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ON KAEHLERIAN TORSE-FORMING VECTOR FIELDS

BY SEIICHI YAMAGUCHI

§ 1. Introduction. K. Yano has studied in [7] the concurrency of a direc-
tion defined along a curve xh(s) in M, when it satisfies the differential equations

dxh , δavh

 Λ

ds ds '

where a is a suitable function of s. Moreover, generalizing these concepts of
parallelism and concurrency, K. Yano [8] has introduced the notion of torse-
forming directions in M as follows: Consider a vector field v(s) defined along a
curve xh(s). If, after the development, the directions defined by v(s) form a
developable surface or torse, the directions defined by v(s) are called torse-form-
ing along the curve in M.

In order that the directions v(s) defined along a curve xh(s) be torse-forming,
it is necessary and sufficient that

I 7 + ds βV '

β being another suitable function of the parameter s. A vector field which is
always torse-forming along any curve traced in M is called a torse-forming vector
field. As for such a vector field, we have known the following theorems [8]

THEOREM A. In order that a Riemannian manifold M admits a torse-forming
vector field, it is necessary and sufficient that M contains a family of oo1 totally
umbilical hypersurfaces whose orthogonal trajectories are geodesies.

THEOREM B. In order that a Riemannian manifold M admits a torse-forming
vector field, it is necessary and sufficient that there exists a coordinate system
with respect to which the fundamental quadratic differential form may be written
in the form

ds2=f(xh)gab(xc)dxadxb+dxndxn

(a, b, c = l , 2, •••, n—1).

The complex analogue of a torse-forming vector field is, as far as we know,
not yet studied. So it might be interesting to develope complex versions of the
theory of torse-forming vector fields. In §2, let us recall first of all definitions
and formulas concerning Kaehlerian manifolds and hypersurfaces in a Kaehlerian

Received September 24, 1977.

103



104 SEIICHI YAMAGUCHI

manifold for later use. We shall introduce in § 3 the notion of a Kaehlerian
torse-forming vector field along a curve, and investigate in §4 a Kaehlerian
torse-forming vector field along any curve, which will be called for simplicity a
if-torse-forming vector field. § 5 is devoted to establish some formulas for later
use. In §6, a kind of hypersufaces called /-hypersurfaces will be defined and
prove Theorems 4 and 5. Some examples of Kaehlerian manifolds admitting a
if-torse-forming vector field will be given in §7.

§2. Preliminaries. Let M be a real 2n-dimensional Kaehlerian manifold
from now on. Denote by gjt and //(/z, i, j , ••• = 1 , 2, •••, In) the componentes
of the Hermitian metric tensor g and those of the complex structure tensor / of
M respectively. Then we have by definition

V being the operator of covariant derivation with respect to the Riemannian
connection defined by g.

The Kaehlerian manifold M is called a space of constant holomorphic sec-
tional curvature if the curvature tensor of M has components of the form

\ kji ^ n J n 3 j

Next we shall recall definitions and terminologies in the theory of hypersur-
faces in a Kaehlerian manifold. Let us consider a (2n—l)-dimensional orientable
submanifold M' differentiably immersed in M. We fix orientation of M and M'
and take an open covering {Uβ}(β^Λ) of M by coordinate neighborhoods and an
open covering {y«}(αeyl) of M' by coordinate neighborhoods so that they are
coherent with the orientations, namely, in each coordinate neighborhoods Uβ of
M and Va of M' natural frames determine positive positive orientations of those
manifolds. Now, each non-empty set UβΓ\Va can be expressed parametrically

a s χh--χh{ua){a) by c, ••• —1, 2, •••, 2n—l), where {xh} are local coordinates in Uβ
and {ua} are those in Va. We now put

(2.3) Bt dua

Then B are linearly independent local vector fields tangent to M\ The induced
Riemannian metric g' of M' is given by

The manifolds M and M' being both orientable, we can choose a unit normal
vector field Ch along M' in such a way that (C, B) determine a frame having
the positive sense of M on each non-empty UβΓ\Va> Then we get

1) We adapt the identification between vector fields and 1-forms by virtue of Rie-
mannian metric.
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(2.4)

The transform JB of B by / and JC of C by / are expressed as linear combina-
tions of B and C as follows:

(2.5) J*hBa*=φ*Bb

h + ηbC
h, Jι

hCι^-ηaBa

h,

because JC is tangent to M'. It follows from (2.1) and (2.5) that

φcφ>δc+VcV, ϊ > α V 0 >
(2.6)

This means that M' admits an almost contact metric structure (φ, η, gf).
Denoting by 7 ' the symbol of the covariant derivation along M', we have

the equations of Gauss and Weingarten:

where j | ί resp. j M are the Christoffel symbols with respect to g (resp. g')

and hab are components of the second fundamental form of W.
When the second fundamental form h of M/ has the form

(2.7) hab = agab+βVaVb >

a and β being certain functions along M', then we say that the almost contact
contact metric hypersurface Mf is contact umbilic. As for such M', it is well
known that a necessary and sufficient condition for an almost contact hypersur-
face M' to be normal and contact metric is that it is contact umbilic [4, 10].

§ 3. Kaehlerian torse-forming vector field along a curve. In what follows
M is assumed to be a 2n-dimensional Kaehlerian manifold. Let ξ(s) be a vector
field along a curve xh(s) in M. Such a vector field ξ(s) will be said to be Kae-
hlerian torse-forming, if the differential equation

(3.1)
as as

holds along the curve for any functions a and β of the parameter s, af and β'
being certain functions of s, where we have put ξh=Jr

hζr. If a=β=0, then ξ
is contained in the section spaned by dxh/ds and Jr

hdxr/ds. If we have a2Jrβ2

Φθ, then we have from (3.1)
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(3.2)

for certain functions a, b, λ and μ along the cueve. We now note that az+β2=£θ
if and only if a2jrb2φ0.

Coversely, if a vector field ξ(s) defined along a curve xh(s) satisfies the dif-
ferential equations of the form (3.2) with a and b satisfied a2+b2φθ, then it is
easily verified that ξ(s) satisfies a differential equation of the form (3.1). Thus
we have

THEOREM 1. Let ξ(s) be a vector field defined along a curve xh(s) and not
contained in the section spaned by dxh/ds and Jr

hdxr/ds. Then in order that ξ(s)
be a Kaehlenan torse-forming vector field along the curve xh(s), it is necessary
and sufficient that the covanant derivative of ξ(s) along the curve be a linear
combination of ξ, ξ, dxh/ds and Jr

hdxr/ds.

When ζ(s) satisfies a differential equation (3.2) with a—b=0, the two-dimen-
sional distribution spaned by ξ and I is parallel.

§4. K-torse-forming vector field. In this paragraph, let us introduce first
of all the notion of a Kaehlerian torse-forming vector field in M.

If a vector field ξ satisfies a differential equation of the form (3.2) along any
curve traced in M, then we call such a vector field ξ a Kaehlerian torse-forming
vector field, simply a if-torse-forming vector field. Since the equation (3.2) can
be rewritten as follows:

(4.1) J^w^

it is easy seen that for a /f-torse-forming vector field

(4.2) Vjξh=aδ

or equivalently

for suitable functions a and b and 1-forms a and β. The functions a and b
(resp. 1-forms a and β) appearing in (4.2) will be called the associated functions
(resp. forms) of ξ. Moreover if the associated functions a and b satisfy a2+b2φQ
in M, then we call such a vector field a proper /f-torse-forming vector field.

We are now going to obtain some identities containing a 7f-torse-forming
vector field for later use. Operating V* to (4.2) and making use of (4.2) and (4.2)',
we can easily obtain
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from which

Rkjrψ=XkδJ

h-Xjδk

h+ YkJ3

h-YJkh

+(ykaJ-VJak)ξh+(ykβj-Vjβk)ξh ,

where we have put

(4.5) Xk = ak-aakΛ-bβk, Yk = bk-bak-aβk, ak=lka, bk=lkb.

Concerning if-torse-forming vector fields in a space of constant holomorphic
sectional curvature, we have

PROPOSITION 2. In a space M of dimensions 2n (>4) with constant holomor-
phic sectional curvature K, for any non-vanishing K-torse-forming vector field ξ
its associated form a is locally a gradient of function and dβ=(K/i)Φ, where Φ
is the fundamental two form of Kaehlenan structure of M.

Proof. Substituting (2.2) into (4.4), we have

(4.6) X'kδ,h-X'βkh+Y'kJ,h-Y',Jkh+*k£h+βk£h=Q,

where we have put

(4.7) \
1 ak=

Hence, since dimM>4, we can take unit vectors y and y in such a way that
y, y, ξ and ξ are mutually perpendicular. So, contracting (4.6) with yh, yh, ξh

and ξh, we get by a straightforward computation respectively

(4.8) X'kyj

(4.9) X'rfj

(4.10) X'tξj-X'j

(4.11) X'Jj-X'

From (4.8) and (4.9) it is evident that

, X'k-X'{y)yk+Y'{y)yk=0, Y'^-

i X'>-X'(y)y >-Y'Wyk=0, Y'k-

where we have put X'(y)=X'ky
k etc.. Transvecting (4.12) with yk, ξk and | * ,

we find respectively

(4.13) Y'(ξ)= Y'(ξ)=X'(ξ)=

(4.14) X'(9)+Y'(y)=0, X'(y)-Y'(3)=0 •
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On the other hand, by contraction over h and i in (4.6), we can easily verify

(4.15) (2n-l)X' k+

Further we transvect (4.10) (resp. (4.11)) with ζ3 (resp. ξJ) and take account of
(4.13) so that we obtain

(4.16) X'k+akre=0, X\ + βkrϊ
r=0,

which and (4.15) imply

(2n-3)X'k+Y'k=Q.

Since n>2, this together with (4.14) gives

which and (4.12) imply X'k = Y'k=0. Thus (4.6) implies akj=βkj=0. Accordingly,
Proposition 2 is proved.

For the compact case, we have

THEOREM 3. Let M be a 2n (>4) dimensional compact space of constant holo-
morphic sectional curvature KφO. Then a K-torse-f orming vector field in M
vanishes identically.

Proof. We assume that ξ is a non-vanishing /ί-torse-forming vector field in
M. Then by Proposition 2 we obtain

Contracting this with JkJ, we get lrβ
r—nK/2f from which we have by Green's

Theorem

[
JΛΓ

where dV denotes the volume element of M. Thus we have K=0. This com-
pletes the proof.

§5. Analytic K-torse-f orming vector field. From now on suppose that a
iv-torse-forming vector field ξ in M is contravariant analytic. Then the vector
field ξ must satisfy (4.2) and

We can easily see that in order that for a /f-torse-forming vector field ξ to be
analytic it is necessary and sufficient that βj=άj(=—Jjr<xr) holds. Since ξ is
analytic, (4.2), (4.3), (4.4) and (4.5) reduce respectively to

(5.2) v£h=ag
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(5.2)' VJξ
h=aJJ

h-b

(5.3) VkV^h=akδJ

h + bkJJ

h+lkaJξ
h

(5.4) Rk,rΨ=XkδJ

h-XJδk

Λ+YkJjh-YJk

h+akJξ
h+άkJξ\

(5.5) Z f c=ajb—ααΛ + 6αΛ , Yk = bk — bak — aάk,

where we have put

(5.6) ak3=lka3-l}ak , a k j=l kά j-1 ft k .

Hence using (5.4) and the Bianchi identity Rkji

hJrRjlk

hJrRlkJ

h=0, we have

(5.7) 2(YJjh+YJhk+YhJkJ)

+ akjξh + ajhξk-\-ahkξJ-
jrάkjξh + άjhξk

JrάhkξJ=O .

By the way, taking account of

we have

(5.8)

because of (5.3) and (5.4), where L denotes the Lie derivation with respect to ξ.

Since our manifold M is Kaehlerian and ξ is analytic, it is well known that

h

from which, using (5.9), we get

(5.9) Zkg3h—Zhgjh + ZhJkj—ZkJhJ

where we have put

Again, changing k, j , i cyclically in (5.9) and adding those two obtained to (5.9),
we get
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(5.11) +JkrUrjL+JjrUrJk+Jll

rUrJj-j!i

rUrjh-JkrUrJj-J

+ukjξh-\-ujhξk+uhkξj—uhjξk—ukhξj--ujkξh=O.

In the next place, we assume that the associated form a is gradient, that is,
it satisfies α ί = 7 ί α . (This condition is established in any /Γ-torse-forming vector
field in a space of constant holomorphic sectional curvature. (See Proposition 2)).
So the equations (5.7) and (5.11) can be rewritten as follows:

(5.12)
+JkrUrjξh+JjrUrhξk+Jh

rUrkξj=O ,

(5.13) ZJ

because of Jk

rurj

JrJjrurk=0 and Ujk=ukJ, and consequently

(2Yk-2k)JJh+(2Yj-Zj)Jhk+(2Yh-2h)Jkj=0.

This together with (5.6) and (5.10) gives

(5.14) bk+ak=2(aάk + bak),

or equivalently

(5.14)' ak-bk=2(aak-bάk).

Thus we obtain

(5.15) Xk=-Ϋk.

Also, it follows from (5.14) and (5.14)' that

(5.16) aak + bbk + bάk-a5k=2(a2+b2)ak.

In the third place, suppose that ξ is an analytic proper /ί-torse-forming vector
field. Then (5.16) gives

(5.16)' V,(llog(«•+*«)-«)= ~ % f - ,

because of α i = 7 i α . On the other hand, contracting (5.9) with ghl, ξh and ξhjk}

and taking account of Jkrurj+JJ

rurk=() and uJk=uk], we obtain respectively

(5.17) (n-ϊ){ak+b~h)+uk7ξ
τ-lra

rξk=O,

\$\2ukj-urje^-SrUr}Sk+(ak+Bk^}
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(5.19) ( 6 , - a r ) Γ = 0 .

Further, transvecting (5.8) with ξ] and using (5.19), we have

from which, comparing this with (5.17)

(5.20) ak+b~k=2pξk,

or equivalently

(5.20)' bh-ah=-2pξt

for a certain function p. By virtue of (5.16), (5.20) and (5.20)', it is clear that

(5.21) i-7* log (a*+b*)-ak= J^ (aξk-bϊk).

Here we put

(5.22) / = y l o g ( α 2 + f e 2 ) - α .

Then, applying 7^ to (5.22) and using (5.21), we find

(5-23) /^-Jj—^-fcl,), (f^lj),

or equivalently

(5.23)' / ί = _ f i _

So we have just shown that

(5.24) a

or equivalently

(5.24)' afj-bfj^pζj.

% 6. /-hypersurfaces. Let ξ be an analytic proper ϋf-torse-forming vector
field whose associated form a is locally gradient. A point P of M is called an
ordinary point of ξ, if both of ξ and fh given by (5.23) do not vanish at P. Let
Mj be the set of all ordinary points of M. Then Mλ is a non-empty open subset
of M. We also see from (5.24) that p has not zero points over Mλ.

In the sequel we perform our discussions in Mx. Differentiating (5.23) covari-
antly and making use of (5.16), (5.21)^(5.24) and (5.23)/~(5.24)/, we find

(6.1) Vkfj=pgkj+Φk log p-

from which
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(6.2) Vklogp=λfk

for a certain function λ, since /, is gradient. Thus (6.1) can be rewritten as
follows:

(6.3) Vkf,=ρgkj+(λ-Dfkfj+?k?j

In a sufficiently small neighborhood of an ordinary point we consider the
integral curve of the vector field / \ By means of (6.3), we can easily find that
such an integral curve is a geodesic arc.

Let Q be an ordinary point in M and U a coordinate neighborhood of Q
which contain only ordinary points. So we can define in U a family of hypersur-
faces by the equations f(x)—constant which will be called /-hypersurface. Given
a point in Mlf there exists in the family one and only one /-hypersurface V(P)
passing P. It is clear that the /-curves form the normal congruence to the
family of the /-hypersurfaces in U.

Put

C Λ = — / \ <7=VΛΛ
o

in Mj, then Ch is differentiate in Mγ. As this equation and (6.3) yield that

we get by transvection of this with C3

(6.4)

which implies

(6.5) V k C ^ j j ,

Let P be a point in U and V(P) the /-hypersurfaces in U passing through
the point P. Then the vector field Ch is the normal unit vector to V(P) at any
point of V(P). We choose a system of local coordinates {ιιa} in V(P) and suppose
that V(P) is expressed by parametric equations xh=xh(ua) in U. We notice that
the second fundamental form h of the /-hypersurface V(P) is given by

hab=Ba

%Bb*7fi%.

By virtue of (2.5) and (6.5), it is evident that

(β 6) hab=— gfaΛσηaτJb.
G

So we can see that V(P) is nothing but contact umbilic. By virtue of (6.2) and
(6.4), we find respectively daρ=0 and daσ=0 and consequently, we see that the
functions p and σ are constant over V(P).
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Now we can choose a system of coordinates {xh} in U such that /-hypersur-
faces defined by x2 r ι=constant are the /-hypersurfaces in U and the curves
defined by the equations xa—constant are the /-curves in U. Then it is easy to
see that

Since the /-curves are geodesies, we have

h
2n \

where γ is in U a function depending only on x2n. Especially, if we put h—a,
then it follows that

I a }=o.
I2n 2n>

Recalling ga 2 r ι = 0 and ga 2n=0, we have
Va§2n 27i — 0 ,

which means that g2n 2n depends only on x2n. Hence, taking a suitable trans-
formation of the 272-th coordinate, we have g2n 2n = l in U. Then we find explicitly

hί h l - o

And the variable x2n is the arc-length of /-curves in U. So the line element of
the Kaehlerian manifold M is written in the form

(6.7) ds2=gab(xh)dxadxb+(dx2n)2.

Thus we get

THEOREM 4. // a Kaehlerian manifold M admits an analytic proper K-ίorse-
forming vector field ξ such that the associated form is locally gradient, then for
any ordinary point P of the vector field ξ, there exists a coordinate neighborhood
U of the point P in such a way that there is in U a system of coordinates {xh}
having the following properties The function f depends only on the 2n-th variable
x2n in U. The line element of M is given by (6.7) in U. The hypersurfaces defined
by the equation x2n—constant are the f-hypersurfaces and the curves defined by
the equation xa=constant are the f-curves and x2n indicates the arc length along
the f-curves. Moreover, f-hypersurfaces are contact umbilic.

Conversely, we assume that in a Kaehlerian manifold M there exists a coor-
dinate neighborhood U in M such that there existsja family of contact umbilical
hypersurfaces

(6.8) /(z^)-constant
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whose orthogonal trajectories are geodesies. Then operating V'α to (6.S), we can
easily find that

Furthermore, differentiation of the above equation gives

VkfjBa

kBb>+fkC
khai>=0,

which means that

because hab=ag/

ab+βr]a7]b, where Ch denotes the unit normal vector of the
hypersurface. Consequently we see that lkfj must take the form

or equivalently

(6.9)' V k f j ^ p J j j ,

for certain functions p, a and b. If we put

ξh=cfh+efh

for any functions c and e such that c2+e2φθ, then we have

a3 and β3 being certain 1-forms. The above equation means that ξ is a if-torse-
forming vector field. Therefore we have

THEOREM 5. // there exists a coordinate neighborhood U in a Kaehlerian
manifold M such that there exists a family of contact umbilical hypersurfaces
whose orthogonal trajectories are geodesies, then there exists a K-t or ese-forming
vector field in U.

§7. Examples. In [5] we have proved that in order that a Kaehlerian
manifold M is holomorphically subprojective, it is necessary and sufficient that
there exists a local coordinate system {xh} such that the Christoffel symbols

1. 1 of M take the form

A(7.1) {

(7.2) fw=0, /κ;Λ3Λ=0,

where ρt and fjk are 1-form and a covariant tensor field respectively. Now,
consider a vector field V such that V are given by Vh=xh with respect to a
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sysyem of coordinate {xh} having the properties above mentioned. Differentiate

it covariantly with respect to the connection (7.1), we have by virtue of (7.2)

where we have put a3—p_,+j'jrV
Ί\ Moreover we have proved in [5] that the

associated form is gradient. These facts tell us that the vector field V is noth-

ing but an analytic /ί-torse-forming vector field whose associated form is gradient.

In [5, III] we have also shown that the Christoffel symbols of the holomor-

phically subprojective Kaehlerian manifold of the first kind take the form

for suitable coordinate system {xh}, where fίjki=Q, frlJJu

h=0 and ζh is an analytic

/Γ-torse-forming vector field whose associated form is gradient.

The author wishes to express his sincere thanks to Professor K. Yano who

gave personal discussions, and also to Professors S. Tachibana and S. Ishihara

who gave criticisms and kind advices.
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