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A NOTE ON ENDOMORPHISM RINGS OF ABELIAN
VARIETIES OVER FINITE FIELDS

BY TETSUO NAKAMURA

Let p be a prime and let A be a simple abelian variety over a finite field k
with pa elements. In this note we ask some sufficient conditions that the endo-
morphism ring of A over k is maximal at p. Our result includes the first part
of theorem 5.3 in Waterhouse [5]. The related facts should be referred to [5].

§ 1. Let Enάk(A) be the ring of &-endomorphisms of a simple abelian variety
A over a finite field k with pa elements. We shall always assume that Enάk(A)
is commutative. Then there exist a CM field E and an isomorphism iA: E-+
Enάk(A)®Q. Let R=ιΛ'\Enάk(A)) and let K be the totally real subfield of index
2 in E. Let fA be the Frobenius endomorphism of A over k and put π=ιA~\fA).
Then π is a Weil pa-numbeτ} i.e. an algebraic integer such that \π\2=pa in all
embeddings of E=Q(π) into C. Let w be a place of K above p and v be a place
of E with v I K/. Then we have the following three cases

(1) v(π)=0 or v(π)=v(pa).

\Δ) v(π)=v(p π ) .

(3) v{π)Φv{paπ~ι) and 0<v(π)<v(pa).

We call that w is of type (1) (resp., (2), (3)) if v satisfies (1) (resp., (2), (3)). This
is independent of the choice of v with v\w. Let Kw be the completion of K at
w and let

Gw—(Glt0)
ίKw:Qp1, if w is of type (1),

=(G 1 , 1 ) c J ί : « ' : β P ] , if w is of type (2),

^ G ^ ί + G , , , , if w is of type (3),

where s=s(w)=lKw: Qv~]v{.π)/v{pa) and t=t{w)=lKw\ Qp~]vf{π)/vf{pa) with the
other place v' of E above w;. Then the formal group A of A is isogenous to
ΣG w (over the algebraic closure of k.) (cf. Manin [1], Chap. IV).

Now let TPA be the Dieudonne module of A. Let W=W(k) be the ring of
Witt vectors over k and σ the automorphism of W induced by the Frobenius
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automorphism x —> xp of k. Let Jί^W^F, V~] be the (non-commutative) ring
defined by the relations FV=VF=p, Fλ=λaF and λV=Vλa for λt=W. Then
TPA is a left ^-module, W-free of rank 2 dim (A). It is a well known result of
Tate that

Enάk(A)®Zp^End_4 TPA.
Assume further that

(*) R contains the maximal order Oκ of K.
Then as TPA is a module over OK®ZP~ © Oκ , we have the corresponding

decomposition T ^ — 0 7\,, where O#,, is the ring of integers of Kw. We see

that Tw is a Dieudonne module whose corresponding formal group is isogenous
to Gw.

§2. THEOREM 1. Let the notations be as in § 1. We assume (*) and the fol-
lowings, for each w of type (2), Kw is an unramified extension over Qp of odd
degree and FTW=VTW, and for each w of type (3), FUw^TwC.Vsiw)Tw{say s(w)
<t(w).). Then R is maximal at p, i.e. R®ZP is the maximal order of E®QV.

Proof. Let L be the quotient field of W= W(k), i. e. L is the unramified
extension over Qp, of degree a. Put $=L®wJl^L[_Fy V]=L[_F, F " 1 ] . Let
®Eυ be the decomposition of EP=E®QP into fields. On L®QOEP^®{L®QOEV)

we have L acting by left multiplication and Ep by right multiplication. Let /„
be the residue degree of Ev/Qp. Put gυ—(fυ, a). Then LEυ has degree a/gv over
Ev and L0Eυ is a sum of g0 copies of the composite extension:

<ωβ, ω°

We define the action of α on L ® ^ by acting on the L-factor. Then for
<*!, •••, xgυy^(BLEΌ, we have σ<xlf •••, xgυ>=<x2, — , xgΌ, τUi)>, where τ = σ8υ

is the Frobenius automorphism of LEυ/Eυ. Now we can choose ιι^L®Ev with
NL®EυiEΌ(u)~π, where TV is the norm map. Define F—uσ. Then Fλ=λσF for all
λ^L, and Fa=π. Thus we have constructed an operation of & on L®Eυ and
hence on L®EP. Then as a ^-module

(For details of the above facts, see Chap. 5, [5].) As TPA is an cJ?-invariant
lattice in VVA, we may suppose that TPA is an ^-invariant lattice in L®EΌ.
Then Tw is a lattice in L®QpEwaL®Ep, where EW = E® KKW. Let /?w

= End^(Tw), then we clearly have

w\p

Now we claim that each Rw is the maximal order of Ew.
(i) The case that w is of type (1). Then w splits in E/K. Since π—paπ~1
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is a unit, we see that O * W M is maximal. As Rw^OKw[π~], Rw is maximal.
(ii) The case that w is of type (3). Then w also splits in E/K into v and

v'\ L®QpEw={L®QpEv)®(L®QvEv,). Take aya
f^LEv such that NLEυ(a)=π

and NLEυ(a')=paπ-\ We can put F = « l , •••, 1, α>+<l, - 1, α / »σ on (L<g)£υ)
0(L(g)£o,). Say v(ττ)< v /(τr)=ί;(ί oπM), then s = [Kw : QP3 v(ττ)/ι;(ία) and ί =
\_KW : Qp~]vf(π)/v(pa). Since T w is a PF(g)Oχw—module, we have a decomposi-

tion Γ w = •£ Tt, corresponding to the decomposition W®ZvOKw=®WOKχυ{g^gυ).

As Tw<g)ZpQp=L<g)QpEw, we have Tx®ZpQp^LKw®kE(=LEυ®LEυ,). Thus 7,
is a WOKw-free module of rank 2 and W[F*, V ̂ -invariant. As a WΌ#w-module
it has a basis of the form {λn\ 0), (μz, Λ

mi) with μt=0 or v(μt)<nlf where λ is a
prime element of OKw. From the assumption we have that V~sFtTw=p~Ψs+tTw

(ZTW hence for each i, p-ψ^'T^T^ Now p~ψs+t operates on T% by (δ, oOτ71,
where δ=a or •--aτh~ι/p', δ'=af ><x' — a'τh-ι/p* and h=(s+t)/g. Then ^ s F s + ί

(μ t, ^ m 0=(5r A (^ ι ) , ^ m 0 = f W n S 0)+)7(^l, ̂
r o ί) for some f, 7 G ^ ; hence ξλnι

=δτh(μι)-δ/μι. Now v(a)=v(π)/(a/g)=(gsv(p))/(s+t), hence ι;(δ)=0 and ^ 0 > 0
this implies ^ = 0 . Thus each Tx has a basis of the form (λn\ 0), (0, ̂ m ι) over
WOKw. This shows that Rw is maximal.

(iii) The case that w is of type (2). As Kw/Qp is an unramified extension
of odd degree and End/e(Λ) is commutative, w does not split in E/K. Let v be
the place of E above w. Suppose first that Eυ is unramified. As 2v(π)=a, a is
even and hence gΌ is also even. Now FTW = VTW implies that V~1FTw=p~1F2Tw

= TW and so p~ial^FaTw=-Tw. This shows that Rw^p~Ca/^π. Since /τCα/2)τr is
a unit in Rw, there exists a unit Wj in W®RW with NWΘRw/Rw(ιι1)=p~Ca/2')π (cf.
Prop. 7.3 and the proof of theorem 7.4 in [5], p. 554.). Put w2=<l, />, 1, A •••, 1, p>
eL(g)Eυ. Then u2σ(u2)=p and NL<S}Eυ,Eυ(u1ιι2)—π. Now we can put F=(uιU^)σ.
Since T w is ^®i?w-invariant, we have uίTw = Tw. As PF®/?W is invariant
under σ, we also have that σJ(u1)Tw = Tw(j = l, 2, •••.). As g'=g/2 is odd, we
have

'Tw=F(p-ψ2y8'-v/2Tw=FTw(ZTw .

It follows, by the definition of uly u2 and F, that u2σ
g'(Tw)dTw. As in case (ii)

we have a decomposition Tw = Q)Tt, corresponding to W®0Kw—Q)W0Kw. Here

Tt is invariant under F 5 " hence u2σ
g'(Tι)c:Tι. As a WOKw-modu\e Tτ has a

basis of the form (pnι, 0), (μlf pm%) with //t = 0 or v(μι)<nι. ιι2σ
3' operates on

Tt by

u2σ
g'(xly Xg'+i)=(xg> + i, pτixj), for (χlf xg,+ι)^Tτ.

Then applying the same argument as in the proof of theorem 5.3 in [5], p. 548,
we see that μτ=0; hence Tw = Q)Tι is invariant under the maximal order of Eυ.

Suppose next Ev is ramified over Kw. Choose an a^LEυ with Ar

LEv/EvM=π,
then we can put F=<1, ••• , 1, a}σ. We extend v to LEV naturally. As g=gv is
odd, we have from the assumption



126 TETSUO NAKAMURA

As F^=<α, - , α)σ^ and v(a)=g, we see that p~ig-1^2F8={λ> ••• λ>σs, where
λ=p-ig-1>/2a and v(λ)=l. Now decompose Tw into © T t , corresponding to W®OKw

= @WOKyΰ. Tx is invariant under F8 and has a basis of the form pn\ μ%+pm^c
with ^ G PFO^, μt=0 or w(μι)<nι, where c is a prime element of Ev. Then we
can also apply the argument in the proof of theorem 5.3 in [5] and we see
that Tw is invariant under the maximal order of Eυ. Therefore R®ZP=@RW

is maximal and the proof is completed.
REMARK. If Rw=Enάjι(Tw) is maximal, we can write out the condition of

a base of Tw (cf. p. 545 in [5]). Hence if Rw is maximal for a place w of K,
of type (3), it is easy to show, by a direct calculation, that Ftiw)TwdVsCw)Tw.

COROLLARY. Let α p =Sρec k[x]/(xp) be as in [2], 7.2-11. Assume that A is
isogenous to (G1>0)

TO+(G1,i)n for some m, n and α(^4)(=dim^Hom(α2?, A))=n. Assume
further (*) and that for each place w of K of type (2), Kw is an unramified ex-
tension of odd degree over Qp. Then R is maximal at p. (For the property of
a{A), cf. [2], [3], [4].)

Proof. Put T=J^TW, where the sum is taken over all w of type (2). Since
αG4)=dimΛ T/(F, V)T and ?2=dim, T/FT=dim, T/VT, we have that (F, V)T=FT
— VT. Hence our conclusion is obvious by theorem 1.

REMARK. This corollary is a result which includes the first part of theorem
5.3 in [5], p. 548 (a result due to Shimura) assume that i?(=End^(^4)) is commu-
tative and contains the maximal order of K. Assume also that p splits com-
pletely in K. Then R is maximal at p.

For, in this case, it is easy to see that ^4~(G :

1>o)m+(6 :

1>1)
n for some m, n,

and, for each w of type (2), Tv—d^', hence a(Tw)=l and therefore a(A)=n.

§ 3. LEMMA. Let M be a finite extension of Qp and N be a quadratic extension
of M. Let OM and ON be the maximal orders in M and N, respectively, and λ
be a prime element of OM Let R be an order in ON containing OM. Then there
exists a non-negative integer n such that R=0M

Jrλn0N.

Proof. Let c be an element in ON such that ON=OM[.c]. Then Rr\cOM

=cλn0M for some n^O. We see that

R=OM+cλnθM=OM+λnON.

Let π be a Weil £α-number such that its corresponding abelian varieties have
commutative endomorphism rings and an isogeny type (Gl,^

mjc(G1,^)n, (n>0) for
thier formal groups. Put E=Q(π) and let K be the totally real subfield of E of
index 2. We assume that, for each place w of K of type (2), Kw/Qp is unramified
ofjfodd degree, (cf. the corollary of theorem 1.)

THEOREM 2. Let π be as above. Assume, for each place w of type (2), w is
ramified in E. Put fw~[_Kw: Qp~] and gw=(a, f w ) . Let R be an order in OE
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containing O ^ W . Then R is an endomorphism ring of an abelian variety cor-
responding to π if and only if, for each w of type (2), Rw contains 0Kw

Jrpτ

w0Eυ,
where v is the place of E with v\w and rw=(gw — l)/2.

Proof. By Porism 4.3 in [5] we only need to consider the situation at p.
We make V=^L®QpEv a ^-module as in the proof of theorem 1. The condition
of R being an endomorphism ring is that there exists an ^-invariant ^-lattice
T in V such that End^ T=R®ZP. Let T be an cJ-invariant W-lattice in V
such that Enά^ TZDθκ. Then T can be decomposed as T= © Tw. (cf. §1) By

w\p

the proof of theorem 1, End^ (Tw) is maximal at each place w of type (1). Next
let w be of type (2). Let c be a prime element in Eυ. Then 0EV=0KW[_C]. Let
a be an element in LEυ such that NLEυiEv(od:=1 π. Write a—d-Vbc with b, d^ W0Kw.
We see that v(a)=gw = v(b)+l and v(b)<v(d). Put g=gw and r=rw. Then
v(b)=2r.

Put F— <1, •••, 1, a}σ on L®QpEw with EW — KW®KE—EV. We have a
g

decomposition Tw=φTlf corresponding to the decomposition W®0Kw=@ W0Kw.

(cf. the proof of theorem 1) 7\ are F^-invariant WOKw-\&tύce in L ^ . Then, for

TJ <^> xTi(ZTt, for all u

Now write ε(Tt)= {x^0EΌ\xTι(ZTί}. We may assume that Tt has a basis
{1, μ+pmc}, where ^ = 0 or v(μ)<0 (μ<ΞLKw). Write c2=hίc+h2 with /ẑ
Then i;(Λ1)^v(Λ2)=2.

We have

=(dμτ+bpmh2)+(dpm+bμτ+bpmh1)c

=(δμ+η)+δpmc, (τ = σg).

for some δ, ̂ e WOKw Hence δ=d+bμTp-n+bhι and δμ+v^=dμτ+bpmh2. If
and v(μ)^2m, then v(δ)=v(fr)-2m+v(μ)^v(&). Hence i;(^)<min{z;(^Γ), v(bpmh2)}.
This shows that δjte is integral. Therefore we have v(b)^2m—2v(μ). If v(μ)>2m,
then v(δ)Sv(6)+2 and v(^mA2)<min {v(δ//), K ^ O l Therefore we have KW
:>— 2(m+l). If /£=0, we also have v(6)^—2(m+l). On the other hand, we have
the following; if v(μ)^2nι, e{Tι)^OKw

J

Γp
m-v^OEυ and if v(μ)>2m or ^ = 0 , then

£(Tι)=Oκw

JrP~m''1θEυ> As this will be proved by direct computation with almost
the same argument as above, we omit its proof. Consequently, we have S(T%)
•θOKw+prOEυ> Hence Endoι(Tw)=Qέ?(Tτ)=D0^(,+ίΌJΪ1,.

Now let S=OKw+PtOEv(t^r) be an order in OEυ containing OKw+PrOEυ. Then
WS^WOK^P'WOE, in LEυ. Put T ^ . ^ M ^ + ^ M ) ^ and Tr+1+s=psTr+1-s

for O ^ s ^ r . Here we consider that Tr+1_s=W0Ev if t^s. Let T = φ T, in
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L0Ew=φLEv. For (xlf x2, •••, x g ) e 7 with X J G T ^ I , •••, g), we have

and

l9 x 2 , •••, Xg>=<P(a~1xgy
1

f pxly •••, pxg-i> .

Now we have the following relations

T^Tj-'-DT^^T.-DaT^ pT.dT,, pT2dTs, . ,

pTg(ZaTlf T1=WOEv and Tt

τ=Tt for all i.

It is easy to see that T is c^-invariant and End^ T—S. Our assertion now fol-
lows immediately from these facts.

PROPOSITION 1. Let π be as stated just before theorem 2. Let A be an
abelian variety corresponding to π such that R=Endk(A) contains Oκ Let w be
of type (2) such that w is unramified in E. Then the localization Rw of R at w
contains OKw+P*~1OEv, where g=(ίKw : Qp~], a).

Proof. Let </?>=Gal (Eυ/Kw) and T=TPA. Let Tw, Ttf a, e(Jx) be as in the
proof of theorem 2. Then Rw = End^Tw. Tx are W[_Fg, y^]-invariant, WOKw-
lattice in LKW®KE. Let (pn, 0), (μ, pm) be a WΌ^-basis of Tt, where μ = 0 or
v(μ)<n. μ—0 implies that β(T%) is maximal. Suppose μφO. We have

F'(μ, pm)=(l, a)τ(μ} pm)=(pm, μ^a)

for some δ, η^WOKw.{τ = σg) Therefore pm=δpn+p-maT~1μ2. If n>m, then m
= —mJr2v(μ)Jrv(a). As v(a)=g is odd, we must have n^m. Then pm~n=δ
Jrp~m~naT~1μ2 shows that v(a)^mJrn—2v(μ)>n—v(μ). On the other hand, for

(xμ, xpm)={δ

for some δ,

Therefore ^ T ^ O ^ + ^ - ^ / ' Ό ^ D O ^ + ί ' - Ό ^ as Rw = Γ\€(Tι\ this completes

our proof.

COROLLARY. Let π be as above. If, for each w of type (2), a and [_KW : Qv~]
are relatively prime, then R—Evίάk{A) containing Oκ is maximal at p.

This follows at once from theorem 2 and proposition 1.
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REMARK. This corollary also contains theorem 5.3 in [5]. For, in that
case, \KW : Qp]=l for all w.

EXAMPLE. Let β be a root of f(x)=4xiJrl3xs—2(k—8=0. f(x) has four real
roots in the interval (-2V2Γ, 2V2~). 43/(x) = (4x)4 + 13(4x)3-20x42(4x)-8 X43

shows that f(x) has a root f/4 in Q2 with a unit f in Q2. Put ^W :=/W/(4x—?).
Then g(x)^Z2\_x~] and (l/2 3 )^(2x)^x 3 +x+l (mod 2). This shows that #(*) is
irreducible over Q2 and has a root in the cubic unramified extension of Q2. Since
f(x)=0 (mod 7) has no root in Z/7Z, we see that f(x) is irreducible over Q.
Therefore there are two places w1} w2 above 2 in K=Q(β) giving w1(β)=—2 and
w2(β)=l. We have KWl—Q2 and /fW2 is the cubic unramified extension of Q2.
Let π be a root of x2—4/3.x+25=0. π is a Weil 25-number. w1 splits in E=Q{π)
and, since Ct/4)2—/3(x/4)+2 is Eisenstein in KW2, w2 is ramified in E. π has a
formal structure G 1 ) 0 + ( G M ) 3 and a commutative endomorphism algebra. So π
satisfies the condition of the above corollary. Therefore an endomorphism ring
containing Oκ is maximal at p.

For a supersingular abelian variety A over k (i.e. A^{Gltl)
m with m=dim(i4),

cf [4]), we have the following:

PROPOSITION 2. Let a be even and put a'=a/2. Let A be a simple super-
singular abelian variety over k such that R(=Έnάk(A)) is commutative. Assume
that Fa'TpA=Va'TpA. Then R is maximal at p.

Proof. Let π be the Weil number of A over k. Then π=pa'ζ, where ζ is
a tt-th root of 1 for some n. Since V~a>Fa' =p~a'Fa=p~a>π=ζ, we have ζTpA
— TPA. In E®QP, ζ^E—Q{π) generates the maximal order over Zp. Therfore
R is maximal at p.
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