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§1. Introduction.

We have known some interesting theorems about the behaviour of geodesics
of a bundle-like metric:

THEOREM A (Y. Muto [6]). A geodesic of a fibred riemannian manifold
tangent to an “allowed curve” at one point is always an “allowed curve” if and
only if “the fibres are parallel”.

THEOREM B (B.L. Reinhart [10]). A geodesic of a bundle-like metric is ortho-
gonal at one pownt if and only if it is orthogonal at every point.

The topological obstructions for the existence of the foliation with bundle-
like metric were studied by R. Sacksteder [117, J.S. Pasternack [8, 9] and others.
But of the conditions for the given riemannian metric of a foliated manifold to
be a boundle-like metric very little is definitely known (cf. [5]). Of cource, not
all foliations have bundle-like metrics [10]. The completeness of a bundle-like
metric was studied by one of the authors [3, 4].

In this note, we will give some differential geometric conditions for a given
riemannian metric ¢ , > on a foliated riemannian manifold of codimension one to
be a bundle-like metric in terms of geodesics. Our main theorem is the following :

THEOREM C. Suppose that a foliated riemannian manifold is of codimension
one and that all leaves are totally geodesic with respect to the given riemannian
metric < ,>. Then the metric { ,) is a bundle-like metric with respect to the
Sfoliation if and only if all geodesics with “angle a” to a leaf at ome point have
“constant angle a” to each leaf at every point.

Furthermore, we can give a proof of the following theorem:

THEOREM D. The given riemannian metric { ,> on a foliated riemannian
manifold of codimension one is a bundle-like metric with respect to the foliation
if and only if all geodesics orthogonal to a leaf at one point are orthogonal to
each leaf at every point.
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We remark that this theorem was announced by A.M. Naveira [7].
And we will give some typical examples in connection with the above
theorems.

§2. Notations.

We shall be in C*-category. Let M be a connected (p+¢)-dimensional rieman-
nian manifold with riemannian metric ¢ , > and riemannian connection V with
respect to { , >. A foliated riemannian manifold M of codimension ¢ has, by
definition, an integrable subbundle E of fibre dimension p of the tangent bundle
TM over M. Then M is covered by the flat coordinate charts {(U, x%, ---, x?,
xPH o x2r9(cf. [10]). Let @ be the quotient bundle TM/E. The restriction
of a vector bundle to U and the set of all cross-sections of a vector bundle are
denoted by - |y and I'(-) respectively. The natural projection 7 : TM — Q induces
a map z: I'(TM)—1'(Q). [ ,] denotes the bracket operator. Adopted the
following ranges of indices and the corresponding summation convention; 1<A,
B, C, - §1)‘HI, 1=, Iy Ry =P and P+1§a: ;B: 7, =ptq.

§3. Bott partial connection and bundle-like metric.

DEFINITION 3.1. In each flat coordinate chart (U; x4), a frame {X,, ---, X,,
Xp+1, o> Xpigt 18 an adapted frame to E if {X,, -, X,} and {x(X,:), -+,
(X p+q)} span I'(Ely) and I'(Q|y) respectively.

In each (U; x*), frames {0/0x*, 0/0x%} and {d/0x}, 0/0x*—t,%0/0x*} (i.* are
functions on U) are adapted frames to E (cf. [8, 9], [10], [12, 137).

DEFINITION 3.2. In each flat coordinate chart (U; x4), an adapted frame
{E,, E,} to E is called a basic adapted frame to E if E,=d/0x* and E,=0/0x*
—t.*0/0xk.

For a basic adapted frame {E,, E,},

@B =([X, E.])=0  for any Xel'(E|y)

holds.
In each (U; x%), by the suitable choice of functions {,*, the given rieman-
nian metric < , > has a local expression

(32) o lo=gusxt, 10 Q0"+ gax*, x)0*R 67,

where {#*, <} is the dual frame of the adapted frame {E,, E,} (cf. [10], [12]).
We notice that det(g,,)+0 implies det (g,3)#0. Then the metric ¢ , > induces a
metric € , > on Q, that is, for any S,, S, (Qly),

(3.3) &Sy, S ly=gasx*, x)0%(5)0%S,),
where z(5)=35S, and =(5,)=S, (cf. [8]). < , > is well-defined.
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DEFINITION 3.3. A map V: I'(E)XI'(Q)— I'(Q) is defined by
(34) VxS=x(X, SJ)

for any XeI'(E) and S€I'(Q), where SeI'(TM) such that z(5)=S. The map
V is well-defined by the integrability of E. V is called the Boit partial connec-
twon on Q (cf. [1]).

DEFINITION 3.4. The Bott partial connection ¥ on Q is metrical with respect
to € , > if

(3.5) VxS, So>+<«S,, VxS.>=X<S,, S,>
for any Xel'(E|y) and any S, S,=1'(Q|p).

DEFINITION 3.5. The riemannian metric <, ) is a bundlelike metric with
respect to E (or with respect to the foliation) if, in its local expression (3.2),

(3.6) 0g.43/02'=0,

that is, gas(x*, 2)=gqs(x").
Take the basic adapted frame {E;, E,} to E in each (U, x*). We notice that

(3.6) means
3.7 EXE4 E»=0.

LEMMA 3.1. If the riemannmian metric { , > 1s a bundlelike metric with respect
to E, then the Bott partial connection N 1s metrical with respect to the metric £ , >.

Proof. Tgke the basic adapted frame {E,, E,} to E. For any S;, S.eI"(Qly),
suppose that S;=fi1E,+f{E, and S,=fiE,+f$E, satisfy =(S,)=S, and =(S,)=S,
respectively. Then, from (3.3), (3.4) and (3.6), we have

«¥5,S, S>> =<x((E,, §1), S.»
=gua0(LE,, $,16%S,)

=8asfxNEL()SE,
and
<<§EJS]} Sz>>+ <<S;, ﬁE’]SZ>>

=8afXNEL )i+ gusx) [TELS?)
=E{8afx") ST %)

=E (85048 1)0(S,))

=E;KS,, S;>.

Therefore, we have
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«xS, S +<S,, US> =X<S,, S,
for any XeI'(E|y). q.e.d.

§4. Proofs of THEOREM C, D and examples.

The following lemma is our fundamental tool.

LEMMA 4.1. The metric < , > 1s a bundle-like metric 1f and only if, for each
flat coordinate chart (U; x*), there exists an orthonormal adapted frame {X,, X.}
to E such that Nyn(X.)=0 for any Xel'(E|y).

Proof. Suppose that the metric ¢ , > is a bundle-like metric. We have an
orthonormal frame {X,, X,} from the basic adapted frame {E,, E,} to E by the
Schmidt’s orthogonalization process to {E,} and {E,} respectively. Clearly,
(X, -, X} and {n(Xpsr), -, 7(Xpe)} span I'(E|y) and I'(Qly) respectively.
Then {X,, X,} is an orthonormal adapted frame to E. By (3.1), (E., Ep>=gx")
implies 7([X,, X.])=0. Therefore, we have ¥,yz(X,)=0 for any XI'(E|y).

Conversely, let {X,, X,} be an orthonormal adapted frame to FE such that
Vyn(X)=0 for any XeI'(E|y). Since the basic adapted frame {E,, F,} to E
satisfies <E,, E,>=0, we can write F, of form E,=h{X,; where h% are functions
on U. Then we have

Ve, a(E)=r((E,, Ed)
=n(LE,, h%X;])
=hér(LE., Xz))+E{hi)a(X3)
=BV, m(Xo)+ Ei(hi)a(X5)
=E(h)r(X;).

And, by 3.1), Vg,n(E)=r(E,, E.])=0. Then we have E;(h%)x(X;)=0, and E,(hf)
=0 by the linearly independence of 7(Xs). Thus we have

EXEq, Ep=FEhLX,;, h§Xo>
= E.(ih36,.)
=0.
Therefore, by (3.7), the metric < , > is a bundle-like metric. g.e.d.

THEOREM 4.1. The metric { , > 1s a bundle-like metric if and only if, for
each flat coordinate chart (U; x4), there exists an orthonormal adapted frame
{X., X} to E such that <Ny X,, X,g>—l-<VXﬂXl, Xo=0.

Proof. Suppose that the metric < , > is a bundle-like metric. By lemma 3.1,
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there exists an orthonormal adapted frame {X,, X,} to E such that V7X7r(Xa)=0
for any X=I'(E|y). Then we have

Ny Xoy Xpp=x, Xo, Xpp—<[ X, Xol, Xp»
=y, Xa, X,
since Vy,7(X,)=0 implies [X,, X, J€I(E|y). Therefore, we have
iy Xoy X +<{Tx X0, Xo
=V, Xoy X+, Xp, Xo>
=Xi{Xa, X
=0.

Conversely, suppose that there exists an orthonormal adapted frame {X,, X,}
to E such that <Vy X, Xg)+<(Vy,X,, X,»=0. Then we can write the basic
adapted frame {E,, E,} to E of form E;=h’X, and E,=hiX/(h} and h% are
functions on U). Thus we have

EXE., Ep
=(Vg, B, Ep»+<Ey, Vg, Es
=Ry (X (h)d-+hi<CX,, X,J, Xo)

LR x Xy Xo)
+ IR X (h3); 43X, [X,, X))

TR Xy, Vg X .
Since we have
X, (hL)o-+hi<K[X,, X1, X

:XJ(/1£)57’7+<[X.7; hZ'XT]) X—>
'—<Xj(h£)X7” X->
=X, Ed], X

=0 (from (3.1)),
we have

ELEq, Eg
:h]L:hZ'hiS(<vX,X]; X:‘>+<VX7X17 Xr>)
=0.

Therefore, the metric ¢ , > is a bundle-like metric. g.e.d.
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For each flat coordinate chart (U; x4), let {w?, w*} be the dual frame of an
orthonormal adapted frame {X,, X.} to E, that is, w*(Xg)=04. Let ¢(¢)and Z(?)
be a curve in U and a vector field along o(t) respectively. Then we have

@) WA, 0 2= A (Z(0)

FwAZ()Hwile (),

where ¢(t)=do(t)/dt and dw=wBAws(cf. [14] p. 19 (1.6.12)). If we put wi
=["4zwC, then we have VXCXB:FéBXA and

4.2) I'4s+T'8,=0.
(4.1) implies

«3) WA 0 Z(0)= 5 (W Z(D)

F 8w Z(1))wC (1)) .

Proof of THEOREM D.
Let ¢(f) be any geodesic orthogonal to each leaf at every point parametrized
by arc-length. By (4.3) we have

W3 0=~ (G 0)

+wr(e(D)w’(o(t))

+ I praw? (6 (O)w(6(1)

+ I w(0(@)w?*(6(1)

+ s prrwP S (D)wP*1(6(D))
But V;6()=0 and w'(3(£))=0 imply

Iy paw? (o) (6()=0.

Then we have 1%, ,;,=0, and this equality with (4.2) implies

'zt =0,
Then we have
<vXp+1Xw Xp+1>:OE

Therefore, by theorem 4.1, the metric < , > is a bundle-like metric.
The converse assertion is clear from theorem B. qg.e.d.
DEFINITION 4.1. Suppose that M is a foliated riemannian manifold of codi-
mension one (if necessarily, M is supposed to be transversally orientable). A
geodesic ¢(¢) parametrized by arc-length has an angle a(t,) to a leaf at t=t, if,
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in a flat coordinate chart (U; x*) containing the point o(t,), <6(t), X 11> ]i=s4
=cos a(t,)#0 holds for an orthonormal adapted frame {X,, ---, X,, X,:,} to E.
o(t) has the constant angle a to each leaf at every pownt if a(t)=constant=q,
that is, <d(¢), X,+,>=constant=cos a#0.

Proof of THEOREM C.

We have, from (4.3),

(4 WP (T, (1)
=)
RO
T GO 6(0)
2w (O (1)

+ I3 paw? (e (@)w?*(6(1)) .
(4.2) implies

4.5) F?}.h:rﬁf{ p+l:0 .
Since all leaves are totally geodesic, we have
4.6) Irr1=0.

Suppose that a geodesic o(t) satisfies <{¢(t), X,+,>=constant+0. Then we have

@n —d(%—(w?’“(fr(t))):o and

(4.8) Vi ayd6(H)=0.
Then, from (4.4), we have

s aw(ewr* (6(1)=0,

and
Iy aw(e()=0  (by (4.7)).

As, by assumpsion, w*(¢(t)) are arbitrary,

that is, <Vx ., X,, X;+:>=0. Therefore, the metric ¢ , > is a bundle-like metric.

Conversely, let a geodesic ¢(¢) parametrized by arc-length have an angle «
to a leaf at f=¢,. It is sufficient to prove that <4(¢), X,,,>=constant=cos a for
an orthonormal adapted frame {X,, -+, X,, X,.,} to E on (U; x*) containing
the point o(t,). (4.4), (4.5), (4.6) and (4.8) imply
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d
R y[)-rl 1 A —
T (w? ' (6(t)))=0,

that is, <6(¢), .X,:+,--=constant=cos «. Therefore, ¢(¢) has the constant angle «
to each leaf at every point. q.e.d.

ExAMPLE 4.1. A family of irrational spirals on a flat torus 7% of dimension
two defines a foliation with a bundle-like metric whose leaves are totally geodesic.
Then any geodesic has the constant angle « to each leaf at every point.

ExaMPLE 4.2. Let R®* be a two dimensional euclidean space and \M-—=R?
—{(0, 0)}. Then VM is a foliated manifold whose leaves are L,={(x, y)=M|x*+3*
=r? r>0}. The canonical metric of R* induces a bundle-like metric on M. Then
each leaf L, is not totally geodesic, and, for example, a geodesic v=c (¢ is a
non-zero constant) has distinct angle to each leaf at every point.

ExAMPLE 4.3. Let R® be a three dimensional euclidean space and

S'={(x, ¥, DE R xt vt = 1)

with canonical metric < , ,. If we put x=cos ¢ sind,, v==sinsinf and z==cos 0,
then S*={(p, 0)|0=¢ <27, 0=<A<x}. For any ¢>0, we set Si={(p, )=Se<l
<z—e¢}. A family of the great circular parts given by ¢=constant defines a
foliation on S? whose leaves are totally geodesic with respect to the restricted
metric ¢, >y of <, > on SL But the metric 7 ,>|s is not a bundlelike
metric with respect to the foliation. Let ¢(/) be a great circle (geodesic) on S;
through the two points (¢, 6,) and (¢,, 6,) where ¢, +x=¢, (mod2z) and 6,
#m /2. Then ¢(t) is not orthogonal to the leaf defined by ¢=¢,, but orthogonal
to the leaf defined by ¢=(¢.-¢,)/2.

Remark. In the case of codimension ¢=2, suppose that the bundle ( (or
the orthogonal complement £ - of E) is trivial. Let {X,, X,} be an orthonormal
adapted frame to E. And suppose that a geodesic ¢(f) parametrized by arc-
length has the same normal cosine [,(t) at t={,, that is,

11)+1(t0):/p+2(t0): :1p+q(fo)f"70 f
where the normal cosine /,(t) is defined by
60, Xev=14(1).

If the metric < , > is a bundle-like metric and all leaves are totally geodesic,
then, for each ¢,

Lpri(O)=lpso(t)= -+ =l q(t)==constant=1,,(t) .

ExaAMPLE 44. Let R™ be an n-dimensional euclidean space and S™"!(r) an
(n—1)-dimensional standard sphere of radius » in R*. @ and Q* are the
quaternion number field and the pure quaternion respectively. We can iden-
tify (x%, x%, 2%, x")eR* with x'-1+x2a-baf+-x'-keQ and (3 % 3)ER® with
yleity?g+y-k=Q*  Then we write S*1) and S*1/2) of forms {e=@Q|lal=1}
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and {h=Q*||b|=1/2} respectively, where ||-|| is the canonical norm on Q. We
define a map ¢: S*(1) — S*1/2) by ¢(a)=(1/2)a-i-a(a@ is the conjugate to a=Q).
This is well-defined. Then ¢: S*%1)— S*1/2) is the hopf fibering and a rieman.
nian submersion with connected totally geodesic fibres (cf. [2]). Thus S%1) is
a foliated riemannian manifold of codimension two with leaves as fibres and the
metric is a bunlde-like metric. The leaf through a=S%1) is given by the inter-
section of the plane in R* spanned by vectors ¢ and i-a with S*1). The tangent
space at a=S%1) is spanned by i-aq, j-a, k-a. An orthonormal adapted frame
{X,, X,, X;} is given by X(@)=1-a, Xs(@)=)-a and X,(a)=k-a. Take a great
circle (geodesic) o(t) parametrized by arc-length and suppose that, at t=¢,, <&(2),
Xodli=tq=Ca(t), X>1i=t,=U(t,)#0. Then o(?) is the intersection of the plane in
R* spanned by vectors ¢({,) and &(t,) with S3(1). Therefore, we have (¢(¢), X
=<{(t), Xyp=I(t)=constant=[(t,) for every t.
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