then $P(n, n+1 ; G)$ has the same homotopy type as the connected sum of $P\left(n, n+1 ; Z_{p^{2}}\right)$ s.

Next we consider the proof of Theorem B. Let $G=\sum_{p} \sum_{2} \sum_{p^{2}}$ and let x be the generator of a $Z_{p^{2}}$-component. We denote by $M_{i}^{n}(x)$ the Moore space corresponding to the Z_{p}-component generated by x. By Corollary 3.1 we may assume that $P(n, n+1 ; G)$ has a decomposition

$$
P(n, n+1 ; G)=(\underset{x}{\vee} M(x)) \bigcup_{f} e^{2 n+2}, \quad f=\oplus_{x} \sigma_{x} \quad\left(\sigma_{x}=f_{x}+f_{x}^{\prime}+\imath d\right)
$$

where $M(x)$ is the space $M_{i}^{n}(x) \vee M_{\imath}^{n+1}(x)$ and $\sigma_{x} \in \pi_{\#}(M(x))$. If $P(n, n+1 ; G)$ is S-reducible we can know from Proposition 1.7 that

$$
f_{x}=0 \quad \text { and } \quad f_{x}^{\prime} \in\left[\pi_{n+1}\left(M_{2}^{n+1}(x)\right), \pi_{n+1}\left(M_{2}^{n+1}(x)\right)\right]
$$

Then, by applying the map F_{r}, the proof is completed.
§ 4. π-manifolds.
We describe a closed smooth manifold as a manifold of type ($n, n+1 ; G$) if it's underlying Poincaré complex is of type ($n, n+1 ; G$).

If M is a π-manifold of type $(n, n+1 ; G), M$ is S-reducible and hence it's homotopy type is unique with respect to n and G by Theorem B. Conversely we prove

Proposition 4.1. If K is a S-reducible Poincaré complex of type $(n, n+1 ; G)$, then K has the homotopy type of a π-mannfold.

Proof. Consider the product manifold $S^{n} \times S^{n+2}$ and let ι be the generator of $\pi_{n}\left(S^{n} \times S^{n+2}\right)$. Since $S^{n} \times S^{n+2}$ is a π-manifold, a new π-manifold K_{m} is obtained from killing the class $m c$ (Theorem 2 of [1]). Clearly K_{m} is a π-manifold of type ($n, n+1 ; Z_{m}$) and hence it's homotopy type is unique. Then the proof is completed by Theorem B and Corollary 3.1.

Next, for the proof of Theorem C, we prove
Proposition 4.2. Let $n \equiv 0,1$ mod 4. Then manıfolds of type $(n, n+1 ; G)$ are all π-manifolds.

Proof. Let M be a manifold of type $(n, n+1 ; G)$ and let ν_{M} be the stable normal bundle for M. By lemma 2.1 we may suppose

$$
M=\left(M_{G}^{n} \vee M_{G}^{n+1}\right) \cup e^{2 n+2} \quad \text { (up to homotopy) }
$$

Let P be the natural map $M \rightarrow S^{2 n+2}=M / M_{G}^{n} \vee M_{G}^{n+1}$. Then, from Puppe's sequence, we obtain two isomorphisms

$$
\begin{array}{ll}
P^{*}: Z=\left[S^{2 n+2}, B O\right]_{0} \longrightarrow[M, B O]_{0} & (n \equiv 1 \bmod 4) \\
P^{*}: Z_{2}=\left[S^{2 n+2}, B O\right]_{0} \longrightarrow[M, B O]_{0} & (n \equiv 0 \bmod 4) .
\end{array}
$$

Thus, there exists a bundle ξ over $S^{2 n+2}$ with $P^{*}(\xi)=\nu_{M}$. Since the Thom space $T\left(\nu_{M}\right)$ is S-reducible and P is of degree $1, T(\xi)$ is also reducible, hence we have $J(\xi)=0$. If $n \equiv 1 \bmod 4, J(\xi)=0$ is equivalent to $\xi=0$. Therefore we have $\nu_{M}=p^{*}(\xi)=0$. If $n \equiv 1 \bmod 4, \xi$ is determined by it's Pontrijagin class. Using Hirzeburch formula for ν_{M} and Index $(M)=0$, we can know that the top Pontrijagin class of ν_{M} is zero. Thus we get $\xi=0$, i. e. $\nu_{M}=0$.

Now Theorem C is clear from Proposition 4.2. Finally we note
Proposition 4.3. Let M be an almost parallerizable manifold of type $(n, n+1 ; G)$. Then M is a π-manrfold and hence it's homotopy type is unique with respect to n and G.

Proof. Let ν_{M} be the stable normal bundle for M. Since the restriction $\nu_{M} \mid M_{G}^{n} \vee M_{G}^{n+1}$ is trivial, the proof follows from the same argument as the proof of Proposition 4.2.

References

[1] J. W. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Differential Geometry : Symposia in Pure Math, A. M. S. 1961, 39-55.
[2] C. T.C. Wall, Manifolds-Tokyo 1973, 429-430.
Dept. of Math.
Tokyo Inst. of Technology.
Oh-okayama Meguro-ku,
Tokyo, Japan.

