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A NOTE ON ENDOMORPHISM RINGS OF ABELIAN
VARIETIES OVER FINITE FIELDS

By TETSUO NAKAMURA

Let p be a prime and let A be a simple abelian variety over a finite field %
with p® elements. In this note we ask some sufficient conditions that the endo-
morphism ring of A over k is maximal at p. Our result includes the first part
of theorem 5.3 in Waterhouse [5]. The related facts should be referred to [5].

§1. Let End,(A) be the ring of k-endomorphisms of a simple abelian variety
A over a finite field & with p® elements. We shall always assume that End,(A)
is commutative. Then there exist a CM field £ and an isomorphism i4: E—
End,(A)®Q. Let R=1,"Y(End,(A)) and let K be the totally real subfield of index
2 in E. Let f, be the Frobenius endomorphism of A over % and put mz=1,"(/4).
Then = is a Weil p*-number, i.e. an algebraic integer such that |z|*=p* in all
embeddings of F=Q(r) into C. Let w be a place of K above p and v be a place
of E with v|lw. Then we have the following three cases;

1) v(@)=0 or v(z)=v(p®).
@) v(m=v(p®z™").
3) v@m#v(p*r™Y) and O0<v(m)<uv(p?).

We call that w is of type (1) (resp., (2), (3)) if v satisfies (1) (resp., (2), (3)). This
is independent of the choice of v with viw. Let K, be the completion of K at

w and let
Go=(G, ) Xw if w is of type (1),

=(G,.)Xw:e? | if w is of type (2),
=G, +Gys, if w is of type (3),

where s=s(w)=[K, : @,]v(z)/v(p*) and t=t(w)=[K, : Q,1v'(x)/v'(p*) with the
other place v of E above w. Then the formal group A of A is isogenous to
gl}Gw(over the algebraic closure of k.) (cf. Manin [1], Chap. IV).

’ Now let T,A be the Dieudonné module of A. Let W=W(k) be the ring of
Witt vectors over k2 and ¢ the automorphism of W induced by the Frobenius
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automorphism x— x? of k Let A=WI[F, V] be the (non-commutative) ring
defined by the relations FV=VF=p, FA=2°F and AV=VA’ for A= W. Then
T,A is a left A-module, W-free of rank 2 dim (4). It isa well known result of
Tate that
End,(A)®Z,=End , T,A.

Assume further that

(*) R contains the maximal order Og of K.

Then as T,A is a module over Ox®XZ,= g?,,OKw’ we have the corresponding

decomposition T,A= @ T,, where Oy, is the ring of integers of K,. We see
wip

that T, is a Dieudonné module whose corresponding formal group is isogenous
to Gy.

§2. THEOREM 1. Let the notations be as in §1. We assume (*) and the fol-
lowwngs, for each w of type (2), K, s an unramified extension over Q, of odd
degree and FT,=VT,, and for each w of type (3), F*“> T, C V** T (say s(w)
<t(w).). Then R is maxwmal at p, .e. RQZ, 1s the maximal order of EQQ,.

Proof. Let L be the quotient field of W=W{(k), i.e. L is the unramified
extension over @Q,, of degree a. Put 8=LQwA=L[F, V]=L[F, F™']. Let
D E, be the decomposition of E,=EXQ, into fields. On L®QPE,,=§}(L®%E,,)

elp

vip
we have L acting by left multiplication and E, by right multiplication. Let f,

be the residue degree of E,/Q,. Put g,=(f,, a). Then LE, has degree a/g, over
E, and LQE, is a sum of g, copies of the composite extension :

LRE,=LE,® - ®LE,.
OQP —><wf, B, -, @B

We define the action of ¢ on LQE, by acting on the L-factor. Then for
(g, o, Xg,»EDLE,, we have olxy, -, x5 0=Cxp, o, Xgyy 7(x1)), Where c=gv
is the Frobenius automorphism of LE,/E,. Now we can choose u=L®E, with
Nieg,p,(w)=n, where N is the norm map. Define F=ucs. Then FA=2°F for all
AL, and F*=rx. Thus we have constructed an operation of 8 on L&®E, and
hence on LQE,. Then as a ®-module

V,A=T,AQwL=LQE,.

(For details of the above facts, see Chap. 5, [5].) As T,A is an A-invariant
lattice in V,A, we may suppose that T,A is an A-invariant lattice in L& E,.
Then T, is a lattice in L®e,EL,CLQE, where E,=EQ® xK,. Let R,
=End_(T,), then we clearly have

R®Zy= D R

Now we claim that each R, is the maximal order of E,.
(i) The case that w is of type (1). Then w splits in E/K. Since z—p®z~!
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is a unit, we see that Ok, [z] is maximal. As R,DO0g,[z], R, is maximal.
(i) The case that w is of type (3). Then w also splits in E/K into v and
V' L® e Bw=(L& e, E)D(LQe,Ex). Take a, a’e LE, such that Npp(a)==
and Nip(a’)=p°z~'. We can put F=(1, -, 1, >+, -1, a’>)e on (LQE,)
BULRQE,). Say v(x)<v'(m)=v(p®r™?), then s=[K,: Q,]Jv(r)/v(p*) and t=
[Ky: Qplv/(m)/v(p®). Since T, is a WOk, —module, we have a decomposi-

&
tion Ty,= = T,, corresponding to the decomposition W,,0k,=®D WOx,(g=gu).
=1

As Ty ®z,8,=L&q,Ew, we have T,®,,Q, =LK, E(=LE,LE,). Thus T,
isa WOg,-free module of rank 2 and W[F¢, V#J-invariant. As a WOy, -module
it has a basis of the form (2™, 0), (¢, A™%) with p,=0 or v(p,)<n,, where 2 is a
prime element of Og,. From the assumption we have that V™ F'T,=p *F**'T,,
CT, ; hence for each 1, p~*F**'T,CT,. Now p *F*' operates on T, by (9, 6')z",
where d=a-a - a7 V/p, §=a’-a’ -’ '/p* and h=(s+1)/g. Then psFs+
(tte, A"D)=(07" (), 0’2" H)=E&(A", 0)+ 9y, A™?) for some &, p€ WOy, ; hence £A™
=0t"(u,)—0d'1,. Now v(@)=v(x)/(a/g)=(gsv(p))/(s+1), hence v(6)=0 and v(§")>0;
this implies p,=0. Thus each T, has a basis of the form (2", 0), (0, ™) over
WOg,. This shows that R, is maximal.

(iii) The case that w is of type (2). As K,/Q, is an unramified extension
of odd degree and End,(A) is commutative, w does not split in E/K. Let v be
the place of E above w. Suppose first that FE, is unramified. As 2v(r)=a, a is
even and hence g, is also even. Now FT,=VT, implies that V'FT,=p'F*T,
=T, and so p~“/»FeT, =T,. This shows that R,>p “/®x. Since p~*'¥r is
a unit in R,, there exists a unit u, in WQ®UR, with Nygr,/r,u)=p*"?r (cf.
Prop. 7.3 and the proof of theorem 7.4 in [5], p. 554.). Put w,=<1, p, 1, p, -+, 1, >
€L@E, Then uo(u)=p and Nigg,p(u,u)=r. Now we can put F=(uus)0.
Since T, is WQ®R,-invariant, we have u,T,=T,. As W®R, is invariant
under ¢, we also have that ¢’(u)T,=T,(j=1,2, ---.). As g'=g/2 is odd, we
have

p@-LiRRe T —F(p F)@ 0T =FT,CT, .

It follows, by the definition of u,, u, and F, that u,0¢ (T, )CT,. As in case (ii)
we have a decomposition T, =@ T,, corresponding to WQOg, =B WOg,. Here

T, is invariant under F*¢' ; hence u,04'(T,)CT,. As a WOy, -module T, has a
basis of the form (p", 0), (g,, p™) with p,=0 or v(p,)<n,. u,0° operates on
T, by

U068 (xy, xg'+1):(xg’+l; pr(xy), for (x,, -xg’+1)€T1 .

Then applying the same argument as in the proof of theorem 5.3 in [5], p. 548,
we see that p,=0; hence T,,=@T, is invariant under the maximal order of FE,.

Suppose next E, is ramified over K,. Choose an a& LE, with Nz, g ()=,
then we can put F={1, ---, 1, ado. We extend v to LE, naturally. As g=g, is
odd, we have from the assumption

pr TR RFET = F(pT FA) PP Ty =FT C Ty
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As Fé={a, -, ado? and v(a)=g, we see that p ¢ D/2F¢=(], --- J>g¥%, where
A=p ¢ D%q and v(A)=1. Now decompose T, into P T\, corresponding to WROx,,
=@ WOg,. T, is invariant under ¢ and has a basis of the form p*:, y,+p™ic
with y,€ WOk, p:=0 or w(p,)<n,, where ¢ is a prime element of E,. Then we
can also apply the argument in the proof of theorem 5.3 in [5] and we see
that T, is invariant under the maximal order of E, Therefore RQZ,=DR,
is maximal and the proof is completed.

REMARK. If R,=End_(T,) is maximal, we can write out the condition of
a base of T, (cf. p. 545 in [5]). Hence if R, is maximal for a place w of K,
of type (3), it is easy to show, by a direct calculation, that F‘*“T,C V™ T,.

COROLLARY. Let a,=Spec k[x]/(x?) be as w [2], 1.2-11. Assume that A 1s
1sogenous to (Gq, o)™ +(G1.1)"™ for some m, n and a(A)(=dim,Hom(a ,, A))=n. Assume
Sfurther (*) and that for each place w of K of type (2), K, 1s an unramafied ex-
tension of odd degree over Q,. Then R 1s maxwmal at p. (For the property of

a(A), of. [2], [3], [41)

Proof. Put T=>T,, where the sum is taken over all w of type (2). Since
a(A)=dim, T/(F, V)T and n=dim, T/FT=dim, T/VT, we have that (F, V)T=FT
=VT. Hence our conclusion is obvious by theorem 1.

REMARK. This corollary is a result which includes the first part of theorem
5.3 in [5], p. 548 (a result due to Shimura); assume that R(=End,(A4)) is commu-
tative and contains the maximal order of K. Assume also that p splits com-
pletely in K. Then R is maximal at p.

For, in this case, it is easy to see that A~(G, ,)"+(G.,)* for some m, n,
and, for each w of type (2), T,,=G,,,; hence a(T,)=1 and therefore a(A)=n.

§3. LEMMA. Let M be a finite extension of Q, and N be a quadratic extension
of M. Let Oy and Oy be the maxumal orders in M and N, respectively, and A
be a prime element of Oy. Let R be an order in Oy contaiming O,. Then there
exists a non-negative integer n such that R=0y+A"0y.

Proof. Let ¢ be an element in Oy such that Oy=0y[c]. Then RNcOy
=cA"0y for some n=0. We see that

RZOM"f‘C/Z"OM:OM‘i‘ZnON .

Let = be a Weil p*-number such that its corresponding abelian varieties have
commutative endomorphism rings and an isogeny type (G,,0)™+(G,,1)", (n>0) for
thier formal groups. Put E=Q(z) and let K be the totally real subfield of E of
index 2. We assume that, for each place w of K of type (2), K,,/Q, is unramified
of?odd degree. (cf. the corollary of theorem 1.)

THEOREM 2. Let & be as above. Assume, for each place w of type (2), w is
ramified in E. Put f,=[K,: Q,] and g,=(a, f,). Let R be an order in Og
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contaiming Og[zn]). Then R is an endomovphism ring of an abelian variety cor-
responding to m if and only if, for each w of type (2), R, contains Og,~+p", Ok,
where v is the place of E with vlw and v,=(g,—1)/2.

Proof. By Porism 4.3 in [5] we only need to consider the situation at p.
We make V=L®q,E, a $-module as in the proof of theorem 1. The condition
of R being an endomorphism ring is that there exists an JA-invariant W-lattice
T in V such that End,T=R®Z,. Let T be an A-invariant W-lattice in V
such that End_; TD0gk. Then T can be decomposed as T—= E{B Ty. (cf. §1) By

wip

the proof of theorem 1, End ;(T,) is maximal at each place w of type (1). Next
let w be of type (2). Let ¢ be a prime element in E, Then Og,=Og,[c]. Let
a be an element in LE, such that Nyg g (a)=n. Write a=d-+bc with b, d€ WOk,
We see that v(a)=g,=v(b)+1 and v(b)<wv(d). Put g=g, and r=r,. Then
v(b)=2r.

Put F=<1, -, 1,a>0 on LQq,E, with E,=K,QxE=F, We have a

g . ..
decomposition T,=@® T,, corresponding to the decomposition W@Og, =D WOk,
1=1

(cf. the proof of theorem 1) T, are F4-invariant WOk -lattice in LE, Then, for
]CEOED
x€End (T,) @ xT,CT,, for all 1.

Now write &(T,)={x€ Og,|xT,CT;}. We may assume that 7, has a basis
{1, p+p™c}, where p=0or v(u)<0 (ue LK,). Write c*=h;c+h, with hy, ,& 0,
Then v(h)=v(hy)=2.

We have

Fo(pu+pre)=(d+be) g+ p™c)
=(dpr—+bp™hy)+(dp™+ b+ bp™h,)e
=(p+n)+op™c, (z=0%).

for some 8, p€ WOk, Hence d=d-+bpyp~™-+0bh, and ou+n=dpu +bp™h,. If pn+0
and v(g)<2m, then v(d)=v(b)—2m+v()=v(b). Hence v(dp)<min{v(dy7), v(bp™h,)}.
This shows that dy is integral. Therefore we have v(b)=2m—2v(y). If v(p)>2m,
then v(0)=v(b)+2 and wv(bp™h,)<min {v(dy), v(dy)}. Therefore we have u(b)
=—2(m+1). If p=0, we also have v(b)=—2(m-+1). On the other hand, we have
the following ; if v(w)=<2m, &T,)=0g, +p™ "0, and if v(x)>2m or p=0, then
&(T)=0g,+p ™ 'Op, As this will be proved by direct computation with almost
the same argument as above, we omit its proof. Consequently, we have &(T),)
D0k, +1"0g, Hence EndJ(Tw)::Qé’(TZ)DO e O

Now let S=0,+p'Or,(t=7) be an order in O, containing Ok, +p"Og,. Then
WS= WOKw+ptWOEv in LE,. Put Tr+1—s:WOKw+pt-sWOED and Tryos=p"Triros

. g -
for 0<s<r. Here we consider that T,,,_,=WO;g, if t=s. Let T:@TL in
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LRE,=FDLE, For {xy, x,, -+, x,0€T with x,€T,(1=1, ---, g), we have

Flxy, xa, =0y xg0=C%s, X5, ==+, Xg, AXs")
and
_ -1
V<xy, xoy -y 20 =<{plax lxg)' » DXy, o, DAglr)

Now we have the following relations;

T,.0T,D - DTy, 2T, DaT,, pT.CT,, pT.CTs, -,
pT.CaT,, T;=WOg, and T/ =T, for all 1.

It is easy to see that T is A-invariant and End_; T=S. Our assertion now fol-
lows immediately from these facts.

PROPOSITION 1. Let © be as stated just before theovem 2. Let A be an
abelian variety corresponding to m such that R=End,(A) contains Og. Let w be
of type (2) such that w 1s unramified wn E. Then the localization R, of R at w
contains O+ p*~'Og,, where g=([K,: Q,], a).

Proof. Let {p>=Gal(E,/K,) and T=T,A. Let Ty, T,, «, &T,) be as in the
proof of theorem 2. Then R,=End,;7T,. T, are W[F¢, V#]-invariant, WOg,-
lattice in LK, @ gE. Let (p*, 0), (¢, p™) be a WOk, -basis of T,, where p=0 or
v(p)<n. p=0 implies that &(T,) is maximal. Suppose p#0. We have

Fe(p, p™M=Q1, a)r(y, p™)=(p", ra)
=0(p", O)+n(y, p™)=(0p"+nu, p°p™)

for some d, & WOg,,.(r=0%) Therefore pr=0p"+p e gt If n>m, then m
=—m+2v(g)+v(e). As v(a)=g is odd, we must have n=m. Then p" "=0o
+p ™ "a" "' yu? shows that v(@)Zm—+n—2v(g)>n—v(g). On the other hand, for
xE0p,

1T.CT, & (xp, xp™)=(0p"+np, ™)

for some 0, € WOk, .
e v(x—x?)=n—uv(y)
= xEOKw_'_pn—v(/t)OEv .

Therefore &(T,)=0g,+p" *"0g, D0k, +p* 'Or,; as R,=NE(T,), this completes

our proof.

COROLLARY. Let © be as above. If, for each w of type (2), a and [K, :Q,]
are relatively prime, then R=End,(A) containming O 1s maximal at p.

This follows at once from theorem 2 and proposition 1.
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REMARK. This corollary also contains theorem 5.3 in [5]. For, in that
case, [K, : Q,]=1 for all w.

ExaMPLE. Let 8 be a root of f(x)=4x'+13x*—20x—8=0. f(x) has four real
roots in the interval (—24/27, 24/2). 43/(x)=(4x)*+ 13(4x)*—20 X 4*(4x) — 8 X 4°
shows that f(x) has a root £/4 in @, with a unit & in Q,. Put g(x)=,(x)/(4x—8§).
Then g(x)=Z,[x] and (1/2)g(2x)=x*+x+1 (mod2). This shows that g(x) is
irreducible over @, and has a root in the cubic unramified extension of Q.. Since
f(x)=0 (mod 7) has no root in Z/7Z, we see that f(x) is irreducible over Q.
Therefore there are two places w,, w, above 2 in K=@Q(pB) giving w,(f)=—2 and
wy(f)=1. We have K,,=Q, and K,, is the cubic unramified extension of @,.
Let = be a root of x*—4Bx+2°=0. x is a Weil 2%-number. w, splits in E=Q(x)
and, since (x/4)’—p(x/4)+2 is Eisenstein in K,,, w, is ramified in E. = has a
formal structure G, ,+(G, ;) and a commutative endomorphism algebra. So =
satisfies the condition of the above corollary. Therefore an endomorphism ring
containing Og is maximal at p.

For a supersingular abelian variety A over k (i. e. A~(G,,,)™ with m=dim(A),
cf. [4]), we have the following :

PROPOSITION 2. Let a be even and put a’=aj/2. Let A be a sumple super-
singular abelian variety over k such that R(=End,(A)) 1s commutative. Assume
that F* T,A=V*T,A. Then R 1s maximal at p.

Proof. Let = be the Weil number of A over k. Then n=p*{, where { is
a n-th root of 1 for some n. Since V¢ F* =p % Fe=p *g={, we have {T,A
=T,A. In EQQ,, {c E=Q(r) generates the maximal order over Z,. Therfore
R is maximal at p.
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