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TIONS OF A BUNDLE-LIKE METRIC
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§ 1. Introduction.

We have known some interesting theorems about the behaviour of geodesies
of a bundle-like metric:

THEOREM A (Y. Muto [6]). A geodesic of a fibred riemannian manifold
tangent to an "allowed curve" at one point is always an "allowed curve" if and
only if "the fibres are parallel".

THEOREM B (B. L. Reinhart [10]). A geodesic of a bundle-like metric is ortho-
gonal at one point if and only if it is orthogonal at every point.

The topological obstructions for the existence of the foliation with bundle-
like metric were studied by R. Sacksteder [11], J. S. Pasternack [8, 9] and others.
But of the conditions for the given riemannian metric of a foliated manifold to
be a boundle-like metric very little is definitely known (cf. [5]). Of cource, not
all foliations have bundle-like metrics [10]. The completeness of a bundle-like
metric was studied by one of the authors [3, 4].

In this note, we will give some differential geometric conditions for a given
riemannian metric < , > on a foliated riemannian manifold of codimension one to
be a bundle-like metric in terms of geodesies. Our main theorem is the following :

THEOREM C. Suppose that a foliated riemannian manifold is of codimension
one and that all leaves are totally geodesic with respect to the given riemannian
metric < , >. Then the metric < , > is a bundle-like metric with respect to the
foliation if and only if all geodesies with "angle a" to a leaf at one point have
"constant angle a" to each leaf at every point.

Furthermore, we can give a proof of the following theorem:

THEOREM D. The given riemannian metric < , > on a foliated riemannian
manifold of codimension one is a bundle-like metric with respect to the foliation
if and only if all geodesies orthogonal to a leaf at one point are orthogonal to
each leaf at every point.
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We remark that this theorem was announced by A. M. Naveira [7].
And we will give some typical examples in connection with the above

theorems.

§ 2. Notations.

We shall be in C°°-category. Let M be a connected (£+g)-dimensional rieman-
nian manifold with riemannian metric < , > and riemannian connection 7 with
respect to < , >. A foliated riemannian manifold M of codimension q has, by
definition, an integrable subbundle E of fibre dimension p of the tangent bundle
TM over M. Then M is covered by the flat coordinate charts {(U, x\ •••, χp,
xp+1, ••• , xp+q)}(cf. [10]). Let Q be the quotient bundle TM/E. The restriction
of a vector bundle to U and the set of all cross-sections of a vector bundle are
denoted by \π and Γ(-) respectively. The natural projection π : TM-* Q induces
a map π : Γ{TM) —> Γ(Q). [ , ] denotes the bracket operator. Adopted the
following ranges of indices and the corresponding summation convention; If!* A,
B, C, ••• ύp+q, lύi, ], k, ••• SP and p+l^a, β, γ, ••• ^

§3. Bott partial connection and bundle-like metric.

DEFINITION 3.1. In each flat coordinate chart (U χA), a frame {Xu ••, Xpr

Xp+1, ••- , Xp+q] is an adapted frame to E if {Xlf ••• , Xv) and {π(Xp+1), -~ ,

π(Xp+q)} span Γ(E\u) and Γ{Q\V) respectively.
In each (£/; xΛ), frames {d/dx\ d/dxa) and {d/dx\ d/dxa-ta

kd/dxk} (ta

k are
functions on U) are adapted frames to E (cf. [8, 9], [10], [12, 13]).

DEFINITION 3.2. In each flat coordinate chart (U xA), an adapted frame
{Elf Ea} to E is called a basic adapted frame to E if Eι=d/dx% and Ea=d/dxa

-ta

kd/dxk.
For a basic adapted frame {Elf Ea),

(3.1) π(lX,E*J)=0 for any X^Γ{E\V)

holds.
In each (U xA), by the suitable choice of functions ta

k, the given rieman-
nian metric < , > has a local expression

(3.2) < , > \v=gxfc
k

9 x<)θι®θ>+gaβix
k, χr)θ«®θϊ ,

where {θ\ θa) is the dual frame of the adapted frame {Eτ, Ea) (cf. [10], [12]).
We notice that d e t ( ^ ι ; ) ^ 0 implies det (gaβ)^®- Then the metric < , > induces a
metric « , » on ft that is, for any Sίf S2<ΞΓ(Q\U),

(3.3) <S19 S 2 » Iu=g a β (x k , x

where πiS^S, and π(S2)=S2 (cf. [8]). « , » is well-defined.
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DEFINITION 3.3. A map 7 : Γ(E)xΓ(Q)-> Γ{Q) is defined by

(3.4) %S=π(£X, Si)

for any X^Γ(E) and St=Γ(Q), where S<ΞΓ(TM) such that π(S)=S. The map
7 is well-defined by the integrability of E. 7 is called the Bott partial connec-
tion on Q (cf. [1]).

DEFINITION 3.4. The Bott partial connection 7 on Q is metrical with respect
to <€ , > if

(3.5) <$χSu S 2» + «5 1 , ΊxS2>=X€Slf S2>

for any X^Γ{E\V) and any Slf S2<ΞΓ(Q\U).

DEFINITION 3.5. The riemannian metric < , > is a bundlelike metric with
respect to E (or with respect to the foliation) if, in its local expression (3.2),

(3.6) dgaβ/dx*=0,

that is, gaβ(xk, xr)==ga£xr)'
Take the basic adapted frame {Eif Ea) to E in each (U, xΛ). We notice that

(3.6) means

(3.7) Et<Ea,Eβ>=0.

LEMMA 3.1. // the riemannian metric < , > is a bundlelike metric with respect
to E, then the Bott partial connection 7 is metrical with respect to the metric < , >.

Proof. Take the basic adapted frame {Et, Ea) to E. For any Slf S2^Γ(Q\u)f

suppose that Si=f\E%+ftEa and S2=fiEι

Jrf?Ea satisfy πiS^S, and π(S2)=S2

respectively. Then, from (3.3), (3.4) and (3.6), we have

Jf Sj), 5 2 »

and

=Ej<S1, 5 2 > .

Therefore, we have
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<ΊXSU S 2» + «S 1 , ΊxS2>=X<Slf S 2>

for any X<ΞΞΓ(E\U\ q. e. d.

§ 4. Proofs of THEOREM C, D and examples.

The following lemma is our fundamental tool.

LEMMA 4.1. The metric < , > is a bundle-like metric if and only if, for each
flat coordinate chart (U xA), there exists an orthonormal adapted frame {Xτ, Xa)
to E such that lxπ(Xa)=0 for any X<=Γ(E\u).

Proof. Suppose that the metric < , > is a bundle-like metric. We have an
orthonormal frame {Xz, Xa} from the basic adapted frame {Elf Ea] to E by the
Schmidt's orthogonalization process to {Ex} and {Ea} respectively. Clearly,
{Xlf~ ,Xp} and {π(Xp+1), •••, π(Xp+q)} span Γ{E\V) and Γ(Q\u) respectively.
Then {Xlf Xa) is an orthonormal adapted frame to E. By (3.1), (Ea, E3y=ga,3(xr)
implies π(lXι, X J ) = 0 . Therefore, we have Vxπ(Xa)=0 for any X^Γ(E\u).

Conversely, let {Xlf Xa) be an orthonormal adapted frame to E such that
VX7r(X«)=0 for any XtΞΓ(E\Ό). Since the basic adapted frame {Eιt Ea] to E
satisfies (Eιt Ea>=0, we can write Ea of form Ea=hίXβ where H are functions
on U. Then we have

ΊEιπ(Ea)=π(lEu £ J )

=π([£,,

=hiπ(LEt,

And, by (3.1), %iπ(Ea)=π(ίEt, £ J ) = 0 . Then we have Et{hί)π{X?)=0, and
=0 by the linearly independence of π(Xβ). Thus we have

= 0 .

Therefore, by (3.7), the metric < , > is a bundle-like metric. q. e. d.

THEOREM 4.1. The metric < , > is a bundle-like metric if and only if, for
each flat coordinate chart (U xA), there exists an orthonormal adapted frame
{Xt, Xa} to E such that <7 X α Z t , Xβ>+<^XβXt, Xa>=0.

Proof. Suppose that the metric < , > is a bundle-like metric. By lemma 3.1,
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there exists an orthonormal adapted frame {X%, Xa) to E such that Ίxπ(Xa)=0
for any Xe.Γ(E\u) Then we have

<iXaxt, xβ>=<iXixa, xβ>-<ίxt, x«i, xβ>

=<iXixa, xβy,

since ΐXiπ(Xa)=0 implies IXt, Xa2eΓ(E\σ). Therefore, we have

ι> Xa>

= 0 .

Conversely, suppose that there exists an orthonormal adapted frame {Xτ, Xa)
to E such that (ΊXaXτy Xβ> + <?JXβX%, Xa}=0. Then we can write the basic
adapted frame {Et, EJ to E of form Ei=h\Xj and Ea^hlXγQrt and hi are
functions on U). Thus we have

Et<Ea, Eβ>

hr

a)δrτ+hr

a<lX3, Xrl, Xτ»

+ h{hih}(lXτXJ, XT}

j(hl)dn+hl<Xr, IX„ XJ»

} r T 3

Since we have

XJLhWrr+hXlX,, Xrl, X>

=XJ(hl)δrτ+<ZXlι h&Xri, X,>

Ej, xτy

= 0 (from (3.1)),
we have

Ei(Ea, Eβ>

Therefore, the metric < , > is a bundle-like metric. q. e. d.
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For each flat coordinate chart (U xA), let {wι, wa} be the dual frame of an
orthonormal adapted frame {Xlf Xa) to E, that is, wA(XB)—δB. Let σ(t) and Z(t)
be a curve in U and a vector field along σ(t) respectively. Then we have

(4.1) w Λ C 7 i ^

+ ιvB(Z(t))wi(σ(t))>

where σ(t)=dσ(t)/dt and dwΛ=wBAwi(cί. [14] p. 19 (1.6.12)). If we put wi
=Γ£Bw

c, then we have 7 Z XB—Γ^BXA and
c

(4.2) ΓiB+Γ$Λ=0.

(4.1) implies

(4.3) ιoA(^cnZ(t))^-~-

Proof of THEOREM D.
Let σ(t) be any geodesic orthogonal to each leaf at every point parametrized

by arc-length. By (4.3) we have

But V;( ί)(7(0=0 and wι(σ(t))=0 imply

ΓUi P+iWp+ί(σ(t))wp+\σ(t))=0.

Then we have Γl+1 p+ί~0, and this equality with (4.2) implies

Then we have

Therefore, by theorem 4.1, the metric < , > is a bundle-like metric.
The converse assertion is clear from theorem B. q. e. d.
DEFINITION 4.1. Suppose that M is a foliated riemannian manifold of codi-

mension one (if necessarily, M is supposed to be transversally orientable). A
geodesic σ(t) parametrized by arc-length has an angle a(t0) to a leaf at t=t0 if,
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in a flat coordinate chart (U xA) containing the point σ(t0), (σ(t), Xp+1)\t=t0

~cosa(tQ)φ0 holds for an orthonormal adapted frame {Xly •••, Xp, Xv+ί} to E.
σ(t) has the constant angle a to each leaf at every point if α(0—constant=α,
that is, <<Kf), ^j>+i>=constant=cosa=£0.

Proof of THEOREM C.
We have, from (4.3),

(4.4) w*+KV,«Xt))

(4.2) implies

(4.5) ΓrΛi=Γfr\ ^=0.

Since all leaves are totally geodesic, we have

(4.6) Γ?j+i=0.

Suppose that a geodesic σ(t) satisfies (ά(t), Z p + 1>=constant^O. Then we have

(4.7) -^-(ιv^\a(t)))=0 and
at

(4.8) V ; ( t ) * ( 0 = 0 .

Then, from (4.4), we have

and

Γ^\ twK*(t))=0 (by (4.7)).

As, by assumpsion, w\σ(ή) are arbitrary,

that is, <VZ p + 1Z ι, Xp+1>—0. Therefore, the metric < , > is a bundle-like metric.
Conversely, let a geodesic σ(t) parametrized by arc-length have an angle a

to a leaf at t=t0. It is sufficient to prove that (σ(t), Xp+1>=constant=cos a for
an orthonormal adapted frame {Xlf — , Xp, Xp+1} to E on (U xA) containing
the point σ(Q. (4.4), (4.5), (4.6) and (4.8) imply
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that is, <</(/), Λ'/J+1/—constant —cos α. Therefore, σ{t) has the constant angle a
to each leaf at every point. q.e.d.

EXAMPLE 4.1. A family of irrational spirals on a flat torus T2 of dimension
two defines a foliation with a bundle-like metric whose leaves are totally geodesic.
Then any geodesic has the constant angle a to each leaf at every point.

EXAMPLE 4.2. Let R2 be a two dimensional euclidean space and λί=R2

~ {(0, 0)}. Then M is a foliated manifold whose leaves are Lr={(x, y) <ΞM\X2+y-
= r2, r>0}. The canonical metric of R2 induces a bundle-like metric on Λ/. Then
each leaf L r is not totally geodesic, and, for example, a geodesic y=c (c is a
non-zero constant) has distinct angle to each leaf at every point.

EXAMPLE 4.3. Let Rz be a three dimensional euclidean space and

with canonical metric < , /. If we put χ—cos<psinθ,, y—sϊnφsϊnθ and z~-cos0,
then S2=^{(ψ, θ)\0^ψ<2π, 0<_θ<π}. For any 'ε>0, we set S2

s={(φ, θ)<=S2\ε<θ
<rr —ε}. A family of the great circular parts given by o=constant defines a
foliation on Sί whose leaves are totally geodesic with respect to the restricted
metric ^ , > I si of < , > on S'i But the metric < , > | .92 is not a bundlelike
metric with respect to the foliation. Let σ{ί) be a great circle (geodesic) on SI
through the two points (φ0, 0O) and (φίf θ0) where φn-f-π^-ψx (mod2π) and θ0

Φπ/2. Then σ(t) is not orthogonal to the leaf defined by (p=<p0, but orthogonal
to the leaf defined by <p=(<pri+<pi)/2.

Remark. In the case of codimension q^2, suppose that the bundle Q (or
the orthogonal complement E'- of E) is trivial. Let {Xlf Xa) be an orthonormal
adapted frame to E. And suppose that a geodesic σ(t) parametrized by arc-
length has the same normal cosine la(t) at t = t0, that is,

where the normal cosine la(t) is defined by

If the metric < , > is a bundle-like metric and all leaves are totally geodesic,
then, for each t,

lp+i(t)=lp+i(t)= •" =/ J,+ g(0=constant=/p + 1(ίo).

EXAMPLE 4.4. Let Rn be an w-dimensional euclidean space and Sn'\r) an
(n—l)-dimensional standard sphere of radius r in Rn. Q and Q* are the
quaternion number field and the pure quaternion respectively. We can iden-
tify (x\ x\ x\ x*)<=R* with x1 l-\-x2Ί^r.x" j-rxΛ'k(ΞQ and (y\ y\ J3)CΞ/?8 with

Then we write S\l) and SHl/2) of forms {αeQI !|fl|| = l}
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and {6eQ*| | |6||=l/2} respectively, where || || is the canonical norm on Q. We

define a map φ: S8(l)->S2(l/2) by φ(a)=(l/2)d i a(ά is the conjugate to αeQ).

This is well-defined. Then φ: S3(l) — S2(l/2) is the hopf fibering and a rieman-

nian submersion with connected totally geodesic fibres (cf. [2]). Thus S3(l) is

a foliated riemannian manifold of codimension two with leaves as fibres and the

metric is a bunlde-like metric. The leaf through αe5 3 ( l) is given by the inter-

section of the plane in 7?4 spanned by vectors a and i-a with S3(l). The tangent

space at αeS 3(l) is spanned by ι*a,j a, k a. An orthonormal adapted frame

{Xlf Xo, X,} is given by X1(a)=ι-a, X2(a)=j a and XΛ(a)=k-a. Take a great

circle (geodesic) σ{t) parametrized by arc-length and suppose that, at t=t0, <ά(t),

X2y\t=to=(σ(t), Xsy\t^t0=l(to)Φθ. Then σ(i) is the intersection of the plane in

R* spanned by vectors σ(ί0) and ά(t0) with S3(l). Therefore, we have (ά(t), X2}

=<ά(t), X3>=/(0=constant=/(/0) for every t.
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