
S. SASAO AND H. TAKAHASHI
KODAI MATH. J.
2 (1979), 139—147

HIGHLY CONNECTED POINCARE COMPLEXES

Dedicated to Professor A. Komatu on his 70th birthday

BY SEIYA SASAO AND HIDEO TAKAHASHI

Introduction.

We are interested in the following problem proposed by Wall in [2]
"Classify up to homotopy (n—reconnected Poincare complexes of dimension 2 n + l
and 2rc+2."

In this paper we shall discuss the case of dimension 2n+2 under some addi-
tional conditions. Let K be a Poincare complex which is (n—l)-connected and
of dimension 2n+2. If K has the same rational homology as the sphere, then
the homology H*(K;Z) is as follows

H0(K;Z)=Z=H2n+2(K;Z)

Hi(K;Z)=0 for other dimensions,

where G denotes a finite abelian group. We denote by P(n, n + l G) the com-
plex K such as above and call it a Poincare complex of type (n, n + 1 G). Then
our main results are

T H E O R E M A. Let n ^ 3 and G ( g ) Z 2 = 0 . Then P(n, n + l G) has the same

homotopy type as the connected sum of P(n, w + l Gi) and P(n, w + l ; G 2 ) if G is

a direct sum of Gλ and G 2 .

T H E O R E M B. Under the same conditions as Theorem A , if P(n, n + l G) is
S-reducible it's homotopy type is unique with respect to n and G.

By applying these theorems to the case of manifolds we shall prove

THEOREM C. Let M be a (n — l)-connected rational homology sphere which is a
smooth manifold of dimension 2n+2 with no 2-torsιon. Then M is uniquely de-
termined up to homotopy by homology for n=0, 1 mod 4.

The case of G 0 Z 2 ^ O (essencially, G is a 2-group) is more complicated,
therefore we shall discuss it in the subsequent paper.
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The plan of this paper is as follows. First, in § 1, we study the homotopy
of Moore spaces and in § 2 characterize Poincare complexes of type (n, n + 1 G).
In § 3 we shall prove Theorem A and B, and in § 4 the proof of Theorem C shall
be given. Throughout this paper we assume that groups G,H,-~ are finite abelian
with no 2-torsion and nΞ>3.

§ 1. Homotopy of Moore spaces.
We denote by MG the Moore space of type (n, G) and by # the integer 2n + l.

We first note the following easy

LEMMA 1.1. πi(Mg) is trivial for i=n-\-l, n+2.

Now we define a homomorphism

μrh : ^(MSVMΪ/ 1 ) — > Horn (G, H)

by μUf)=μfΓλ: G=#» + 1 (MS Z)=/P + 1 (c(/) Z) — ^

i W c ( / ) Z)=Hn+1(M»H

+1 Z)=tf ,

where c(/) denotes the mapping cone for a map / : S ^ ^ M & V M ^ 1 and μf is
the oriented generator of H2n+2(c(f) Z). Let h be a map Mn

G\/Mn

H

+1 -» M£, VMS 1 ,
Clearly Λ is decomposed into the sum of four maps;

Ax: M& — > Mg, , h2: Ml — > M^1, h3: MY1 — > MG, and h,: M^+ 1 -> Mγ,\

Then, from the commutative diagram

Hn+I(c(f)

Λ? |
H*»(c(hf)

Z) —
IJ-s

Z) —

—>Hn+Mf);

>Hn +i(c(A/)

Z)

Z),

we obtain

LEMMA 1.2. (ΓAe naturality of μ%)

Now we prove

PROPOSITION 1.3. π#(MavM^+ 1)=τr#(Ma)0π ί t(MS ι- 1)0Hom(G, i/)

Proof. The proof follows from the standard isomorphism

;r # (MSVM^=;r # (MS)©π # (M^^

if we can show that the restriction μ% on the third factor is an isomorphism.

Thus, by using isomorphisms

where Λ denotes the smash product, the proof can be reduced to the case of
G—Zvx and ZpJ. Let a be the generator of
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Then there exists a map φ : c(f) -* M^xM1}?1 (/=3α) such that φ* : H2n+2(c(f),Z)
-> H2n+2(M%XMY1 Z) is surjective and ^ |MgvM^ + 1 =identity. Consider the
commutative diagram

Zpi=H»+1(c(f) Z)

) > Hn+1(M»GxM»H

+1',Z)=ZpJ.
<P*(μ/)Γ\

Then the proof is obtained from φ*(μf)r\l = pJ-k(Y) (k=min(ι, ;))•
Now we investigate the Λf-fold suspension

EN: ^ ( M vMr 1 )—>π^ + N (M 7 ί + N VMξ + 1 + n ) (N—> oo),

where M" denotes M^ for G=Zpt. First, in the decomposition given by Proposi-
tion 1.3, we can easily obtain

£(Hom(Z p . ,Z P 0)=0 and £-^(O)n?r#(Mr+1)=Cirn+i(Mr+1), ίr#+i(M?+1)],

where [, ] denotes the Whitehead product. Next, let M? i00 be the reduced product
for Mn

τ. Using π#+1(M?>oo, M;0=0 and the homotopy exact sequence of the pair
(Mj.oo, M?), we have

LEMMA 1.4. E : π#(Mί) — > 7r*+1(M?+1) is injective.

For the investigation of £ : τr#+1(Mί+1) -* 7Γ#+2(M?+2) we define a homomor-
phism hn: π2n{Mΐ)-^Zpι as follows. Let c(/)=M?U£ # be the mapping cone for
a map / : S2n -> M? and let α, /3, r be generators of Hn(c(f);Zpl), Hn+\c(f);Zpl)
and H2n+\c(f);Zpl) respectively. Then put μff\(a\Jβ)=hn(f).

LEMMA 1.5. (1) hn{Eπ2n^{Mr1))=^

(2) if n is even, hn is trivial
(3) if n is odd, hn is surjective

Proof. (1) follows from the definition of hn and (2) is deduced from apply-
ing the Bockstein operator. For (3), consider the boundary homomorphism 9:
π2n+i(M?(O0, M?)=Zpl -> ττ2n(M?). We assert

Λn(9(l))=a generator of Zv%.

Clearly there exists a map ψ: c(/)->M?>oo such that ^ | M ^ = identity and
0*: H2n+1(c(f) Z)=Z -^ H2n+1(Mtoo) Z) is surjective. Then our assertion follows
from the cohomologyring structure of M?)CO.

LEMMA 1.6. E2: π*(M?) — τr*+2(M?+2) xs injective.

Proof. Consider the diagram
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i
Zv% Zpι

If n is even, the proof follows from lemma 1.4 and (1) of lemma 1.5.
If n is odd, j is surjective by (1) and (3) of lemma 1.5, and hence i is injective.
Thus the proof is completed.

Thus, from combining lemmas, we have

PROPOSITION 1.7. The kernel of EN is the subgroup

On+ 1(M?+ 1), * n + 1 (Mj + 1 ) ]0Hom(Z p t , ZpX).

Now let cn+1 be the generator of πn+1(M?+1) and define the map vr: M?V
Mΐ+1 — MΐVMΐ*1 by y r |M?+ 1=identity and y r |M?=identity+π n + 1 ofd/S n . For the
later, we note

L E M M A 1.8. For ιd^Horn (Zpl, Zpι)aπ#(M?VM?+1) we have vr£id)=r[_cn+ί, cn+1~]
+ιd.

Proof. Since EN(ιd)=0, by Proposition 1.8, vrSιd) has a representation

for some integers x and j>. Then y—1 follows from the naturality of cup-
product and x=r is easily deduced from the cohomology ring structure of the
mapping cone for id.

§2. Poincare complexes of type (n, n + l G).
First we note

L E M M A 2.1. P ( n , n + l G) /ιαs ί/ιg same homotopy type as the mapping cone
for a map f:S*-> Mn

GVMn

G

+1.

Remark: This is not true in the case of G(g)Z2Φθ.

Proof Let X be a Poincare complex of type (n, n + l G). Since π ΐ (Z)=0
(O^ί^n — 1) and ττn(Z)=G, we may regard MG as a subcomplex of X. Then
we have

using lemma 1.1 and the homotopy-homology exact sequence of the pair (X, MG).
Hence there is a map g: MG

+1 -»X such that

^ : Hn+1(M«G

+1 Z) — > /fn+1(A- Z)
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is an isomorphism. Then, since the map idVg: M£VMG

+1 -»X induces an
isomorphism of homology up to dimension 2 n + l the proof is completed by the
standard argument.

Thus, from the point of view of homotopy, we can replace a complex of
type (n, n + l G) with c(f).

LEMMA 2.2 c(f) is a Poincare complex if and only if f((Ξπ#(MGvMG

+1)) is
contained in the subgroup

Proof. The part "only if" follows from the definition of decomposition in
Proposition 1.3. For the part "if" we must show that two homomorphisms

(1) μfΓ\: i/n + 1(c(/) z) —> Hn+Mf) z)

(2) μfΓ\: H^\c(f) Z) —> HMf) \ Z)

are both isomorphisms, where μf denotes the generator of H2n+2(c(f) Z).
Clearly (1) holds by the definition. Let Zpι, ZpJ be two direct summands of

G and let pt (pj) be the projection G —> Zv% (Zpi). Since pt, p3 naturally induce
the maps

Pi'.Ml-^Mΐ and p3: Mn

G

+1 —> M?+ 1 (M?=MS p t ),

we have the map

ptVpj=p : Mn

G\/Mn

G

+1 — > MΐVM^1.

On^the other hand, by lemma 1.2, we may suppose that / has a representation
/ = α φ β ® z d (Proposition 1.3). Then we have

P*(f)=t>Λa)®PAβ)®id if Zpi=ZpJ (2.3)

=pΛa)ΘΪ>Λβ) if ZpiΦZp3, (2.4)

using lemma 1.2. Let p be the map : c(/) -+ c(ί/) which is the natural extension
of p and consider the commutative diagram

ZpJ=H»+\c(pf) Z)

We assert that

μpfr\Zpi=Q if Zpt

=Zpi if Zpi=Zpj .

The case of ZpιΦZpJ. By (2.4) there exists a map
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q: c(pf)—>c(pia)Vc(pjβ)

such that q\M?\/M]+1 = ιd and q*(μPf)=μpia
Jrμpjβ Since μ%%a and μ$jβ are both

trivial we have that μpfr\ is also trivial.
The case of Zpι=ZpJ. For our purpose it is sufficient to consider Zp-coeffi-

cient instead of Z-coefficient. Then we can take generators x(^Hn(c(pf); Zp))
and y(^Hn+ί(c(pf) \ZP)) such that βτx and β3y both generators, where βt denotes
the Bockstein operator. Thus, using Kronecker product and (2.3), we have

O , μpfrΛβty>=±<χKJβιy, μpf>=±<βιχ\Jy, μpf>

These show our assertion, and therefore the proof of (2) is completed.

3 . The proof of Theorem A and B.
First we replace a space of type (n, n + l G) with c(f) by lemma 2.1. Let

G ^ G i φ G g and let Zvi(x), Zpj(y) be direct summands of G1 and G2 respectively.
By the decomposition

π#(MSVMS+ 1)=π#(MS)0π#(Ma+ 1)© Horn (Gf G)

lf G 2 ] 0 H o m ( G , G),

where we identify Gt with πn+^M7^1), we may suppose that / has the represen-
tation

f=a1+a2

Jrβ1 + β2Jr Σ six, y^+id .
x,y

For fixed Zpi(xQ) and ZpJ(y0), let p0 be the map Mg -»M? induced by the
projection Gx-^Z^Uo) and let pi be the composite map

Mn

Gl — > Mn

t — > M?/Sn=Sn+1 — > Mn

G\
ι.

Po ry0

Consider the map Fr: MGVM%+1-> MGVMn

G

+1 defined by F r | M g + 1 = i d e n t i t y ,
F r |MSj 1=identity, Fr\MG2=identity and / v I M ^ i d e n t i t y + ^ J . Fr is clearly a
homotopy equivalence and we prove

(1) Fr*(a2)=a2, F^βx)=β% ( ι=l , 2)

(2) Fr.([x, ^ ] ) = [ ^ Λ

(3) F r (α 1)=α 1+ί5.(α 1)

(4) F1-(ιd)

For, (1) and (2) are obvious by the definition of Fr and (3) follows from
Eπ2n{Mn

G[
1)=π2n+1{MG^). Since it is easy to obtain

Fr*(ιd)=ιd+ Σ alx, yl
X.y
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we must determine a for each x, y. Now consider the commutative diagram

Mn

Ql\ίMn

Gγ\/Mg2VMlγ — > Mn

Gl

p%w pn

y

+1v pxv PT1 \ Fr

M?VM?+1VMn

3\JMnj+1—> MΐVMnSιVMn

3

Gr

where GΎ=ιd\fιd\Jιd\Jιd ((*, y)±?(x0, y0)), pi is the map M%-+M? induced by
the projection G —• Zvi(x), and

Gr=(ιd+ry0<>M»/Sn)\/ιdVιdVιd ((*, y)=(x0, y0))

Then we have
Gr*(ιd)=ιd-\ra[x, y^ .

Let ax, βx be generators for Hn+1(Mn

z ;Zpk) and Hn+\Mn

τ

+ι ;Zpk) (k=mιm
(ι, j)) respectively and we denote by Xx,y the mapping cone for ιd<=π#(Xx,y).
In the cohomology ring H*(Xx,y;Zpk), we have

ax\Jβx=a generator and β^βy^O.

On the other hand, in the cohomology ring H*(c(Gr(ιd)), we have βxVJβy =
α(l). Hence the proof of (4) follows from

a(l)=GΛβχ)VGΛβy)=βχVβv=O ((x, y)Φ(x0, y0))

= βAJ{rax + βy)^r(l) {{x, y)=(x0, y0)).

Thus the proof of Theorem A is completed by using iteratedly Fr for var-
ious r.

Especially we have

COROLLARY 3.1. Let G = Σ Σ Σ,Zpι be the direct-sum decomposition of G. Then
p i

P(n, n + l G) has the same homotopy type as the connected sum of P(n, n+1 Zpι)s.

Next we consider the proof of Theorem B. Let G = Σ Σ ΈZpι and let x be
p i

the generator of a Zpt-component. We denote by M?(x) the Moore space cor-
responding to the Zpt-component generated by x. By Corollary 3.1 we may
assume that P(n, n+l G) has a decomposition

P{n, n + l;G)=(VM(x))Ue*»+*, f=Θσx (σx=fx+fί+ιd),
X f X

where M(x) is the space M?(i)ViV/;+1(i) and σx£Ξπ*(M(x)). If P{n, n + l G) is
S-reducible we can know from Proposition 1.7 that

Λ = 0 and /ίe[7cn + 1(M?+ 1U)), ?rn+1(Mj+1(x))]

Then, by applying the map Fr, the proof is completed.
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§ 4. π-manifolds.
We describe a closed smooth manifold as a manifold of type (n, n + l G) if

it's underlying Poincare complex is of type (n, n+l G).
If M is a 7r-manifold of type (n, n + 1 G), M is S-reducible and hence it's

homotopy type is unique with respect to n and G by Theorem B. Conversely we
prove

PROPOSITION 4.1. If K is a S-reducible Poincare complex of type (n, n+1; G),
then K has the homotopy type of a π-manifold.

Proof Consider the product manifold SnxSn+2 and let c be the generator
of πn(SnxSn+2). Since SnxSn+2 is a π-manifold, a new ττ-manifold Km is obtained
from killing the class me (Theorem 2 of [1]). Clearly Km is a π-manifold of
type (n, n+l;Zm) and hence it's homotopy type is unique. Then the proof is
completed by Theorem B and Corollary 3.1.

Next, for the proof of Theorem C, we prove

PROPOSITION 4.2. Let n=Q,l mod 4. Then manifolds of type (n, n + 1 G) are
all π-mamfolds.

Proof Let M be a manifold of type (w, n + l G) and let v^ be the stable
normal bundle for M. By lemma 2.1 we may suppose

M=(Mn

GVMn

G

+1)Ve2n+2 (up to homotopy)

Let P be the natural map M-> S2n+2=M/MGVMG

+1. Then, from Puppe's se-
quence, we obtain two isomorphisms

P* : Z=lS2n+2, BO\ — > [M, BOlo (n = l mod4)

—> [M,

Thus, there exists a bundle ξ over 5 2 n + 2 with P*{ζ)=vM- Since the Thorn
space T(vM) is S-reducible and P is of degree 1, T(ξ) is also reducible, hence we
have J(ξ)=O. If n = l mod 4, J(ξ)=Q is equivalent to f=0. Therefore we have
^^r=^*(f)=:0. If n = l mod 4, f is determined by it's Pontrijagin class. Using
Hirzeburch formula for vM and Index (M)=0, we can know that the top Pon-
trijagin class of vM is zero. Thus we get ξ=0, i. e. vM=0

Now Theorem C is clear from Proposition 4.2. Finally we note

PROPOSITION 4.3. Let M be an almost parallerizable manifold of type
(n, ?2 + l G). Then M is a π-manifold and hence it's homotopy type is unique with
respect to n and G.

Proof. Let vM be the stable normal bundle for M. Since the restriction
vM\MG\/MG

+1 is trivial, the proof follows from the same argument as the proof
of Proposition 4.2.
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