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AN ENTIRE FUNCTION WITH LINEARLY
DISTRIBUTED VALUES

BY TADASHI KOBAYASHI

1. Introduction. The purpose of this paper is to prove the following
theorem.

THEOREM. Let G{z) be a transcendental entire function of finite lower order.
Assume that all the zero-points {an} and all the one-points {bn} of G(z) lie on the
lines Rez=0 and Re 2=1, respectively. Then

G(z)=P(expCz),

where P(z) is a polynomial and C is a non-zero real constant.

Here of course, P{z) should satisfy suitable conditions, which will be explained
in the final section 7. In this theorem it would be interesting to remove the
restriction that G(z) be of finite lower order, but we are unable to do this.

The present paper is a continuation of our previous papers [3] and [4], in
which we have investigated entire functions with three linearly distributed values.
Since we need constantly to refer to these papers [3] and [4], they will be
referred to henceforth as CE and EL, respectively. The notation and terminology
generally follow that of CE and EL.

2. Preliminary results. Let G(z) be an entire function satisfying the as-
sumptions of our theorem. Then from Theorem 4 of CE, G{z) has at most order
one and mean type, that is,

(2.1) lim sup ! < +oo .

In particular, the genera of G(z) and G{z)—1 are at most one. Hence we easily
have

(2.2) R e Ί ^ f

(2.3) Re r ^ y — , ̂  . .
G(z)—1 n \z—bn

and
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(2.4) Gζϊ)=G(-z) exp (2Az+ιA'),

(2.5) G{z+ l ) - l = ( G ( - z + l ) - l ) exp (2Bz+ιB')

with suitable real constants Λ 5, A' and β'. From these (2.4) and (2.5),

()
(2.6)

+(G(z+2)-l) exp

In CE and EL, we have shown the next fact on the real constants A and B.

LEMMA 1. The quantities A and B which appear in the functional equations
(2.4) and (2.5) must be ABφO. Further if AB is negative, then A is negative and
B is positive.

Hence the following six cases may occur.

case 1) A>B>0.

case 2) B>A>0.

case 3) A<B<Q.

case 4) B<A<0.

case 5) ^ < 0 and B>0.

case 6) A=BΦO.

For the case 6), we have proved the following theorem by making use of
the functional equation (2.6).

THEOREM 1 (CE; Lemma 11). // A=BφO, then

G{z)=a1

Jra2 exp (Az)J

Γa3 exp (2Az),

where alf a2 and α3 are constants with axazφ^y aλφl.

By this Theorem 1, we therefore obtain a part of the desired result in the
case 6).

In the cases 3) and 4), let us consider the function defined by

Then we can easily see that the cases 3) and 4) reduce to the cases 2) and 1),
respectively. Hence from this point on we may discuss only the cases 1), 2) and
5). The next lemma plays an important role for the cases 1) and 2).

LEMMA 2 (EL; Lemma E). // A>B>0, then
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HmG(-reu)=0
r*+oo

uniformly for | ί | ^ ί * , where ί* is an arbitrarily fixed number in if), π/2). Further
if B>A>0, then

lim G(-reu)=l
r-*+oo

uniformly for \ t | ̂  f *.

Assume that A>B>0. Then by the above Lemma 2 and (2.5), for an arbi-
trarily fixed number /* with 0<ί*<7r/2, it is possible to find a positive number
r* such that

(2.7) -~ g I G(re") I exp(2B~2Br cos ί ) ^ - |

for |f|gf* and r^r*. Hence

(2.8) lim
V 7 r + o o

for values of ί with \t\<π/2. It also follows from Lemma 2 that

(2.9) lΰn l 0 g + | G ( ? g α ) l = 0

for values of ί with \t—π\<π/2. Here let us note that

log+IGCre'Ol^log *-M(r, G)^3T(2r, G),

where
M(r, G)=max|G(z) | .

l«l=r

Since the characteristic function T(r, G) satisfies (2.1), from (2.8) and (2.9), we
thus have

(2,0) taM =ir,taJ!C!^ί2LΛ=»

On the other hand by means of (2.4) and (2.7), for an arbitrarily fixed number f*
with 0<if*<π/2, it is possible to choose a positive number r* such that

-log 2+2B+2(A-B)r cos ^ l o g + ,nf

 1

 m ι

~ 5 ) r cos ί

and

(2.12) | G ( r e " ) l ^ l

for | / | ^ ί * and r^r* . Therefore from (2.11),
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lθg+-T7=Γ7 77ΓΓ-dt

so that

(2.13)

Further it follows from (2.11) and (2.12) that

(-re") I
-dt

~ - ( iog+ , Γ / i m tff2;r j/cί ) |G(re ι ί)|

—^*)log+M(r, 0, G),
π /

where /(ί*) indicates the union of the open intervals (ί*, TΓ—ί*) and (ί*—π, —t*),
and

M(r, 0, G)= sup - X

Hence by making use of Petrenko's result [7] and (2.10), we have

hm mf ^—-—'-— g -— — sin ^

(2.14)
Iog+M(r,0, G)

- lim inf*• / 1.XXXX XXXX. "TV /~*\ *

π / π r-+oo 7 (r, G)

Since ί* is an arbitrary number with 0< ί*< ττ/2, it therefore follows from (2.13)
and (2.14) that

lim inf '—
r _» + 0 0 γ

so that

Ά(a Γ, v . , m(r, 0, G)
ό(0, G)=hminf-

(r, G) 5

In particular, for the case 1), the value 0 is a deficient value of G(z) and 0<B

The case 2) can be treated by the same way as the above case 1). Conse-
quently, we obtain the following lemma.



58 TADASHI KOBAYASHI

LEMMA 3. If A>B>0, then 2B^A and

r->~ r π t)

If B>A>0, then 2A^B and

r π J A

3. Case 5). In this section we shall treat the case 5) and our goal is to
show the impossibility of this case. Our consideration is divided into several
steps, since it needs a little bit complicated process.

The first step. In this case 5), by virtue of (2.2) and (2.3),

(3.1) R e - ^

for Rez^O unless z=an, and

(3.2) R e ^ g g ^
for Re 2^1 unless z=bn. Hence G'(z) has no zeros for Rez^O and RezΞ>l
except for the zero-points and the one-points of G{z). Further G{z) approaches
infinity when z tends to infinity along the real axis.

The second step. In this step we shall prove the next fact.

LEMMA 4. Assume that A is negative and B is positive. Then all the roots
of the equation G(z)=x must be contained in the open strip 0 < R e z < l , where x is
an arbitrary real number with 0 < x < l .

Proof. Assume that there exist a real number ** and a complex number z*
such that 0 < * * < l , Rez*^0 and G(z*)~x*. Then by what mentioned above,
G'(z*)Φθ. By E{w, x*), we denote the regular element of the inverse function
of G(z) with center x* and satisfying E(x*, x*)~z*. Now let us continue analy-
tically this element E(w, x*) along the segment /={x*^ ί^ l } toward the point
t=l. Then we have an analytic continuation G~\IS) with algebraic character
along the segment / up to some point t=s ( JC*<S^1), with the possible exception
of this end point. Hence from this continuation G~\IS), we can define the simple
path C*={z(t): x*^t<s} such that z(x*)=2* and

(3.3) G(z(t))=t

for x*^t<s. For a moment, assume that Rez(ί*)=0 for some ί* with ; t * ^ * < s .
Then G'(z(t*))Φ0, since 0<G(z(t*))<l. Thus the path C* is differentiable at t=t*
and it follows from (3.1) and (3.3) that
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so that Rez'(f*)<0. Hereby if Rez(i*)=0, the real part of z(t) decreases as t
increases in a neighborhood of ί*. By this fact, we can easily see that this path
C* must be contained entirely in the open half plane Rez<0 save for the initial
point z(x*). Therefore the continuation G " 1 ^ ) does not continue along the seg-
ment / to the point t=l, since all the one-points of G(z) are distributed on the
line Re z = l only. Consequently, we may assume that the continuation G~\IS)
defines a transcendental singularity at the point t=s. It thus follows from
Iversen's theorem [6] that the path C* must be an asymptotic path of G(z) and
as z tends to infinity along this path C*, G(z) converges to the value s. Further
since G(z) omits the values 0 and 1 in the open half plane Re z<0, Lindelόf-
Iversen-Gross' theorem [6] yields that G(z) approaches the value s when z tends
to infinity along the negative real axis. This clearly contradicts what mentioned
in the first step. Accordingly, for each x with 0 < # < l , G{z)Φx in the closed
half plane Re z^O.

Next let us assume that there exist a real number x* and a complex number
z* such that 0 < * * < l , R e ^ ^ l and G(z*)=x*. Then G'(z*)Φθ. As before, by
E(w, **), let us denote the regular element of the inverse function of G(z) with
center x* and satisfying E(x*, x*)=z*. In this case we continue analytically this
element E(w, x*) along the segment J={Q^t^x*} toward the point t=Q, and we
have an analytic continuation G~\Jr) with algebraic character along this segment
/ up to some point t—r (0^r<x*), with the possible exception of this end point.
Hence from this G~\Jr), we can define the simple path C*={z(t): 0^t<x* — r}
such that z(0)=z* and

(3.4) G(z(t))=x*-t

for Qt^t<x*—r. By the same way as above, it thus follows from (3.2) and (3.4)
that the path C# must be contained entirely in the open half plane Rez>l
with the possible exception of the point z(0). By this fact, we can see that the
path C* is an asymptotic path of G(z) and as z tends to infinity along C#, G(z)
converges to some finite real number. Therefore we arrive at a contradiction.
Consequently, for each x with 0 < x < l , G(z)Φx in the closed half plane Re z^l.
Lemma 4 is thus proved.

The third step. By Lemma 4, we can show the following lemma.

LEMMA 5. Let the assumptions of Lemma 4 be satisfied. Then for each real
number x with 0 < x < l , either

for Re z^l, or

for Re ^
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Proof. Let x be a real number with 0<x<l . From (2.1), the genus of G(z)
—x is one or zero. Hence we can write G{z)—x in the form

or else

G(z)-x=exp (az+b) Π (l —) ,
»έi\ Cn '

G(z)-x=exp (az+b) Π (l —)exp(—),
»έi\ Cn / \ Cn /

where a and b are constants and {cn} denotes the x-points of G(z). It thus follows
from these expressions that

0.5) -τ£r-=«+ Σ ^ - .
G(z)—x nέi ^ — c r a

or else

(3.6) _ ^ _ = β +

G ( z ) x

Now assume that the assertion of this lemma is false. Then there exist two
points zλ and z2 such that Re 2 ^ 1 ,

and

Hence we have

(3.7)

On the other hand from (3.5) or (3.6),

G'fo) G'(z2)
G(Zl)-x G(z2)-x Ά\ z.-cn

so that

Ke r^Γ/— — K e -
G(z2)—x

^ - c j 2 ^ \z2-cn\

By the above Lemma 4, 0<Rec n <l. Therefore
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which clearly contradicts (3.7). This completes the proof of Lemma 5.
The fourth step. By Lemma 5, we have the two possibility.

in the closed half plane R

in the closed half plane R
In what follows, we may assume that (i) holds, since the case where (ii)

holds is treated by the same fashion. Now we are in a position to prove the
next lemma.

LEMMA 6. Let the assumptions of Lemma 4 be satisfied and let the inequality
(i) hold. If G(l + ιy) is real and non-negative for some real number y, then

Proof. First of all, it follows from the inequality (i) that G'(z)Φθ in the
closed half plane R e z ^ l . Further from Lemma 4, for an arbitrary real number
x with 0 ^ * < l , G(z)Φx there.

Assume now that the assertion is false. Then it is possible to take some
real number y* such that G(l+i3>*)=s*>l. Hereafter we shall lead a contradic-
tion by using the same method developed in the proof of Lemma 4. By E(ιυ, s*),
we denote the regular element of the inverse function of G(z) with center s*
and satisfying E(s*, s*)=l+ιy*. Let us continue analytically this E(w, s*) along
the segment L—{\i=kx^s*} toward the point x—l. Then we get an analytic
continuation G~ι{Lu) with algebraic character along L up to some point x~
u (l^u<s*), with the possible exception of this end point. From this continua-
tion G~\LU), we can thus define the simple path Cu={z(t): Oi^t<s*—ιι} such
that 2(0)=!+iγ* and

(3.8) GWt))=s*-t

for O^f<s*—tt. It therefore follows from (i), (3.1) and (3.8) that the path Cu

must be contained entirely in the open strip 0 < R e z < l save for the point 2(0),
so that the continuation G~\Ly) does not continue along L to the point x=L
Hereby we may assume that G~\LU) defines a transcendental singularity at the
point x—u. Consequently, the path Cu is an asymptotic path of G(z) and as z
tends to infinity along this Cu, G(z) converges to the value w(^l). Here let us
denote by D the simply connected domain which is contained in the open strip
0 < R e z < l and is surrounded by Cu and by a part of the line Re z— 1. Evidently
there exists a one-point z' of G(z) which lies on the boundary of this domain D.
Of course, R e z ' ^ 1 . Therefore, as above, using the regular element E(ιu, 1) of
the inverse function of G(z) with center at 1 and satisfying E(l, l)—zf, we can
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obtain an asymptotic path Cυ of G(z) such that Cυ is contained in the domain D
and as z tends to infinity along this CΌ, G(z) converges to some real value v with
Ofgz/<1. However since G(z) fails to take the values 0 and 1 in this domain D,
it must be u— v, which is clearly absurd. Hence we have a desired contradiction.
Lemma 6 is thus proved.

The final step. From the above Lemma 6 and the inequalities (i) and (3.2),
by making use of the exactly same argument which we used to prove Lemma 10
of CE, it can be shown that the one-points of G{z), which we write as {1+ifr*},
are simple and satisfy

(3.9) (rn-n-l)π^B(b*-b*)^(m-n+l)π

for arbitrary integers m and n with m^n. Further with the help of the observa-
tion which we used to prove Lemma E of EL, it follows from (3.9) that G(x+ibf)
is bounded for negative real values of x. This clearly contradicts the fact that
A is negative. Hence we have proved the impossibility of the case 5) under the
assumption that (i) holds.

For the case where (ii) holds, let us consider the function defined by

G*(z)=l-G(l-z) .

Then it is clear that G*(z) satisfies the assumptions of Lemma 6. Hence we also
arrive at a contradiction. Consequently, the case 5) never occurs.

4. Further consequences of Lemma 2. By virtue of the foregoing results,
we may consider only the cases 1) and 2). On these cases, from Lemma 2, we
have obtained Lemma 3 in the section 2. In addition to this information, we
require further lemmas to obtain our desired result.

Let G(z) be an entire function satisfying the assumptions of our theorem,
and let A, B, A1 and B' be the real constants in the identities (2.4) and (2.5).

Firstly assume that A>B>0. Then by means of Lemma 2 and the identity
(2.5), we can conclude that

(4.1) lim G(rea) exp (-2Breu)=-exp (-2B-iB;)
r-»+°o

uniformly for \t\^t*, where t* is an arbitrarily fixed number with 0<f*<ττ/2.
Further by making use of the functional equation (2.6), we can prove the follow-
ing Lemma 7. As a matter of convenience, we shall prepare some notations.
For each non-negative integer k, let us set

(4.2) C,=exp (2k(k-l)A-2k2B).

With these positive real constants Ck, let us further set

(4.3) Hn(z)=-£-G(z) exp (2nAz-2nBz-2Bz)
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+ Έ-^f^abk exp (2(k+ϊ)Az-2(k+l)Bz)

for each natural number n, where a=exp(—ιA') and b=exp(ιB'—iA').

LEMMA 7. Assume that 0 < n 5 < n Λ < ( n + l ) β for some natural number n.
Then for an arbitrarily fixed number ί* in (0, τr/2),

lim Hn(reu)
r-++oo

u)=

uniformly for \t\^t*.

Proof. This assertion can be shown by induction. Let us recall the functional
equation (2.6), which can be written as

G(z)=a exp (2Az)-b exp (2Az-2Bz-2B)

+ bG(z+2) exp (2Az-2Bz-2B).

Then by (4.2) and (4.3),

G(z) exp (-2Bz)=a exp (2Az-2Bz)

(4.5) +bG(z+2) exp (2Az-4Bz-2B)

-bexp(2Az-4Bz-2B)

=Hλ(z+2) exp (AB-4A)-b exp (2Az-ABz-2B).

Hence if 0<B<A<2B, it follows from (4.1) and (4.5) that

so that

lim Htf+re") exp (4B-4A)=--?-exp (-2B),
r-»+oo ί?

lim Hlreiv)=—~exp ( 4 ^ -

uniformly for | ί | ^ ί * w i t h 0<ί*<π/2. Therefore our assertion is true when
n = l . We now assume that it also holds for n ^ l . Combining (4.3) and (4.4), we
can easily have

Hn(z)=Hn+1(z+2) exp (4B-4Λ)
(4.6)

Here let us note that 0<(n+l)B<(n+ϊ)A<(n+2)B implies
Hence if A and 5 satisfy 0 < ( n + l ) 5 < ( n + l ) Λ < ( n + 2 ) β , it follows from (4.6) that
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lim Hn(reu)= lim Hn+1(2+reu) exp (4B-4Λ)

so that

lim Hn+1(reu)=—^exp(4(n+ΐ)A-4(n+l)B-2B)

uniformly for | ί | ^ ί * with 0</*<π/2. Hereby the assertion is also true for n+1.
Lemma 7 is thus proved.

Secondly, let us consider the case 2), that is, B>A>0. The functional
equation (2.6) can be rewritten in the form

G(z)-l=αexp(2A2r)-l
(4.7)

+ δ(G(+2)- l ) exp

with a=exp(—iA'), b—exp(iB/—iA/). Hence it follows from Lemma 2 that

\im(G(-reu)-l)exp(2(B-;
7"-*+oo

(4.8)

uniformly for \t\^t*, where ί* is an arbitrarily fixed number in (0, π/2). Now
let us set

C?=exp (2k(k+ϊ)A-2k2B),

(4.9)

2ij /"̂ SU e x p

for each natural number n. Combining (4.7) and (4.9), we at once obtain

'(n+2)Az-2(n+l)Bz)

(4.10)
+H*+1(z+2) exp (4B

Therefore by making use of (4.8) and (4.10), we can achieve the following lemma.

LEMMA 8. Assume that 0<7iτ4<nJ5<(72+l)yl for some natural number n.
Then

lim ^*(-re< i)=4
r-»+oo
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uniformly for | / | ^ ί * , where ί* is an arbitrarily fixed number with 0<t*<π/2.

5. Case 1). The purpose of this section is to treat the case 1). Let the
notations be as in the above section 4. For each natural number k, with the
real constant Ck defined by (4.2), we now introduce the entire function

(5.1)
-bkCk exp (2kAz-2kBz).

It is clear that

(5.2) fk(z)=άfk(-z)exp(2Az),

since aά—1 and bb=l. Further let us set

(5.3) Sn(z)=±fk(z)

for each natural number n. Of course, it follows from (5.2) that

(5.4) Sn(z)=άSn(-z)exp(2Az).

Moreover, by the definitions (4.3), (5.1) and (5.3), we can easily see that

Cn

(5.5)

+ Σ Ckb
k exp (2kAz-2kBz).

Our task now is to prove the next lemma.

LEMMA 9. Let G(z) be an entire function satisfying the assumptions of the
theorem, and let A and B be the real constants in the identities (2.4) and (2.5).
Assume that A and B are both positive and that

2n+2_ A 2n

2 n - l

for some natural number n. Then

G(z)=Sπ(z),

where Sn(z) is the entire function defined by (5.3).

Proof, Let us set

F W =_2W_
W Sn(z) •
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Then it follows from (5.5) that

F(z)-1= hlo(\ e χP(2(n+l)Bz-2nAz)

(5.6)

v Ckh\ exp (2kAz-2kBz).Σ
* i

Combining (2.4) and (5.4), we at once have

(5.7) T®

Further by the assumption

(5.8) -
B 2n-l '

it is clear that

(5.9) 0<nB<nΛ<(n+l)B.

Now let if* be an arbitrarily fixed number with 0<t*<π/2. Then by means of
(5.1), (5.3), (5.9) and Lemma 7, it is possible to find a positive number r* such
that

and
I Hn(z) I ^2 exp (4nA-4nB-2B)

for values of z with | z | ^ r * and |argz|^i*. Hence it follows from (5.6) that

\F(z)-lI ^ " ^ - e x p (4nA-4nB-2B)|exp (2n(B-.A)z)|

(5.10)
w 2Ci

there. Here let us set

(5.11) /=max (2nB-2nA, 2nA-2nB-2B).

Then from (5.10), with some positive constant M, we can get

(5.12) I Fire11)-11 ^ M exp (Ir cos t)

for r^r* and | ί | ^ ί * .
Hereafter, assume that the meromorphic function F(z) is not constant. Then

by virtue of (5.7) and the inequality (5.12),
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• , x 1

π j-t* IFire ) —

2
- log M Ir sin £*

7Γ 7Γ

for real values of r with r^r* , so that

Γ . . m{r, 1, F) ^ 21 .
hm mi Ξ> sm t*.

r->+oo r 7Γ

Since ί* is an arbitrary number between 0 and π/2, it follows that

r . f m{r9 IF) ^ 2 _
hm mf — ^ — - — — > / ,

r->+oo r ~~ π

so that

(5.13) liminf T(r> F) ^ — - / .

In particular, the lower order of F(z) must be exactly one. In addition to this
(5.13), we can see that

(5.14) hm inf J; ^ 0 ,
r-»+oo i ^r, r

so that

(5.15) hm sup ^ = 1 .

In fact, by means of (5.12), we can choose a positive number r* so that

for r ^ r ^ and | ί | ^ ί * . Taking into account of (5.7), we thus find

-r-dt

g+ M(r, 0, F),

\ π /

so that

r . . mix, 0, F) .Λ 2 Λ r . . log+M(r, 0, F)r, F) = V π / ""+« T{r, F)

where /* indicates the union of the open intervals (ί*, 7r/2) and {—π/2, — ί*), and
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1
Mix, 0, F)= sup

\F(z)\ '

Hence the result of Petrenko, which we used in the section 2, yields

mix, 0, F)

^π2t*
hm inf

T{r, F)

Since f* is arbitrary subject to 0<ί*<τr/2, the desired (5.14) follows immediately.
On the other hand, by the definition of F(z), it is clear that

Mr, 0, F)S-N(r, 0, G)

for positive real values of r. Hence

N(χ, 0, F) Tix, F) < JV(r, 0, G) T(r, G)
Tix, F) r Tix, G) r

It therefore follows from (5.13) and (5.15) that

p M r ) 0 ) G ) T(r,G)

π =r-^y T(r, G) r

Here recall Lemma 3. Then we obtain

—--7^(1-3(0, ™ 1 ! - T(r> G)

7Z

__2_

π

so that

(5.16)

However this (5.16) contradicts (5.8) and (5.11). Indeed if

B = 2n '

then I=2nB~2nA, so that (5.16) gives

A < 2n+2
B = 2n + l J

which is absurd. Further if

^ A 2n

2n = B " 2 n - l '

then I=2nA-2nB-2B, so that (5.16) implies
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2n < A

This is clearly untenable. Consequently, the meromorphic function F{z) must be
constant. Of course, by (5.12), F(z)=L Therefore G(z)=Sn(z), which is to be
proved.

As an immediate consequence of Lemma 9, we can now prove our theorem
under the condition (5.8).

LEMMA 10. Let G(z) be an entire function satisfying the hypotheses of'Lemma
9. Then

)=- Σ bk exp(kCz-k(2n+l-k)C),
k l

where C=B/n.

Proof. By virtue of Lemma 9, G(z)=Sn(z). Since G(z) satisfies the functional
equation (2.5), Sn(z) also does

)-l)exp

It thus follows from the definition of Sn(z) that

a exp (4nAz-2(2n+ϊ)Bz)=b2n+1.

Hence we have a=b2n+1 and 2nA=(2n+ϊ)B. Inserting these relations into Sn(z),
we at once obtain the desired result. Lemma 10 is thus proved.

There still remains the case where A and B are

(* 17) Λ — 2 n

n Zn — l

with some natural number n. In this case, let us consider the entire function
defined by

E(z)=G(z) exp (-Az) (n=l),

E(z)==(G(z)—Sn^1(z)) exp (—Az) (n^2) .

In what follows let ί* be an arbitrarily fixed number in (0, π/2), as before. Firstly
assume that A=2B, that is, n=l in (5.17). Then it follows immediately from
(4.1) that

(5.18) HmE(reit)=--exp(-A-ιB/)=--?Γexp(-A)
Γ-+oo 0

uniformly for | ί | ^ ί * . Further the functional equation (2.4) implies

Therefore from (5.18), we also obtain
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(5.19) lim £(r<s?i£)=-exp (-A+iB'-ιA')=-b exp {-A)

uniformly for \t—π\^t*. By taking into account of these (5.18) and (5.19), Edrei's
spread relation [1] yields that

identically. Consequently,

G(z)=-bexp(2Bz-2B).

Secondly, assume that A and B satisfy (5.17) with nΞ>2. Then

(5.20) l i J

and

(5.21) li

uniformly for | ί | ^ ί * . In fact, the assumption (5.17) implies

Q<(n-l)B<(n-l)A<nB,

and by means of (5.5),

+ " Σ C ^ * exp ((2fe-

Hence Lemma 7 and (42) yield

uniformly for | ί | ^ ί * . This is the desired (5.20). The fact (5.21) follows at once
by combining this (5.20) and the functional equation

Έζϊ)=E(-z)exp(iA').

Therefore by making use of the spread relation, as above, we can conclude that
the entire function E(z) must be constant, so that

G(z)=Sn.1(z)-bnCnexp(Az)

= - ί Σ V exp (2kCz-2k(2n-k)C)
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with C=β/(2n-l).
We have now treated the case 1) completely. Let us formulate the results

of this section as a theorem.

THEOREM 2. Let G(z) be an entire function satisfying the hypotheses of our
theorem. If A>B>§, then

for some natural number m. Furthermore

m

G(z)=- Σ exp (kCz-k(m+l-k)C+ikC),

where C is a real constant and

m

6. Case 2). In this section, we shall discuss the case 2) by appealing to
Lemma 8. For each natural number n, with the real constants Cf defined by
(49), let us set

n Ct

(6.1)

+ Σ ab'^CU exp (2kAz-2(k-l)Bz),
k = l

where α=exp(—ιAf) and b=exp(ιB' — ιA'). It is easily verified by the definitions
that

(6.2)

and that

G(z)-S*(z)=-^-H*(z) exp (2(n+l)Bz-2(n+l)Az)

(6.3)

•'C?-, exp (2kAz-2(k-l)Bz),| ]

where H*(z) is the entire function defined by (4.9).
Assume now that the positive real constants A and B are

/ B / 2 n

i4 2n-l

with some natural number n. Then it is clear that

(6.5) 0<nA<nB<(n+l)A.
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Hereafter we compare the function S%(z) with G(z), and conclude that G(z) must
coincide with S*(z). To this end, let us introduce the meromorphic function
defined by

(6-6) F*(z)= g ^ + y " ^ •

Then by (2.5), (6.2) and (6.3), this function F*(z) satisfies

(6.7) Fψ)=F*(-z)

and

F*(z)—I— ," " ,—TT-exp (2(n

(6.8)

Let f* be an arbitrarily fixed number with 0<ί*<ττ/2. Then by means of (6.1),
(6.5) and Lemma 8, it is possible to find a positive real number R such that

and

for values of z with \z\^R and |arg z—π\ ^ί*. Hence with suitable positive
constants Mk, it follows from (6.8) that

\F*(z)-l\^M0\exv(2nBz-2nAz)\

+ ΣMk I exp (2(k+l)Az-2kBz)\

there. Setting

(6.9) /=max (2nA-2?ιB, 2nB-2nA~2A),

we thus obtain that

(6.10) |F*(re")- l |SM*exp(-7r cos ί)

for values of r and ί with r^R and | ί—π|gί*, where

Therefore if F*(z) is not constant, it follows from (6.7) and (6.10) that

m(r, 1, F*)^0(l)- —Jr sin ί* ,
π
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so that

,CΛΛ\ v f T(r, F*) ... . f m(r, 1, F*) ^ 2 .

(6.11) liminf—— — ̂ h m mf—— — ̂  / .

Further it is also verified from (6.7) and (6.10) that

(6.12) hm mf ^ ^ ^ - 1-hm^sup - ^ - - ^ - = = 0 .

Consequently, these (6.11) and (6.12) yield

Mr O F * ) 2
(6.13) lim sup M r ' U> ^ ; ^ — - / ,

r-oo r π

provided that F*(z) is not a constant function. On the other hand, by virtue of
the definition (6.6), it is clear that
(6.14) N(r, 0, F*)^N(r, 1, G

for positive real values of r. Moreover by means of Lemma 3,

(6.15) l i m s u p - M r > 1 ' G ( z ) ) = ^ - ( 2 Λ - g ) .

Here let us notice that

r N(r, 1, G(z)) .. iV(r, 1,
lim sup — ^ ^ - ^ — ^ - = l i m sup — ^ — -

Then from (6.14), we can see that

Mr, 0, F*) ,v N(r, 1, G(z))
lim sup — i - L — — < lim sup — ~ — 1 — - ^

so that (6.13) and (6.15) lead us to

(6.16)

provided that F*(z) is not constant. However this inequality (6.16) is evidently
absurd by (6.4) and (6.9). Accordingly, the meromorphic function F*(z) must be
constant, so that F*(z)=l from (6.10). Hence we can conclude that G(z)=S$(z),
which is the required result. By this fact, the next lemma follows immediately.

LEMMA 11. Let G(z) be an entire function satisfying the hypotheses of our
theorem, and let A and B be the real constants in the identities (2.4) and (2.5).
Assume that A and B are both positive and that

2_ B_
2w-l
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for some natural number n. Then

2nB=(2n+l)A,
and

with C=A/n.

Proof. By what mentioned just above, G(z) coincides with S%(z). Hence the
entire function S*(z) must satisfy

S*(z)=~S*(-z)exp(2Az).

It therefore follows from this functional equation that

2nB=(2n+ϊ)A, ab2n=l.

Inserting these relations into S*(z), we at once arrive at the desired result.
In order to treat the case 2) completely, we must investigate the case where

the real constants A and B are both positive and

(6.17) (2n-ΐ)B=2nA

with some natural number n. In this case let us consider the entire function
defined by

)- l ) exp (-Bz) ( n = l ) .

exp {-Bz)

Evidently, from (2.5) and (6.2),

(6.18) Έ*(ϊ)= — E*(-z).

If ?x^2, using (6.3) and (6.17), we can see that

E*(z)= ^II H*^(z+l)exp(2nB-2nA)

(6.19)

Since (6.17) implies

0<(n-l)A<(n-l)B<nA

and
2kA-(2k~l)B>0

it thus follows from (4.9), (6.18), (6.19) and Lemma 8 that
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lim E%-reu)=-^~exp(2nA-2nB-\-2B)

= ~^r exp (2n2A-2n(n-l)B),

lim E*(reiι)=abn-1 exp (2τΛ4-2n(w-

uniformly for | ί | ̂ ί * , where t* is an arbitrarily fixed number in the open interval
(0, π/2). This assertion is also true when n = l . Therefore we can conclude that

£*(*)= -^-exp (2n2A-2n(n-l)B)

and ab2n~ι=l. By this fact, if n = l ,

so that

1

b

Further if 7?Ξ>2,

so that

with C=J
In conclusion we have now treated the case 2) completely, and we have

established the following theorem.

THEOREM 3. Let G(z) be an entire function which satisfies the hypotheses of
our theorem. If B>A>0, then

mB=(m+ϊ)A

for some natural number m. Furthermore

G(z)= Σ exp (kCz+k(m-k)C+ikC) >

where C is a real constant and

m
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7. Conclusion. The foregoing facts, especially Theorems 1, 2 and 3, are
sufficient to yield our theorem which we stated in the introduction. Actually
we have established the following conclusion which clearly includes our theorem.

Let n be a natural number and let C be a non-zero real constant. In the
sequel we shall say that the pair (n, C) is admissible if either 71=1, or if n ^ 2
and all the roots of the algebraic equations

and

Σ'exp (-(k+l)(n-k)C)zk=0

are distributed on the unit circle. With this convention, we can state our con-
clusion in the following form.

THEOREM. Let G(z) be a transcendental entire function of finite lower order.
Assume that all the zero-points and all the one-points of G{z) are distributed only
on the lines Re z=0 and Rez=l, respectively. Then G(z) has exactly one finite
deficient value a. Furthermore G(z) can be written as follows.

(I) // the finite deficient value a is different from 0 and 1, then

G(z)=P(expCz),

where C is a non-zero real constant and P(z) is a quadratic polynomial with
P(0)=α.

(II) // a is equal to 0, then

Pn(t)=- Σ exp(-k(n+l-k)C+ikC')tk

k = l

with an admissible pair (n, C) and with a real constant C'.
(Ill) // a is equal to 1, then

G(z)=Qn(expCz),

Qn(t)= Σ exp(k(n-k)C+ikC')tk,

where C is a real constant and (n, — C) is an admissible pair.

Now let G(z) be an entire function of the form (II), that is,

G(z)=- Σ exp(kCz-k(n+l-k)C+ikC),

where n is a natural number and C, C are both real constants with CφO. Then
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by taking into account of properties of the exponential function, a necessary and
sufficient condition that all the roots of the equation G(z)=l lie on the line
Re z— 1 is that all the zeros of the polynomial

are contained in the unit circle. Further if n^2, then a necessary and sufficient
condition for all the zeros of G(z) to lie on the line Re z=0 is that all the roots
of the algebraic equation

*Σ exp (-(k+l)(n-k)C)tk=0

are distributed on the unit circle. Therefore a necessary and sufficient condition
for an entire function of the form (II) to satisfy the assumptions of our theorem
is that the pair (n, C) is admissible. Similarly, a necessary and sufficient condi-
tion that an entire function of the form (III) satisfies the assumptions of our
theorem is that the pair (n, —C) is admissible.

It is now natural to ask whether there exist admissible pairs for each natural
number, actually. With respect to this question, by using a straightforward,
calculation, we can easily see that (2, C) is admissible if and only if C^—log 2.
Furthermore, (3, C) and (4, C) are admissible if and only if 2C^— log 3 and 2C
^>— log 2, respectively. However it seems to be very difficult to find a necessary
and sufficient condition for pairs to be admissible, in general.

Finally we shall show the following lemma which gives us a sufficient con-
dition. The proof of this fact is a standard piece of work in the theory of
algebraic equations, but we include it for completeness.

LEMMA 12. Let n be a natural number and let C be an arbitrary positive real
number. Then the pair (n, C) is admissible.

Proof. Our goal is to show that all the roots of the algebraic equations

Σexp(-k(n-k)C)zk=O

and

nΣ exp (-(k+ϊ)(n-k)C)zk=0

must lie on the unit circle. Consider the latter equation which can be rewritten as

exp(-nC) "ft exp(-k(n-l-k)C)zk=O.

Then it is sufficient to prove that for each natural number n and for each positive
number C, all the zeros of the self-inversive polynomial
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•Σexp(-k(n-k)C)zk

k = 0

are distributed on the unit circle. As a matter of convenience, let us set ak

=exp(—k(n—k)C) and set

(7.1) PS(z)=±ahz
k.

Assume firstly that n is even. We may also assume that n^4, since the asser-
tion can be verified directly when n=2. Then by setting n=2rn,

since ak=an-k. Therefore

(7.2) z-mP*(z)^am+mi: ak(zk-m+zm-k).

Here let us introduce the trigonometric polynomials defined by

m - l

(7.3) h(t)=am+ Σ 2ak cos (m-k)t,

(7.4) /»(0=Σα?cosfeί,

where af=ak for O^k^m—1, and α*=αm/2. Then it is clear from (7.2) that

(7.5) /n(0=e-

for real values of /. Further by setting Cj=jπ/m(0^j^m), we can see from
(7.3) and (7.4) that

(7.6)
=2(-iyjn(cj)

for each integer j with O^j^m. On the other hand, by making use of Abel's
transformation, it follows that

Λ(Q=Σβαf cos *f

with the convention α*+i=0, where Dk(t) denotes Dirichlet's kernel, that is,
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D ( ) ± Σ cos jt (
i

£>.(0=4, Dk(t)=±-
Z Z

Further using Abel's transformation once more, we obtain

Έ (j+lXa*-2af+i+af+2)Kj(t),
J0

where Kj(t) denotes Fejer's kernel, that is,

Hereby we can get

(7.7)
m-2

+m(am.1-am)Km.1(t)+ Σ

for real values of t. Let us recall the well known fact that Fejer's kernel Kj(t)
is always non-negative. Further since the real number C is positive, it follows
that

and

so that

Combining these facts with (7.7), we at once reach

Λ(0^ + ^ ( £

t-τrsin mt

for real values of t. Therefore

(7.8)

for each integer j with O^ ^m. Hence by means of (7.6), this (7.8) yields that
(—l)jIn(Cj) must be positive, so that the real valued function In(t) has at least one
zero-point in each open interval (cj, cJ+1). Consequently, by virtue of (7.5), the
polynomial Pt(z) has exactly 2m zeros in the unit circle, since the coefficients of
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Ptiz) are all real numbers. Thus we have proved our assertion when n is even.
Next we discuss the case where n is odd. Since the assertion can be verified

directly when n~3, we may assume that the natural number n is odd and n ^ 5 .
Let us set n=2m+l, and let us consider the trigonometric polynomial defined by

m

JT,{t)= Σ ak cos kt.

Then by using AbePs transformation twice, we can easily see that

771-2

+ Σ

As before, since the real number C is positive, it follows that dj—2αJ + 1 + α J + 2 and
am.1 — am must be positive. Hence we get

2 + 2 sin (1/2)/

for real values of t. Therefore by setting xj=2jπ/i2mJrl) (O^y^m), this yields
2/i(x;)^l for each point xJm Here we further introduce the trigonometric poly-
nomial defined by

m / 1 \

/ί(0= Σakeos(m-k+τ)t.

It is clear from the definitions that

for each integer j with O^j^m. Then this real valued function I tit) must have
at least m zeros in the open interval (0, π). In addition to this fact, by taking
into account of an-k~ak, the polynomial Ptiz) can be rewritten in the form

P*(eu)=2

for real values of /. Accordingly, we can conclude that P%(eu) has at least m
zeros in the open interval (0, π), so that Ptiz) must have at least 2m zeros in
the unit circle except for the point — 1. Clearly P*(—1)=0. Therefore this
polynomial Ptiz) has exactly 2m-\-l zeros in the unit circle, which is to be
proved. This completes the proof.
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