S. SASAO AND H. TAKAHASHI
KODAI MATH. J.
2 (1979, 139—147

HIGHLY CONNECTED POINCARE COMPLEXES
Dedicated to Professor A. Komatu on his 70th birthday

By SEIYA SASAO AND HIDEO TAKAHASHI

Introduction.

We are interested in the following problem proposed by Wall in [2]
“Classify up to homotopy (n—1)-connected Poincaré complexes of dimension 2n-+1
and 2n-+2.”

In this paper we shall discuss the case of dimension 2142 under some addi-
tional conditions. Let K be a Poincaré complex which is (n—1)-connected and
of dimension 2n-+2. If K has the same rational homology as the sphere, then
the homology H.«(K;Z) is as follows

H\(K; Z)=Z=Hn+:,(K ; Z)
Hy(K;Z)=G=H,.«(K;Z)
H(K;Z)=0 for other dimensions,

where G denotes a finite abelian group. We denote by P(n, n+1;G) the com-
plex K such as above and call it a Poincaré complex of type (n, n+1;G). Then
our main results are

THEOREM A. Let n=3 and GRZ,=0. Then P(n, n+1;G) has the same
homotopy type as the connected sum of P(n, n+1;G,) and P(n, n+1;G,) 1f G s
a direct sum of G, and G,.

THEOREM B. Under the same conditions as Theorem A, 1f P(n, n+1;G) 15
S-reducible 1t’s homotopy type 1s unique with respect to n and G.

By applying these theorems to the case of manifolds we shall prove

THEOREM C. Let M be a (n—1)-connected rational homology sphere which 1s a
smooth manifold of dimension 2n+2 with no 2-torsion. Then M 1s umiquely de-
termined up to homotopy by homology for n=0, 1 mod 4.

The case of GRZ,>0 (essencially, G is a 2-group) is more complicated,
therefore we shall discuss it in the subsequent paper.
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The plan of this paper is as follows. First, in §1, we study the homotopy
of Moore spaces and in §2 characterize Poincaré complexes of type (n, n+1; G).
In § 3 we shall prove Theorem A and B, and in §4 the proof of Theorem C shall
be given. Throughout this paper we assume that groups G, H, --- are finite abelian
with no 2-torsion and n=3.

§1. Homotopy of Moore spaces.
We denote by M7Z the Moore space of type (n, G) and by # the integer 2n-+1.
We first note the following easy

LEMMA 1.1. =(Mg) is trivial for i=n-+1, n42.
Now we define a homomorphism
v mae(MgN M3t — Hom (G, H)
by vh(N=psn: G=H""(Mg; 2)=H"c(f); Z) —
Hyiic(); 2)=Hoii(My* ; Z)=H,
where ¢(f) denotes the mapping cone for a map f: S*¥ — MiVM%™* and p, is

the oriented generator of H,,..(c(f);Z). Let h be a map MZ\V M%* — M7\ M3,
Clearly A& is decomposed into the sum of four maps;

hit Mg —> Mg, hy: Mg —> My, hy: MG — M% and h,: My — M7
Then, from the commutative diagram

H™(c(f); Z) Hyi(c(f); Z)
h¥ Hr h g

Hn+1(6(hf);Z) Hn+1(c(hf);Z)’

PrrM
we obtain

LEMMA 1.2. (The naturality of p$) pS (hf)=hapG(f)RT.
Now we prove
PROPOSITION 1.3. wy(MEV My =n,(M%)P ns(My*)PH Hom (G, H)
Proof. The proof follows from the standard isomorphism
T(MENV My ) =mo(M3) D wo(M3 ) D 0m s ia(MEX MG, MGV M)
if we can show that the restriction pf on the third factor is an isomorphism.
Thus, by using isomorphisms
Tal(MEX M, M MY ) =10 s (MEAMY ) =1 .(MEEH N M)

where A denotes the smash product, the proof can be reduced to the case of
G=Z, and Z,;. Let a be the generator of



HIGHLY CONNECTED POINCARE COMPLEXES 141
T (MEX MY, MaN My Y= Hy (((MEX MY, M M Z) .

Then there exists a map ¢ : ¢(f) — Mg X M4 (f=0a) such that gy : Hynie(c(f), Z)
— Hypio(MEX MY Z) is surjective and ¢| M2Z\V M7 '=identity. Consider the
commutative diagram

Zpi=H"c(f); Z) Hysi(e(1); 2)=2 ps

2N

Zy=H" (Myx My ; Z) Hyod(MEX MY Z2)=2,, .

el )N

Then the proof is obtained from @u(u,)N\1=p’"*(1) (k=min (z, f)).
Now we investigate the N-fold suspension

EV: m (M M) —> mau y(MHY NV M) (N —> 00),

where M7} denotes My for G=Z,.. First, in the decomposition given by Proposi-
tion 1.3, we can easily obtain

E(Hom (Z,, Zp))=0 and E-Y(O)Nma(My™)=[rp(M*™), (M7,

where [,] denotes the Whitehead product. Next, let M7 ., be the reduced product
for M?. Using my(M? .., M?)=0 and the homotopy exact sequence of the pair
(M? .., M?), we have

LEMMA 14. E: 7,(M?) —> mep,(M?%Y) is injective.

For the investigation of E: my (M) — my(M?*2) we define a homomor-
phism h,: 7., (M?) — Z,. as follows. Let ¢(f)=M7Ue* be the mapping cone for
a map f:S* — M7 and let «, B, r be generators of H™(c(f); Zy), H*"*(c(f); Zp)
and H?™*(c(f); Z,.) respectively. Then put pfN(aUB)=h,(f).

LEMMA 1.5. (1) hp(Emyn_(M2-1)=0
(2) 1f n is even, h, 1s trivial
3) if n 1s odd, h, 1s surjective

Proof. (1) follows from the definition of %, and (2) is deduced from apply-
ing the Bockstein operator. For (3), consider the boundary homomorphism 0:
Tont1(M? ey MD)Y=Z 2 — mn(MT). We assert

h.(d(1))=a generator of Z,..

Clearly there exists a map ¢: c(f) — M? . such that ¢|My=identity and
Ot Hynii(c(f); Z2)=Z — Hypir(M? «; Z) is surjective. Then our assertion follows

from the cohomologyring structure of M7, ..
LEMMA 1.6. E?: 7,(M?) — mso(M7%%) 15 njective.

Proof. Consider the diagram
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my(M7)

o M) —> oML, M%) —> 1y (M) —> 7, (M)
] I [

Zy Zy

If n is even, the proof follows from lemma 1.4 and (1) of lemma 1.5.
If n is odd, j is surjective by (1) and (3) of lemma 1.5, and hence i is injective.
Thus the proof is completed.

Thus, from combining lemmas, we have

PROPOSITION 1.7. The kernel of E¥ 1s the subgroup
[T s(MTHY), Taey(MP*)I@ Hom (Zye, Zp1) «

Now let ¢,.+, be the generator of z,.,(M7*') and define the map v,.: M7V
M+t — M\ M7+ by v, | M+ =identity and v,| M7?=identity+7¢,,,0id/S™. For the
later, we note

LEMMA 1.8. ForideHom (Z 1, Zp)Cro(MyV M2 we have v, (id)=7{tp11, tns1]
+1d.

Proof. Since E¥(1d)=0, by Proposition 1.8, v,,(1d) has a representation
Vn(ld>:x|:ln+lr ‘n+1:|+y(id)

for some integers x and y. Then y=1 follows from the naturality of cup-
product and x=r is easily deduced from the cohomology ring structure of the
mapping cone for id.

§2. Poincaré complexes of type (n, n+1;G).
First we note

LEMMA 2.1. P(n, n+1;G) has the same homotopy type as the mapping cone
for a map f: S* — M\ ME*.

Remark: This is not true in the case of G&®Z,+0.

Proof. Let X be a Poincaré complex of type (n, n+1;G). Since 7,(X)=0
0=i<n—1) and 7#,(X)=G, we may regard M% as a subcomplex of X. Then
we have

7Tn+1(X)E7fn+1(X’ Mp=H, (X, ME)anH(X)EG ’

using lemma 1.1 and the homotopy-homology exact sequence of the pair (X, M%).
Hence there is a map g: M2** — X such that

gx: Hoos(M3*5 2) —> Hypin(X 5 Z)
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is an isomorphism. Then, since the map i1 dVg: M%V M2 — X induces an
isomorphism of homology up to dimension 2n+1 the proof is completed by the
standard argument.

Thus, from the point of view of homotopy, we can replace a complex of

type (n, n+1;G) with c(f).

LEMMA 2.2 ¢(f) 1s a Powncaré complex 1f and only 1f f(€nm. (M%N M%) 1s
contained n the subgroup

To(ME) D (M) D Aut G .

Proof. The part “only if” follows from the definition of decomposition in
Proposition 1.3. For the part “if” we must show that two homomorphisms

Q) pr: HYc(f); Z) —> Hypii(c(f); Z)
@) pr: H**(c(f); Z) —> Hy(c(f); 2)

are both isomorphisms, where p; denotes the generator of H,,..(c(f); Z).

Clearly (1) holds by the definition. Let Z,., Z,; be two direct summands of
G and let p; (p,) be the projection G — Z,, (Z,;). Since p,, p, naturally induce
the maps

pit M —> M2 and p,: Myt — M7+ (My=My,.),
we have the map
DiVhi=p: MV My —s M2V M+,

Onzthe other hand, by lemma 1.2, we may suppose that f has a representation
f=a® BB:d (Proposition 1.3). Then we have

(=0 @ (B Did  if Zpi=Zyp, (2.3)
=pu(a) D p () if Zpi#Zps, (24)

using lemma 1.2. Let p be the map: c¢(f)— c¢(pf) which is the natural extension
of p and consider the commutative diagram

G=H""*(c(f);Z) Hy(e(f); 2)=G
T s B l Px=1;
Zpy=H"*c(pf); 2) H(c(pf); Z)=Zp .

HprN\

We assert that
UosNZpi=0 if Z,i#Zpy

=Zp if Zyu=Z.

The case of Z,.#Z,;,, By (2.4) there exists a map
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q: c(pf) —> c(pi)Vc(p;P)
such that ¢| M7V Mi*'=1d and g«(pp)=pp;a+ps,6. Since usp,, and ps s are both
trivial we have that p,,n is also trivial.

The case of Z,,=Z,,. For our purpose it is sufficient to consider Z,-coeffi-
cient instead of Z-coefficient. Then we can take generators x(€H™(c(pf); Zp))
and y(e H***(c(pf); Z,)) such that 8,x and B,y both generators, where 8, denotes
the Bockstein operator. Thus, using Kronecker product and (2.3), we have

<x1 ﬂpfmﬁ1y>:i<xu,81y; ﬂpf>:i<,31xuy; /«‘pf>
=i<yr ,u])fmﬂzx>:il .
These show our assertion, and therefore the proof of (2) is completed.

3. The proof of Theorem A and B.

First we replace a space of type (n, n+1;G) with ¢(f) by lemma 2.1. Let
G=G,®G, and let Z,i(x), Z,i(y) be direct summands of G, and G, respectively.
By the decomposition

To(MV M) =n,(M)D (Mg D Hom (G, G)
= (Mp) o (M) © 74 (M3,) D (M) B [G, Ga]D Hom (G, G),
where we identify G, with 7,.,(M%}"), we may suppose that f has the represen-
tation
f=0(1+0(2+‘81+‘82+ > slx, y1+id .
.y

For fixed Z,i(x,) and Z,,(y,), let p, be the map Mg — M? induced by the
projection G, — Z,.(x,) and let pj be the composite map

Mg, — M7 — M7}/S"=5""" — M.
Do YYo

Consider the map F,: MgV Mg+ — MgV Mg+ defined by F,| Mg '=identity,
F, | Mg} '=identity, F.|Mg,=identity and F,|Mg =identity+p;. F, is clearly a
homotopy equivalence and we prove

(1) Fr‘(az):az s FT‘(ﬁl):'[B’L (lzl; 2)

@) Folx, yD=Lx, ¥]

3) Fr*(al):a1+l76*(a1)

4) Fu(d)=1d+rlx,, o).

For, (1) and (2) are obvious by the definition of F, and (3) follows from
Eron(M3;)=rn5,4,(M%). Since it is easy to obtain

F.(ud)=1d+ xZ; alx, ¥]
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we must determine a for each x, y. Now consider the commutative diagram
M3 N M Mg, Myt —> Mg N ME Mg, Mt
A ARGVl L PV VAV
Mo My Moy Mo+t —s My Moy My Mi=X,

T

where G,=1dV1dVidVid ((x, y)=(x, ¥)), Pt is the map M% — M? induced by
the projection G — Z,i«(x), and

G,=0d+ry, e M7/S)VidVidVvid  (x, y)=(x0, o).

Then we have
G(d)=1d+alx, v].

Let «,, B, be generators for H"“(AM;’;Z,,;Z) and H"*'(M7*';Z,) (k=mim
(1, j)) respectively and we denote by X, , the mapping cone for idE€ (X, ,).
In the cohomology ring H*(X,, ,;Z,:), we have

a;\JB,=a generator and B,\UB,=0.

On the other hand, in the cohomology ring H*(c(G,(1d)), we have B,UB,=
a(l). Hence the proof of (4) follows from

a)=G(B)IG(B,)=BUB,=0  ((x, 3)#(x0, o))
=B U(ra+B,)=r(1)  (x, 3)=(x0, o).

Thus the proof of Theorem A is completed by using iteratedly F, for var-
ious 7.
Especially we have

COROLLARY 3.1. Let G=2 X X Z,. be the direct-sum decomposition of G. Then
D 1
P(n,n-+1; G) has the same homotopy type as the connected sum of P(n,n+1;Z,)s.
Next we consider the proof of Theorem B. Let G=3X > > Z,. and let x be
D 1

the generator of a Z,.-component. We denote by M7(x) the Moore space cor-
responding to the Z,.-component generated by x. By Corollary 3.1 we may
assume that P(n, n+1;G) has a decomposition

Pn, n+1;Q)=(y MDY e, [=@os  (0.=fatfitid),

where M(x) is the space M?(x)VM?*(x) and o, ns(M(x)). If P(n, n+1;G)is
S-reducible we can know from Proposition 1.7 that

f2=0 and fi€ [, (M7*(x)), mnes(M7+(x))]

Then, by applying the map F,, the proof is completed.
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§4. rm-manifolds.

We describe a closed smooth manifold as a manifold of type (n, n+1;G) if
it’s underlying Poincaré complex is of type (n, n+1;G).

If M is a m-manifold of type (n, n+1; G), M is S-reducible and hence it’s
homotopy type is unique with respect to n and G by Theorem B. Conversely we
prove

PrROPOSITION 4.1. If K 1s a S-reducible Powncaré complex of type (n, n+1;G),
then K has the homotopy type of a m-manifold.

Proof. Consider the product manifold S*xS™*? and let ¢ be the generator
of 7,(S"XS"*?). Since S®XS™*?is a rm-manifold, a new z-manifold K,, is obtained
from Killing the class me¢ (Theorem 2 of [1]). Clearly K, is a =z-manifold of
type (n, n+1;Z,) and hence it’s homotopy type is unique. Then the proof is
completed by Theorem B and Corollary 3.1.

Next, for the proof of Theorem C, we prove

PROPOSITION 4.2. Let n=0,1 mod 4. Then manifolds of type (n, n+1;G) are
all m-manifolds.

Proof. Let M be a manifold of type (n, n+1;G) and let v,, be the stable
normal bundle for M. By lemma 2.1 we may suppose

M=(MZ\ M%) Je?m+? (up to homotopy)

Let P be the natural map M — S?**>=M/Mz\/ M%*!. Then, from Puppe’s se-
quence, we obtain two isomorphisms

P*: Z=[S***%, BO],—> [M, BO], (n=1mod4)
P*: Z,=[5***%, BO],—> [M, BO], (n=0mod4).

Thus, there exists a bundle & over S?*** with P*(§)=vy. Since the Thom
space T'(vy) is S-reducible and P is of degree 1, T(€) is also reducible, hence we
have J(§)=0. If n=1 mod 4, J(§)=0 is equivalent to §=0. Therefore we have
vuy=p*&)=0. If n=1 mod 4, § is determined by it’s Pontrijagin class. Using
Hirzeburch formula for v, and Index (M)=0, we can know that the top Pon-
trijagin class of vy is zero. Thus we get £§=0, i.e. v,;=0.

Now Theorem C is clear from Proposition 4.2. Finally we note

PROPOSITION 4.3. Let M be an almost parallerizable manifold of type
(n,n-+1;G). Then M is a w-manifold and hence it’s homotopy type 1s unique with
respect to n and G.

Proof. Let vy be the stable normal bundle for M. Since the restriction
v | M ME** is trivial, the proof follows from the same argument as the proof

of Proposition 4.2.
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