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ON KAEHLERIAN TORSE-FORMING VECTOR FIELDS
By SEIICHI YAMAGUCHI

§1. Introduction. K. Yano has studied in [7] the concurrency of a direc-
tion defined along a curve x"(s) in M, when it satisfies the differential equations
dx" dav™

ds ds

=0,

where « is a suitable function of s. Moreover, generalizing these concepts of
parallelism and concurrency, K. Yano [8] has introduced the notion of torse-
forming directions in M as follows: Consider a vector field u(s) defined along a
curve x"(s). If, after the development, the directions defined by u(s) form a
developable surface or torse, the directions defined by u(s) are called torse-form-
ing along the curve in M.

In order that the directions v(s) defined along a curve x”(s) be torse-forming.
it is necessary and sufficient that

dx" dav®
ds + ds =Bt

B being another suitable function of the parameter s. A vector field which is
always torse-forming along any curve traced in M is called a torse-forming vector
field. As for such a vector field, we have known the following theorems [8];

THEOREM A. In order that a Riemannian manifold M admits a torse-forming
vector field, 1t is necessary and sufficient that M contains a family of oo' totally
umbilical hypersurfaces whose orthogonal trajectories are geodesics.

THEOREM B. In order that a Riemannian manifold M admuts a torse-forming
vector field, it 1s mecessary and sufficient that there exists a coordinate system
with respect to which the fundamental quadratic differential form may be written

n the form
ds*=f(x")gan(x)dxdx"+dx"dx"

(a, b, ¢c=1, 2, ---, n—1).

The complex analogue of a torse-forming vector field is, as far as we know,
not yet studied. So it might be interesting to develope complex versions of the
theory of torse-forming vector fields. In §2, let us recall first of all definitions
and formulas concerning Kaehlerian manifolds and hypersurfaces in a Kaehlerian
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manifold for later use. We shall introduce in §3 the notion of a Kaehlerian
torse-forming vector field along a curve, and investigate in §4 a Kaehlerian
torse-forming vector field along any curve, which will be called for simplicity a
K-torse-forming vector field. §5 is devoted to establish some formulas for later
use. In §6, a kind of hypersufaces called f-hypersurfaces will be defined and
prove Theorems 4 and 5. Some examples of Kaehlerian manifolds admitting a
K-torse-forming vector field will be given in §7.

§2. Preliminaries. Let M be a real Z2n-dimensional Kaehlerian manifold
from now on. Denote by g;; and J,*(, i, 3, -+ =1, 2, ---, 2n) the componentes
of the Hermitian metric tensor g and those of the complex structure tensor J of
M respectively. Then we have by definition

(21) ],’],’2—5]’, gn:]f]zsgrsn, thgl:();

v being the operator of covariant derivation with respect to the Riemannian
connection defined by g.

The Kaehlerian manifold M is called a space of constant holomorphic sec-
tional curvature if the curvature tensor of M has components of the form

K
2.2) Rkah: _4'(5khgjt—51hgkz"ﬂ/kh./ji'—jih]ki—zjh]zh) .

Next we shall recall definitions and terminologies in the theory of hypersur-
faces in a Kaehlerian manifold. Let us consider a (2n—1)-dimensional orientable
submanifold M’ differentiably immersed in M. We fix orientation of M and M’
and take an open covering {Ug}(B€ 4) of M by coordinate neighborhoods and an
open covering {V,}(a€4) of M’ by coordinate neighborhoods so that they are
coherent with the orientations, namely, in each coordinate neighborhoods U; of
M and V, of M’ natural frames determine positive positive orientations of those
manifolds. Now, each non-empty set Ug V. can be expressed parametrically

as x"=x"u%(a, b, ¢, -~ =1, 2, -+, 2n—1), where {x"} are local coordinates in Uj
and {u%} are those in V,. We now put
ox™
h ——
(2.3) B = FhOa

Then B are linearly independent local vector fields tangent to M’. The induced
Riemannian metric g’ of M’ is given by
g aw=B."By'gn. .

The manifolds M and M’ being both orientable, we can choose a unit normal
vector field C* along M’ in such a way that (C, B) determine a frame having
the positive sense of M on each non-empty Ugn\V.. Then we get

1) We adapt the identification between vector fields and l-forms by virtue of Rie-

mannian metric.
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(2.4) gﬁBafcl—’:O, gj,-C’C”:l.

The transform /B of B by J and JC of C by J are expressed as linear combina-
tions of B and C as follows:

(2~5) jthaL:SDCOBbh“i_ vbch s Jthcl:_vaBah s
because JC is tangent to M’. It follows from (2.1) and (2.5) that

(2.6) Pyt =—0"+10%,  @a'p*=0,
nan*=1.
This means that M’ admits an almost contact metric structure (¢, 5, g’).
Denoting by ¥V’ the symbol of the covariant derivation along M’, we have

the equations of Gauss and Weingarten :

V{,Bb"zaaB,,"—kBafBb'{]h }—Bc"{ac b}': asC"

;
VLCh=0,CM+ B, C’ {]hi}=~/z,z”B,," )

h a’ . . ,
where {J i}(resp. {b c}) are the Christoffel symbols with respect to g (resp. g’)

and k., are components of the second fundamental form of M’.
When the second fundamental form A of M’ has the form

2.7 hey=agasvt B%ans,

« and 8 being certain functions along M’, then we say that the almost contact
contact metric hypersurface M’ is contact umbilic. As for such A, it is well
known that a necessary and sufficient condition for an almost contact hypersur-
face M’ to be normal and contact metric is that it is contact umbilic [4, 10].

§ 3. Kaehlerian torse-forming vector field along a curve. In what follows
M is assumed to be a 2n-dimensional Kaehlerian manifold. Let &(s) be a vector
field along a curve x"(s) in M. Such a vector field &(s) will be said to be Kae-
hlerian torse-forming, if the differential equation
dx* | o(af*+BEM)

rER 123
(3.1) ds + s =a’E" 4 prE"

holds along the curve for any functions « and j of the parameter s, a’ and J3’
being certain functions of s, where we have put &=/, If a= f=0, then &
is contained in the section spaned by dx"/ds and J,"dx"/ds. 1f we have a®+ §*
+0, then we have from (3.1)
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o&" dx" dx" -

for certain functions g, b, 2 and g along the cueve. We now note that a®+ %0
if and only if a®+5b2+0.

Coversely, if a vector field &(s) defined along a curve x"(s) satisfies the dif-
ferential equations of the form (3.2) with a and b satisfied a?4b%+0, then it is
easily verified that &(s) satisfies a differential equation of the form (3.1). Thus
we have

3.2)

THEOREM 1. Let &(s) be a vector field defined along a curve x™(s) and not
contained wn the section spaned by dx"/ds and J,*dx"/ds. Then wn order that &(s)
be a Kaehlerian torse-forming vector field along the curve x"(s), it 1s necessary
and sufficient that the covariant deriwatwe of &(s) along the curve be a linear
combination of &, &, dx"/ds and J,*dx"/ds.

When &(s) satisfies a differentia1~equation (3.2) with a=b6=0, the two-dimen-
sional distribution spaned by & and & is parallel.

§4. K-torse-forming vector field. In this paragraph, let us introduce first
of all the notion of a Kaehlerian torse-forming vector field in M.

If a vector field & satisfies a differential equation of the form (3.2) along any
curve traced in M, then we call such a vector field & a Kaehlerian torse-forming
vector field, simply a K-torse-forming vector field. Since the equation (3.2) can
be rewritten as follows:

dx" a o dx™ n dx7 nl  En
(4.1) 45 V.eh'=a s +b/, s + 2"+ ps",
it is easy seen that for a K-torse-forming vector field
(4.2) V,eh=ad,"+b],* +a &+ B,E",

or equivalently
@2y V& =a],"—bd,"+a,f"— B,E"

for suitable functions ¢ and b and 1-forms « and B. The functions a and b
(resp. 1-forms « and p) appearing in (4.2) will be called the associated functions
(resp. forms) of &. Moreover if the associated functions a and b satisfy a®4b%+#0
in M, then we call such a vector field a proper K-torse-forming vector field.

We are now going to obtain some identities containing a K-torse-forming
vector field for later use. Operating V, to (4.2) and making use of (4.2) and (4.2),
we can easily obtain

Vi ViEr=a,8,"+ b, ], + Ve, £+, B,E

(4.3) . .
Fa(ad 0] "+ g+ BrEM)+ Blaf  — b6 anEt— Bk,
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from which
Riy"6"=X40,"—X;0:"+ Y J," =Y, Ji"

(4.4) .
+(Via;—Vja #)E"+ (Vkﬁj"vj,@ e,

where we have put
(4.5) Xk=ak—aak+bﬁk, YkZbk-—ba'k——a‘Bk, ak:Vka, bk:ka.

Concerning K-torse-forming vector fields in a space of constant holomorphic
sectional curvature, we have

PROPOSITION 2. In a space M of dimensions 2n (>4) with constant holomor-
phic sectional curvature K, for any non-vamishing K-torse-forming vector fleld &
its associated form a is locally a gradient of function and df=(K/4)®@, where @
1s the fundamental two form of Kaehlerian structure of M.

Proof. Substituting (2.2) into (4.4), we have
(4.6) X, =X 0"+ Y W I, =Y [ o £ B i =0,
where we have put
X=Xt (K[, Y=Y —(K/4E,,
ap,=Va; =V, Br,=ViBi—VBe+(K/2) ]y, .

Hence, since dim M >4, we can take unit vectors ¥y and 7 in such a way that
y, ¥, & and £ are mutually perpendicular. So, contracting (4.6) with y,, 7., &,
and &,, we get by a straightforward computation respectively

4.7)

(4.8) X 3= X 32— Y3, + Y, 5, =0,
(4.9) X=X, 9+ Y =Y 3 3:=0,

(4.10) X&i—X =Y+ Y Erta,;1€12=0,
(4.11) X W&, =X Gt Y =Y £+ BaslE1P=0.

From (4.8) and (4.9) it is evident that
X=X Nyt Y (0)7:=0, Y =X (3Fe—Y'(3)y:=0,
X = X(NI—Y'(Dy:=0, Y, =Y (HF+X(Fy:.=0,

where we have put X’(y)=X’,y* etc.. Transvecting (4.12) with 7%, &% and &%,
we find respectively

(4.13) Y(@)=Y'@=X@=X€)=0,
(4.14) X()+Y(»)=0, X(O-Y(FH=0.

(4.12) {
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On the other hand, by contraction over & and : in (4.6), we can easily verify
(4.15) Cn—DX"+Y 4+ apE+ it =0.

Further we transvect (4.10) (resp. (4.11)) with &’ (resp. ') and take account of
(4.13) so that we obtain

(4~16) X pta,t=0, X/k+ﬁkr§;r:O;
which and (4.15) imply
@Cn—3)X",+Y ,=0.
Since n>2, this together with (4.14) gives
X'()=X'(@)=Y"(y»=Y"(5)=0,

which and (4.12) imply X’,=Y’,=0. Thus (4.6) implies a;;=j5,;=0. Accordingly,
Proposition 2 is proved.
For the compact case, we have

THEOREM 3. Let M be a 2n (>4) dimenswnal compact space of constant holo-
morphic sectional curvature K+#0. Then a K-torse-forming vector field in M
vanishes identically.

Proof. We assume that & is a non-vanishing K-torse-forming vector field in
M. Then by Proposition 2 we obtain

vkﬁj_vjﬂk+(K/2)fkj:0 .

Contracting this with J*, we get V,5"=nK/2, from which we have by Green’s
Theorem

S K dvV=0,
M

where dV denotes the volume element of M. Thus we have K=0. This com-
pletes the proof.

§5. Analytic K-torse-forming vector field. From now on suppose that a
K-torse-forming vector field € in M is contravariant analytic. Then the vector
field € must satisfy (4.2) and

(5.1) Vi&e =S, T4

We can easily see that in order that for a K-torse-forming vector field & to be
analytic it is necessary and sufficient that B,=&;(=—J,"a,) holds. Since & is
analytic, (4.2), (4.3), (4.4) and (4.5) reduce respectively to

(5.2) ViEr=ad,"+b],"+a g+ ac",
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G2y Vit =a]"—bd," +aft—ak",
(53) VW VEr=a,0," +bp ], V£V, a6
+aad b aEt - @E ") Faal — b8, " Fadt—a,gt),

(5.4) Rip" 6 =X,0,"— X0+ Y J," =Y, [ +ap £+, ",
(5.5) Xi=a,—aa,+ba,, Y.=b,—ba,—aa,,
where we have put
(5.6) ap,=Vea,—V,a,, @y, =Na;— V@, .
Hence using (5.4) and the Bianchi identity R,;*+R;,,"+R,:,"=0, we have
(6.7 Y it Y JuetYales)

tapfntapbitané, Fantanttané,=0.

By the way, taking account of

grié{]rk}:vkv15z+RrkjiEr s

we have
g ~L{ g }=a Giita;8ei—X.girn—Y Ju—0uf
”6 jk kSji iSki 15k 1Sk kJ)
(5.8) +(bj—_Zbaj-Zadj)]ik+ajisk+dji§k

+(vka1+ajak_djdk)51+(de]+ajdk+d]ak)§z ’

because of (5.3) and (5.4), where L denotes the Lie derivation with respect to &.
Since our manifold M is Kaehlerian and £ is analytic, it is well known that

N e
J: gl{] k}_]k g{] 7'}’
from which, using (5.9), we get
(5.9) Zkgjh—Zhg]h+Zhjkj—Z~k]/t]
_:_]krurjssh_jhrurjék +ukj5h_uhj§k:0;
where we have put

(5.10) Zy=a,+by,  up,=Vea, 1T, Ve

Again, changing k, j, ¢ cyclically in (5.9) and adding those two obtained to (5.9),
we get
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22 et Zidin+ Z,J i)

(5.11) R0 o YT oV P TIY SRy P TR SRy PR TR Ry TR 8
Furntumnéetunes;—uniEe—uen;—uén=0.

In the next place, we assume that the associated form « is gradient, that is,
it satisfies a;=V;a. (This condition is established in any K-torse-forming vector
field in a space of constant holomorphic sectional curvature. (See Proposition 2)).
So the equations (5.7) and (5.11) can be rewritten as follows:

512) 2(Y e Jint YJ:[hk"_ Ynffj) )
+]krurj5h +]Jrurh$k+]hru1’k5.i:0 ’
(5.13) Zh]k,—l' Zkfjh‘l‘ Z]jhk+]krurjgh+jjrurh§k +]hrurk§j=0 ,

because of J,"u,;+J, u,»=0 and u;,=u,,, and consequently
@Ys=Z )+ QY= Z)]us+Q@Ya—Z1)]1=0.

This together with (5.6) and (5.10) gives

(5.14) by+a,=2(ai,+bay),

or equivalently

(5.14) ap—b,=2(aa,—ba,).

Thus we obtain

(5.15) Xy=—Y,.

Also, it follows from (5.14) and (5.14)’ that

(5.16) aa,+bby+bd,—ab,=2(a*+b>a, .

In the third place, suppose that & is an analytic proper K-torse-forming vector
field. Then (5.16) gives
—bad,+ab,
a*+b: 7
because of a;=V,a. On the other hand, contracting (5.9) with g"’, &* and &»J*
and taking account of J,"u,,+J, u,»=0 and u;,=u,, we obtain respectively

(5.16) 7, (1os (459 —a)=

(5.17) (n—_l)(ak+5k)+uk757_vrarék:0:
1] Zukj_urjsrék—érurjék+(ak+5k)§_1

(5.18) - .
—(ay+0)E g1+ (br— @) ] o j— (b —@1)E,;=0,
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(5.19) (by—a,)57=0
Further, transvecting (5.8) with &’ and using (5.19), we have
1611867 =[ur &€+ (0, +0,)6 26, —(ar+b2) €12,
from which, comparing this with (5.17)
(5.20) ar+b,=2p&;,
or equivalently
(5.20) by—a@y=—2p¢;

for a certain function p. By virtue of (5.16), (5.20) and (5.20), it is clear that

1 ;
(5.21) ?Vk log (a®+b?)—a,= 2_|_b2 ———(a&,—b&,).
Here we put
(5.22) f:—;—log (@b —a .

Then, applying V, to (5.22) and using (5.21), we find

(5.23) fe—t +b2 (a§;=0), (f;i=Y,1),
or equivalently

(5.23y Fi= g (a0

So we have just shown that

(5.24) af b7 =08,

or equivalently

(5.24) af —bf;=pf,.

§6. f-hypersurfaces. Let & be an analytic proper K-torse-forming vector
field whose associated form « is locally gradient. A point P of M is called an
ordinary point of &, if both of £ and f, given by (5.23) do not vanish at P. Let
M, be the set of all ordinary points of M. Then M, is a non-empty open subset
of M. We also see from (5.24) that p has not zero points over M,.

In the sequel we perform our discussions in M,. Differentiating (5.23) covari-
antly and making use of (5.16), (5.21)~(5.24) and (5.23)'~(5.24)’, we find

(61) kaj:pgk]+(vk lOg p_fk)f]_f—fkf] »

from which
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(6.2) V; log p=2/%

for a certain function A, since f, is gradient. Thus (6.1) can be rewritten as
follows :

(6.3) ka]:pgk]+(x—1)fkf1+fkf,]'

In a sufficiently small neighborhood of an ordinary point we consider the
integral curve of the vector field f/*. By means of (6.3), we can easily find that
such an integral curve is a geodesic arc.

Let Q be an ordinary point in M and U a coordinate neighborhood of @
which contain only ordinary points. So we can define in U a family of hypersur-
faces by the equations f(x)=constant which will be called f-hypersurface. Given
a point in M,, there exists in the family one and only one f-hypersurface V(P)
passing P. It is clear that the f-curves form the normal congruence to the
family of the f-hypersurfaces in U.

Put

Cr="f*,  o=vFF"
in M,, then C" is differentiable in M,. As this equation and (6.3) yield that
V:0C,+0V,.C,=pgs,+(A—1)0?C,C,+02C . C,,
we get by transvection of this with C’
(6.4) Vio=(p+(2—-1)d®C,,
which implies
6.5 V.C,= (g1, ~CiC)+a L,

Let P be a point in U and V(P) the f-hypersurfaces in U passing through
the point P. Then the vector field C* is the normal unit vector to V(P) at any
point of V(P). We choose a system of local coordinates {u?} in V(P) and suppose
that V(P) is expressed by parametric equations x*=x*(u%) in U. We notice that
the second fundamental form h of the f-hypersurface V(P) is given by

hab:BalejVjC, .
By virtue of (2.5) and (6.5), it is evident that
(6.6) ha="g - anans.

So we can see that V(P) is nothing but contact umbilic. By virtue of (6.2) and
(6.4), we find respectively 9,0=0 and 9,0=0 and consequently, we see that the
functions p and ¢ are constant over V(P).
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Now we can choose a system of coordinates {x*} in U such that f-hypersur-
faces defined by x?"=constant are the f-hypersurfaces in U and the curves
defined by the equations x®=constant are the f-curves in U. Then itis easy to
see that

Ba 2n=82n a.:0 .

Since the f-curves are geodesics, we have

{271 " 2n}=7’52nh ’

where 7 is in U a function depending only on x%*. Especially, if we put h=a,
then it follows that
a
{271 271}-0

Recalling g, .,=0 and g®?2"=0, we have
aagzn zn:o »

which means that g,,,, depends only on x?". Hence, taking a suitable trans-
formation of the 2n-th coordinate, we have g,, ,,=11in U. Then we find explicitly

{271 " Zn}:() )

And the variable x** is the arc-length of f-curves in U. So the line element of
the Kaehlerian manifold M is written in the form

6.7) ds? =g op(x™)dxdx®+(dx*™)? .
Thus we get

THEOREM 4. [If a Kaehlerian manifold M admits an analytic proper K-torse-
Sforming vector field & such that the associated form 1s locally gradient, then for
any ovdinary pownt P of the vector field &, there exists a coordinate neighborhood
U of the pownt P wn such a way that there 1s mn U a system of coordinales {x"}
having the followwng properties The function f depends only on the 2n-th variable
x*" wn U. The line element of M 1s gwen by (6.7) wmn U. The hypersurfaces defined
by the equation x*"=constant are the [-hypersurfaces and the curves defined by
the equation x*=constant are the f-curves and x*" wndicates the arc length along
the f-curves. Moreover, f-hypersurfaces are contact umbilic.

Conversely, we assume that in a Kaehlerian manifold M there exists a coor-
dinate neighborhood U in M such that there existsTa family of contact umbilical
hypersurfaces

(6.8) f(x")=constant
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whose orthogonal trajectories are geodesics. Then operating V’, to (6.8), we can
easily find that
thuhZO .

Furthermore, differentiation of the above equation gives

kaJBaka]+kakhub:O ’
which means that

[V, +1:C(agr,+ BIenC") ,mC™)1By Ba’=0,

because hg,=ag’ e+ 5947 where C" denotes the unit normal vector of the
hypersurface. Consequently we see that V,f, must take the form

(6.9) VS =pgr,taf s b f,,

or equivalently

(6.9) Vifs=plestafafs—bief,

for certain functions p, a and b. If we put
Eh=cf"+ef"

for any functions ¢ and e such that ¢*+¢2+0, then we have

Vgh=cpd, +epl, tafh+BE,
a, and f3, being certain 1-forms. The above equation means that § is a K-torse-

forming vector field. Therefore we have

THEOREM 5. If there exists a coordinate neighborhood U wn a Kaehlerian
manifold M such that there exists a family of contact umbilical hypersurfaces

whose orthogonal trajectories are geodesics, then there exists a K-torese-forming
vector field in U.

§7. Examples. In [5] we have proved that in order that a Kaehlerian
manifold M is holomorphically subprojective, it is necessary and sufficient that
there exists a local coordinate system {x*} such that the Christoffel symbols

{].hi} of M take the form

@1 {]h i}:pi‘;ih‘f‘ 00"+, ]+ o I, =T TR
(7-2) ijszO; f'r[;]i]h:O;

where p, and f;, are 1-form and a covariant tensor field respectively. Now,
consider a vector field V such that V are given by V*=x" with respect to a
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sysyem of coordinate {x"*} having the properties above mentioned. Differentiate
it covariantly with respect to the connection (7.1), we have by virtue of (7.2)

V,Vr=(14p, V)3, 4 5,V ] 4a, Vit a, T,

where we have put a,=p,+f,,V". Moreover we have proved in [5] that the
associated form is gradient. These facts tell us that the vector field V is noth-
ing but an analytic K-torse-forming vector field whose associated form is gradient.
In [5, III] we have also shown that the Christoffel symbols of the holomor-
phically subprojective Kaehlerian manifold of the first kind take the form

h -
{] i}:,ojaih'*"pi&;h_l_ ﬁlj]h"i—ﬁ]]zh"*‘f]iéh_f]r]zrgh )

for suitable coordinate system {x"}, where f(;,:=0, f,,J#"=0 and &" is an analytic
K-torse-forming vector field whose associated form is gradient.

The author wishes to express his sincere thanks to Professor K. Yano who
gave personal discussions, and also to Professors S. Tachibana and S. Ishihara
who gave criticisms and kind advices.
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