ON A SINGULAR PERTURBATION PROBLEM FOR LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS, II

By Yoshikazu Hirasawa

1. Let us consider two linear systems of ordinary differential equations containing a small positive parameter ε :

$$
\begin{align*}
& \varepsilon \frac{d \boldsymbol{u}}{d t}=\left(A_{0}-\varepsilon A_{1}\right) \boldsymbol{u}+\boldsymbol{\delta}_{0}(\varepsilon)-\varepsilon \boldsymbol{\boldsymbol { \theta }}_{1}(\varepsilon), \tag{1}\\
& \varepsilon \frac{d \boldsymbol{u}}{d t}=\left(A_{0}+\varepsilon A_{1}\right) \boldsymbol{u}+\boldsymbol{\delta}_{0}(\varepsilon)+\varepsilon \boldsymbol{\delta}_{1}(\varepsilon), \tag{2}
\end{align*}
$$

where

$$
\boldsymbol{u}=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right), \quad A_{0}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
\alpha & -\beta & \gamma \\
-\alpha & -\gamma & \beta
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
\alpha & \alpha & \alpha \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and α, β, γ are positive constants such that $\gamma<\beta$.
Further

$$
\boldsymbol{\delta}_{0}(\varepsilon)=\left(\begin{array}{c}
0 \\
\delta_{2}(\varepsilon) \\
\delta_{3}(\varepsilon)
\end{array}\right), \quad \boldsymbol{\delta}_{1}(\varepsilon)=\left(\begin{array}{c}
\delta_{1}(\varepsilon) \\
0 \\
0
\end{array}\right)
$$

are three-dimensional real vectors defined on $0 \leqq \varepsilon \leqq \varepsilon_{0}$ and

$$
\delta_{j}(\varepsilon) \longrightarrow 0(\jmath=1,2,3) \quad \text { for } \varepsilon \longrightarrow+0 .
$$

For a given interval $t_{1} \leqq t \leqq t_{2}$ and for a given point t_{0} such that $t_{1} \leqq t_{0} \leqq t_{2}$, we need a set of continuous functions $u_{1}(t ; \varepsilon), u_{2}(t ; \varepsilon), u_{3}(t ; \varepsilon)$ of t with the following properties.
(I) The conditions

$$
u_{1}\left(t_{0} ; \varepsilon\right)=P(\varepsilon), u_{2}\left(t_{1} ; \varepsilon\right)=Q(\varepsilon), u_{3}\left(t_{2} ; \varepsilon\right)=R(\varepsilon)
$$

are fulfilled, where $P(\varepsilon), Q(\varepsilon)$ and $R(\varepsilon)$ are suitable positive quantities tending to
zero with ε, such that $P_{0}(\varepsilon) \leqq P(\varepsilon), Q_{0}(\varepsilon) \leqq Q(\varepsilon), R_{0}(\varepsilon) \leqq R(\varepsilon)$ for given positive quantities $P_{0}(\varepsilon), Q_{0}(\varepsilon)$ and $R_{0}(\varepsilon)$ defined on $0 \leqq \varepsilon \leqq \varepsilon_{0}$ and tending to zero with ε.
(II) $u_{1}(t ; \varepsilon), u_{2}(t ; \varepsilon), u_{3}(t ; \varepsilon)$ are positive on $t_{1} \leqq t \leqq t_{2}$.
(III) $\boldsymbol{u}=\boldsymbol{u}(t ; \varepsilon)$ satisfies the system (1) for $t_{1} \leqq t \leqq t_{0}$ and satisfies the system (2) for $t_{0} \leqq t \leqq t_{2}$.

The above-mentioned problem had to be solved in a paper [1], but the solutıon given in [1] was not complete. In the previous paper [2], we have given a proof of the existence of a solution of the above-mentioned problem for a special case where $t_{1}=t_{0}$. In this paper, we will treat the general case where $t_{1}<t_{0}<t_{2}$.
2. The solutions $\boldsymbol{\omega}^{(1)}$ and $\boldsymbol{\omega}^{(2)}$ of two linear equations

$$
\left(A_{0}-\varepsilon A_{1}\right) \boldsymbol{\omega}^{(1)}+\boldsymbol{\delta}_{0}(\varepsilon)-\varepsilon \boldsymbol{\delta}_{1}(\tilde{\varepsilon})=\mathbf{0}
$$

and

$$
\left(A_{0}+\varepsilon A_{1}\right) \boldsymbol{\omega}^{(1)}+\boldsymbol{\delta}_{0}(\varepsilon)+\boldsymbol{\varepsilon} \boldsymbol{\delta}_{1}(\varepsilon)=\mathbf{0}
$$

coincide with each other, and hence let

$$
\omega(\varepsilon)=\left(\begin{array}{c}
\omega_{1}(\varepsilon) \\
\omega_{2}(\varepsilon) \\
\omega_{3}(\varepsilon)
\end{array}\right)
$$

be the solution of these equations, that is uniquely determined by virtue of the fact that

$$
\operatorname{det}\left(A_{0}+A_{1}\right)=-\alpha(\beta+\gamma)(2 \alpha+\beta-\gamma) \neq 0
$$

We see clearly $\omega_{\jmath}(\varepsilon) \rightarrow 0(\jmath=1,2,3)$ for $\varepsilon \rightarrow+0$.
Let $\boldsymbol{v}^{(1)}$ and $\boldsymbol{v}^{(2)}$ be the solutions of equations

$$
\begin{equation*}
\varepsilon \frac{d \boldsymbol{v}^{(1)}}{d t}=\left(A_{0}-\varepsilon A_{1}\right) \boldsymbol{v}^{(1)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon \frac{d \boldsymbol{v}^{(2)}}{d t}=\left(A_{0}+\varepsilon A_{1}\right) \boldsymbol{v}^{(2)} . \tag{4}
\end{equation*}
$$

Then the solutions $\boldsymbol{u}^{(1)}$ and $\boldsymbol{u}^{(2)}$ of the equations (1) and (2) can be written in the forms

$$
\boldsymbol{u}^{(1)}=\boldsymbol{v}^{(1)}+\boldsymbol{\omega}(\varepsilon) \quad \text { and } \quad \boldsymbol{u}^{(2)}=\boldsymbol{v}^{(2)}+\boldsymbol{\omega}(\varepsilon)
$$

Put

$$
A^{(1)}=\frac{A_{0}}{\varepsilon}-A_{1}=\left(\begin{array}{rrr}
-\alpha & -\alpha & -\alpha \tag{5}\\
\frac{\alpha}{\varepsilon} & -\frac{\beta}{\varepsilon} & \frac{\gamma}{\varepsilon} \\
-\frac{\alpha}{\varepsilon} & -\frac{\gamma}{\varepsilon} & \frac{\beta}{\varepsilon}
\end{array}\right) ;
$$

$$
A^{(2)}=\frac{A_{0}}{\varepsilon}+A_{1}=\left(\begin{array}{ccc}
\alpha & \alpha & \alpha \tag{6}\\
\frac{\alpha}{\varepsilon} & -\frac{\beta}{\varepsilon} & \frac{\gamma}{\varepsilon} \\
-\frac{\alpha}{\varepsilon} & -\frac{\gamma}{\varepsilon} & \frac{\beta}{\varepsilon}
\end{array}\right)
$$

then the characteristic equations of $A^{(1)}$ and $A^{(2)}$ are

$$
\begin{align*}
& \varepsilon^{2} \lambda^{3}+\varepsilon^{2} \alpha \lambda^{2}-\left(\beta^{2}-\gamma^{2}\right) \lambda \tag{7}\\
&-\alpha\left\{\left(\beta^{2}-\gamma^{2}\right)+2 \alpha(\beta+\gamma)\right\}=0
\end{align*}
$$

and

$$
\begin{align*}
& \varepsilon^{2} \lambda^{3}-\varepsilon^{2} \alpha \lambda^{2}-\left(\beta^{2}-\gamma^{2}\right) \lambda \tag{8}\\
& \quad+\alpha\left\{\left(\beta^{2}-\gamma^{2}\right)+2 \alpha(\beta+\gamma)\right\}=0
\end{align*}
$$

Since, if we replace λ by $-\lambda$ in the equation (7), we have the equation (8), the characteristic roots of $A^{(2)}$ are obtained, by changing the sign of the characteristic roots of $A^{(1)}$.

The roots $\rho_{1}^{(1)}, \rho_{2}^{(1)}, \rho_{3}^{(1)}$ of the equation (7) can be regarded as algebraic functions of ε, and hence we put

$$
\lambda=a_{0}+a_{1} \varepsilon+\cdots
$$

or

$$
\lambda=\frac{b_{-1}}{\varepsilon}+b_{0}+b_{1} \varepsilon+\cdots
$$

in order to find these roots.
Substituting these series into (7) and determining the coefficients a_{0}, a_{1}, \cdots, or b_{-1}, b_{0}, \cdots, we get,

$$
\left\{\begin{array}{l}
\rho_{1}^{(1)}=\rho_{10}^{(1)}+O(\varepsilon), \quad \rho_{10}^{(1)}=-\frac{2 \alpha^{2}+\alpha(\beta-\gamma)}{\beta-\gamma} \tag{9}\\
\rho_{-}^{(1)}=-\frac{\mu}{\varepsilon}+O(1), \quad \rho_{3}^{(1)}=\frac{\mu}{\varepsilon}+O(1)
\end{array}\right.
$$

where $\mu=\sqrt{\beta^{2}-\gamma^{2}}$.
Furthermore, as the characteristic roots $\rho_{1}^{(2)}, \rho_{2}^{(2)}, \rho_{i,}^{(2)}$ of $A^{(2)}$, we have

$$
\left\{\begin{array}{l}
\rho_{1}^{(2)}=-\rho_{1}^{(1)}=\rho_{10}^{(2)}+O(\varepsilon), \quad \rho_{10}^{(0)}=\frac{2 \alpha^{2}+\alpha(\beta-\gamma)}{\beta-\gamma} \tag{10}\\
\rho_{2}^{(2)}=-\rho_{3}^{(1)}=-\frac{\mu}{\varepsilon}+O(1) \\
\rho_{3}^{(2)}=-\rho_{2}^{(1)}=\frac{\mu}{\varepsilon}+O(1)
\end{array}\right.
$$

3. The normal forms of $A^{(1)}$ and $A^{(2)}$ are

$$
\hat{A}^{(1)}=\left(\begin{array}{lll}
\rho_{1}^{(1)} & & 0 \\
& \rho_{2}^{(1)} & \\
0 & & \rho_{3}^{(1)}
\end{array}\right), \quad \hat{A}^{(2)}=\left(\begin{array}{lll}
\rho_{1}^{(2)} & & 0 \\
& \rho_{3}^{(2)} & \\
0 & & \rho_{3}^{(2)}
\end{array}\right) .
$$

Let $S^{(1)}(\varepsilon)$ and $S^{(2)}(\varepsilon)$ be the transforming matrices that transform $A^{(1)}$ into $\hat{A}^{(1)}$ and $A^{(2)}$ into $\hat{A}^{(2)}$, that is,

$$
S^{(1)}(\varepsilon)^{-1} A^{(1)} S^{(1)}(\varepsilon)=\hat{A}^{(1)}, \quad S^{(2)}(\varepsilon)^{-1} A^{(2)} S^{(2)}(\varepsilon)=\hat{A}^{(2)} .
$$

The matrix $S^{(2)}(\varepsilon)$ is obtained by exchanging the second column with the third column in $S^{(1)}(\varepsilon)$ and by exchanging the second row with the third row in $S^{(1)}(\varepsilon)$. After all, $S^{(1)}(\varepsilon)$ and $S^{(2)}(\varepsilon)$ have respectively the following forms:

$$
\begin{align*}
S^{(1)}(\varepsilon) & =\left(s_{i j}^{(1)}(\varepsilon)\right) \tag{11}\\
& =\left(\begin{array}{ccc}
\beta-\gamma+O(\varepsilon) & O(\varepsilon) & O(\varepsilon) \\
\alpha+O(\varepsilon) & \beta+\mu+O(\varepsilon) & \beta-\mu+O(\varepsilon) \\
\alpha+O(\varepsilon) & \gamma+O(\varepsilon) & \gamma+O(\varepsilon)
\end{array}\right),
\end{align*}
$$

$$
\begin{align*}
S^{(2)}(\varepsilon) & =\left(s_{l j}^{(2)}(\varepsilon)\right) \tag{12}\\
& =\left(\begin{array}{ccc}
\beta-\gamma+O(\varepsilon) & O(\varepsilon) & O(\varepsilon) \\
\alpha+O(\varepsilon) & \gamma+O(\varepsilon) & \gamma+O(\varepsilon) \\
\alpha+O(\varepsilon) & \beta-\mu+O(\varepsilon) & \beta+\mu+O(\varepsilon)
\end{array}\right) .
\end{align*}
$$

By the transformation of unknowns $\boldsymbol{v}^{(1)}=S^{(1)}(\varepsilon) \hat{\boldsymbol{v}}^{(1)}$ and $\boldsymbol{v}^{(2)}=S^{(2)}(\varepsilon) \hat{\boldsymbol{v}}^{(2)}$, the systems (3) and (4) are changed into

$$
\begin{align*}
& \frac{d \hat{\boldsymbol{v}}^{(1)}}{d t}=\hat{A}^{(1)} \hat{\boldsymbol{v}}^{(1)}, \tag{13}\\
& \frac{d \hat{\boldsymbol{v}}^{(2)}}{d t}=\hat{A}^{(2)} \hat{\boldsymbol{v}}^{(2)} . \tag{14}
\end{align*}
$$

We will seek for the desired solution in the following form:

$$
\boldsymbol{u}^{(1)}(t ; \varepsilon)=S^{(1)}(\varepsilon)\left(\begin{array}{l}
C_{1}^{(1)}(\varepsilon) e^{\rho_{1}(1)\left(t-t_{0}\right)} \tag{15}\\
C_{2}^{(1)}(\varepsilon) e^{\rho_{2}(1)\left(t-t_{1}\right)} \\
C_{3}^{(1)}(\varepsilon) e^{\rho_{3}^{(1)}\left(t-t_{0}\right)}
\end{array}\right)+\boldsymbol{\omega}(\varepsilon)
$$

for $t_{1} \leqq t \leqq t_{0}$ and

$$
\boldsymbol{u}^{(2)}(t ; \varepsilon)=S^{(2)}(\varepsilon)\left(\begin{array}{l}
C_{1}^{(2)}(\varepsilon) e^{\rho_{1}(2)\left(t-t_{0}\right)} \tag{16}\\
C_{2}^{(2)}(\varepsilon) e^{\rho_{2}(2)\left(t-t_{0}\right)} \\
C_{3}^{(2)}(\varepsilon) e^{\rho_{3}^{(2)}\left(t-t_{2}\right)}
\end{array}\right)+\boldsymbol{\omega}(\varepsilon)
$$

for $t_{0} \leqq t \leqq t_{2}$.
It is sufficient for us to determine the positive quantities $P(\varepsilon), Q(\varepsilon), R(\varepsilon)$ and then the coefficients $C_{\jmath}^{(1)}(\varepsilon), C_{\jmath}^{(2)}(\varepsilon)(\jmath=1,2,3)$ in terms of the $P(\varepsilon), Q(\varepsilon), R(\varepsilon)$, so that the conditions

$$
\left\{\begin{array}{l}
u_{1}^{(1)}\left(t_{0} ; \varepsilon\right)=P(\varepsilon), \quad u_{2}^{(1)}\left(t_{1} ; \varepsilon\right)=Q(\varepsilon), \tag{17}\\
u_{1}^{(2)}\left(t_{0} ; \varepsilon\right)=P(\varepsilon), \quad u_{3}^{(1)}\left(t_{2} ; \varepsilon\right)=R(\varepsilon), \\
u_{2}^{(1)}\left(t_{0} ; \varepsilon\right)=u_{2}^{(0)}\left(t_{0} ; \varepsilon\right), \quad u_{3}^{(1)}\left(t_{0} ; \varepsilon\right)=u_{3}^{(2)}\left(t_{0} ; \varepsilon\right)
\end{array}\right.
$$

are satisfied, and further $u_{\jmath}^{(1)}(t ; \varepsilon)$ and $u_{J}^{(2)}(t, \varepsilon)(\jmath=1,2,3)$ are respectively positive on the intervals $t_{1} \leqq t \leqq t_{0}$ and $t_{0} \leqq t \leqq t_{2}$.

We denote $s_{\imath j}^{(k)}(\varepsilon), C_{\jmath}^{(k)}(\varepsilon)(k=1,2 ; \imath, \jmath=1,2,3)$ by $s_{i j}^{(k)}, C_{\jmath}^{(k)}$ for brevity. Then, we can, by rearranging, write the conditions (17) explicitly as follows.
where

$$
\left\{\begin{array}{l}
\hat{P}(\varepsilon)=P(\varepsilon)-\omega_{1}(\varepsilon), \quad \hat{Q}(\varepsilon)=Q(\varepsilon)-\omega_{2}(\varepsilon), \tag{19}\\
\hat{R}(\varepsilon)=R(\varepsilon)-\omega_{3}(\varepsilon) .
\end{array}\right.
$$

4. We take a positive function $\eta(\varepsilon)$ defined on $0 \leqq \varepsilon \leqq \varepsilon_{0}$ such that $\gamma(\varepsilon) \rightarrow 0$ and $\eta(\varepsilon) / \varepsilon \rightarrow+\infty$ as $\varepsilon \rightarrow+0$. For example, we choose the function

$$
\begin{equation*}
r(\varepsilon)=-\frac{M_{0}}{|\log \varepsilon|+1}(\varepsilon>0) \quad \text { and } \quad \eta(\varepsilon)=0(\varepsilon=0) \tag{20}
\end{equation*}
$$

from now on, where M_{0} is a positive constant.
We can assume that there exists a positive constant M such that

$$
\begin{equation*}
P_{0}(\varepsilon) \leqq M, \quad Q_{0}(\varepsilon) \leqq M, \quad R_{0}(\varepsilon) \leqq M \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left|\omega_{\jmath}(\varepsilon)\right| \leqq M(\jmath=1,2,3), \quad \eta(\varepsilon) \leqq M \tag{22}
\end{equation*}
$$

for $0 \leqq \varepsilon \leqq \varepsilon_{0}$.
In the next number, it will be shown that it is sufficient for us to determine the $P(\varepsilon), Q(\varepsilon), R(\varepsilon)$ in the following manner.

Concerning the $P(\varepsilon)$, we first put

$$
\begin{equation*}
\theta(\varepsilon)=\operatorname{Max}\left\{\left|\omega_{1}(\varepsilon)\right|, \frac{\beta-\gamma}{\alpha}\left|\omega_{2}(\varepsilon)\right|, \frac{\beta-\gamma}{\alpha}\left|\omega_{3}(\varepsilon)\right|\right\} \tag{23}
\end{equation*}
$$

and we choose

$$
\begin{equation*}
P(\varepsilon)=\operatorname{Max}\left\{P_{0}(\varepsilon), \eta(\varepsilon)+\left|\omega_{1}(\varepsilon)\right|+\theta(\varepsilon)\right\} . \tag{24}
\end{equation*}
$$

Obviously $P_{n}(\varepsilon) \leqq P(\varepsilon)$ for $0 \leqq \varepsilon \leqq \varepsilon_{0}$.
If we take a positive constant N_{0} such that

$$
\operatorname{Max}\left\{1, \frac{\beta-\gamma}{\alpha}\right\} \leqq N_{0}<+\infty,
$$

then we see

$$
\begin{equation*}
0 \leqq \theta(\varepsilon) \leqq N_{0} M\left(0 \leqq \varepsilon \leqq \varepsilon_{0}\right) \tag{25}
\end{equation*}
$$

and further

$$
\begin{gather*}
\eta(\varepsilon)+\theta(\varepsilon) \leqq \hat{P}(\varepsilon)=P(\varepsilon)-\omega_{1}(\varepsilon) \tag{26}\\
\leqq\left(N_{0}+3\right) M \\
\lim _{\varepsilon \rightarrow+0} \frac{\hat{P}(\varepsilon)}{\varepsilon}=+\infty \tag{27}
\end{gather*}
$$

Concerning the $Q(\varepsilon)$, we first put

$$
\begin{equation*}
N_{1}=\frac{\alpha e^{\rho_{10}^{(1)}\left(t_{1}-t_{0}\right)}}{\beta-\gamma}>0\left(\rho_{10}^{(1)}=-\frac{2 \alpha^{2}+\alpha(\beta-\gamma)}{\beta-\gamma}\right) . \tag{28}
\end{equation*}
$$

Since it follows from the inequalities (22) and (26) that

$$
N_{1} \hat{P}(\varepsilon)+\eta(\varepsilon)+\left|\omega_{2}(\varepsilon)\right| \leqq\left\{\left(N_{0}+3\right) N_{1}+2\right\} M,
$$

we can-determine the $Q(\varepsilon)$ so that

$$
\begin{array}{r}
\operatorname{Max}\left\{Q_{0}(\varepsilon), N_{1} \hat{P}(\varepsilon)+\eta(\varepsilon)+\left|\omega_{2}(\varepsilon)\right|\right\} \tag{29}\\
\leqq Q(\varepsilon) \leqq\left\{\left(N_{0}+3\right) N_{1}+3\right\} M .
\end{array}
$$

Then we see $Q_{0}(\varepsilon) \leqq Q(\varepsilon)$, and

$$
\begin{align*}
N_{1} \hat{P}(\varepsilon)+\gamma_{/}(\varepsilon) \leqq \hat{Q}(\varepsilon) & =Q(\varepsilon)-\omega_{2}(\varepsilon) \tag{30}\\
& \leqq\left\{\left(N_{0}+3\right) N_{1}+4\right\} M,
\end{align*}
$$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} \frac{\hat{Q}(\varepsilon)}{\varepsilon}=+\infty . \tag{31}
\end{equation*}
$$

Concerning the $R(\varepsilon)$, we first put

$$
\begin{equation*}
N_{2}=\frac{\alpha \rho^{\rho_{10}^{(2)}\left(t_{2}-t_{0}\right)}}{\beta-\gamma}>0\left(\rho_{10}^{(2)}=\frac{2 \alpha^{2}+\alpha(\beta-\gamma)}{\beta-\gamma}\right) \tag{32}
\end{equation*}
$$

and since, by virtue of the inequalities (22) and (26), the inequality

$$
N_{2} \hat{P}(\varepsilon)+\eta(\varepsilon)+\left|\omega_{3}(\varepsilon)\right| \leqq\left\{\left(N_{0}+3\right) N_{2}+2\right\} M
$$

holds, we can determine the $R(\varepsilon)$ so that

$$
\begin{align*}
& \operatorname{Max}\left\{R_{0}(\varepsilon)\right.\left., N_{2} \hat{P}(\varepsilon)+\eta(\varepsilon)+\left|\omega_{3}(\varepsilon)\right|\right\} \tag{33}\\
& \leqq R(\varepsilon) \leqq\left\{\left(N_{0}+3\right) N_{2}+3\right\} M
\end{align*}
$$

Then we can verify $R_{0}(\varepsilon) \leqq R(\varepsilon)$, and

$$
\begin{align*}
& N_{2} \hat{P}(\varepsilon)+\eta(\varepsilon) \leqq \hat{R}(\varepsilon)=R(\varepsilon)-\omega_{3}(\varepsilon) \tag{34}\\
& \leqq\left\{\left(N_{0}+3\right) N_{2}+4\right\} M \\
& \lim _{\varepsilon \rightarrow+0} \frac{\hat{R}(\varepsilon)}{\varepsilon}=+\infty
\end{align*}
$$

5. In order to solve the equations (18) for $C_{j}^{(1)}, C_{j}^{(2)}(j=1,2,3)$, we.put

$$
\begin{aligned}
& \mathfrak{Z}_{1}^{(1)}=\left(\begin{array}{l}
s_{11}^{(1)} \\
s_{21}^{(1)} e^{\rho_{1}^{(1)}\left(t_{1}-t_{0}\right)} \\
s_{31}^{(1)} \\
0 \\
-s_{21}^{(1)} \\
0
\end{array}\right), \quad \mathfrak{Z}_{2}^{(1)}=\left(\begin{array}{l}
s_{12}^{(1)} e^{\rho_{2}^{(1)}\left(t_{0}-t_{1}\right)} \\
s_{22}^{(1)} \\
s_{32}^{(1)} e^{\rho_{2}^{(1)}\left(t_{0}-t_{1}\right)} \\
0 \\
-s_{22}^{(1)} e^{\rho_{2}^{(1)}\left(t_{0}-t_{1}\right)} \\
0
\end{array}\right), \\
& \stackrel{2}{3}_{3(1)}^{(1)}=\left(\begin{array}{l}
s_{13}^{(1)} \\
s_{23}^{(1)} e^{\boldsymbol{o}_{3}^{(1)}\left(t_{1}-t_{0}\right)} \\
s_{i 3}^{(1)} \\
0 \\
-s_{23}^{(1)} \\
0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \Xi_{1}^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
-s_{31}^{(2)} \\
s_{11}^{(2)} \\
s_{21}^{(2)} \\
s_{31}^{(2)} e^{\rho_{1}^{(2)}\left(t_{2}-t_{0}\right)}
\end{array}\right), \quad \mathfrak{Z}_{2}^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
-s_{32}^{(2)} \\
s_{12}^{(2)} \\
s_{22}^{(2)} \\
s_{32}^{(2)} e^{\rho_{2}^{(2)}\left(t_{2}-t_{0}\right)}
\end{array}\right) \\
& \mathscr{Z}_{3}^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
-s_{33}^{(2)} e^{\rho_{3}^{(2)}\left(t_{0}-t_{2}\right)} \\
s_{13}^{(2)} e^{\rho_{3}^{(2)}\left(t_{0}-t_{2}\right)} \\
s_{23}^{(2)} e^{\rho_{3}^{(2)}\left(t_{0}-t_{2}\right)} \\
s_{33}^{(2)}
\end{array}\right), \quad \mathfrak{P}=\left(\begin{array}{l}
\hat{P} \\
\hat{Q} \\
0 \\
\hat{P} \\
0 \\
\hat{R}
\end{array}\right),
\end{aligned}
$$

where \hat{P}, \hat{Q} and \hat{R} denote $\hat{P}(\varepsilon), \hat{Q}(\varepsilon)$ and $\hat{R}(\varepsilon)$.
Taking account of the fact that

$$
\begin{aligned}
& s_{i 2}^{(1)} e^{(1)}\left(t_{0}-t_{1}\right)=o(\varepsilon) \quad(\imath=1,2,3), \\
& s_{13}^{(1)}=O(\varepsilon), \quad s_{23}^{(1)} e^{\rho_{3}^{(1)}\left(t_{1}-t_{0}\right)}=o(\varepsilon), \\
& s_{12}^{(2)}=O(\varepsilon), \quad s_{32}^{(2)} e^{\rho_{2}^{(2)}\left(t_{2}-t_{0}\right)}=o(\varepsilon), \\
& s_{i 3}^{(2)} e^{\left(e_{3}^{(2)}\left(t_{0}-t_{2}\right)\right.}=o(\varepsilon)(i=1,2,3)
\end{aligned}
$$

hold and taking the inequalities (26), (30), (34) and the properties (27), (31), (35) of the $\hat{P}(\varepsilon), \hat{Q}(\varepsilon), \hat{R}(\varepsilon)$ into consideration, we have

$$
\begin{aligned}
& \Delta(\varepsilon)=\operatorname{det}\left(\mathfrak{Z}_{1}^{(1)}, \mathfrak{R}_{2}^{(1)}, \mathfrak{R}_{3}^{(1)}, R_{1}^{(2)}, \mathfrak{R}_{2}^{(2)}, \mathbb{R}_{3}^{(2)}\right) \\
& =s_{11}^{(1)} s_{22}^{(1)}\left(s_{33}^{(1)} s_{22}^{(2)}-s_{23}^{(1)} s_{32}^{(2)}\right) s_{11}^{(2)} s_{33}^{(2)}+O(\varepsilon) \\
& \Delta_{1}^{(1)}(\varepsilon)=\operatorname{det}\left(\mathfrak{F}, \mathfrak{Z}_{2}^{(1)}, \mathfrak{Z}_{3}^{(1)}, \mathfrak{Z}_{1}^{(2)}, \mathfrak{Z}_{2}^{(2)}, \mathfrak{Z}_{3}^{(2)}\right) \\
& =s_{22}^{(1)}\left(s_{33}^{(1)} s_{22}^{(2)}-s_{23}^{(1)} s_{32}^{(2)}\right) s_{11}^{(2)} s_{33}^{(2)} \hat{P}+O(\varepsilon), \\
& \Delta_{2}^{(1)}(\varepsilon)=\operatorname{det}\left(\mathfrak{R}_{1}^{(1)}, \mathfrak{P}, \mathfrak{R}_{3}^{(1)}, \mathfrak{\Omega}_{1}^{(2)}, \mathfrak{\Omega}_{2}^{(2)}, \mathfrak{R}_{3}^{(2)}\right) \\
& =\left(-s_{21}^{(1)} e^{\rho_{1}^{(1)}\left(t_{1}-t_{0}\right)} \hat{P}+s_{11}^{(1)} \hat{Q}\right) \\
& \times\left(s_{33}^{(1)} s_{22}^{(2)}-s_{23}^{(1)} s_{32}^{(2)}\right) s_{11}^{(2)} s_{33}^{(2)}+O(\varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{3}^{(1)}(\varepsilon)=\operatorname{det}\left(\mathfrak{R}_{1}^{(1)}, \mathfrak{R}_{2}^{(2)}, \mathfrak{P}, \mathfrak{R}_{1}^{(2)}, \mathfrak{R}_{2}^{(2)}, \mathfrak{R}_{3}^{(2)}\right) \\
& \left.=s_{11}^{(1)}\right)_{22}^{(1)}\left(s_{31}^{(2)} s_{22}^{(2)}-s_{32}^{(2)} s_{21}^{(2)}\right) s_{33}^{(2)} \hat{P} \\
& -s_{22}^{(1)} s_{11}^{(2)}\left(s_{31}^{(1)} s_{22}^{(2)}-s_{32}^{(2)} s_{21}^{(1)}\right) s_{33}^{(2)} \hat{P}+O(\varepsilon) \text {. } \\
& \Delta_{1}^{(2)}(\varepsilon)=\operatorname{det}\left(\mathfrak{Z}_{1}^{(1)}, \mathfrak{Z}_{2}^{(1)}, \mathfrak{Z}_{3}^{(1)}, \mathfrak{P}, \mathfrak{Z}_{2}^{(2)}, \mathfrak{Z}_{3}^{(2)}\right) \\
& \left.=s_{11}^{(1)}\right)_{22}^{(1)}\left(s_{33}^{(1)} s_{22}^{(2)}-s_{23}^{(1)} s_{32}^{(2)}\right) s_{33}^{(2)} \hat{P}+O(\varepsilon), \\
& \Delta_{2}^{(2)}(\varepsilon)=\operatorname{det}\left(\tilde{R}_{1}^{(1)}, \tilde{Z}_{2}^{(1)}, \mathfrak{R}_{3}^{(1)}, \tilde{Z}_{1}^{(2)}, \mathfrak{P}, \tilde{Z}_{3}^{(2)}\right) \\
& =s_{11}^{(1)} s_{22}^{(1)}\left(s_{31}^{(2)} s_{23}^{(1)}-s_{33}^{(1)} s_{21}^{(2)}\right) s_{33}^{(2)} \hat{P} \\
& \left.-s_{22}^{(1)} s_{11}^{(2)}\left(s_{31}^{(1)} s_{23}^{(1)}-s_{33}^{(1)}\right)_{31}^{(1)}\right) s_{33}^{(2)} \hat{P}+O(\varepsilon), \\
& \Delta_{3}^{(2)}(\varepsilon)=\operatorname{det}\left(\mathfrak{R}_{1}^{(1)},{\underset{R}{2}}_{(1)}^{(1)}, \mathbb{R}_{3}^{(1)}, R_{1}^{(2)}, \mathbb{R}_{2}^{(2)}, \mathfrak{P}\right) \\
& =s_{11}^{(1)} s_{22}^{(1)}\left(s_{33}^{(1)} s_{22}^{(2)}-s_{23}^{(1)} s_{32}^{(2)}\right) \\
& \times\left(-s_{31}^{(2)} e^{\rho_{1}^{(2)}\left(t_{2}-t_{0}\right)} \hat{P}+s_{11}^{(2)} \hat{R}\right)+O(\varepsilon) .
\end{aligned}
$$

Thus, we get

$$
\begin{align*}
& C_{1}^{(1)}(\varepsilon)=\frac{\Delta_{1}^{(1)}(\varepsilon)}{\Delta(\varepsilon)}=\frac{\hat{P}}{s_{11}^{(1)}}+O(\varepsilon)=\frac{\hat{P}(\varepsilon)}{\beta-\gamma}+O(\varepsilon), \tag{36}\\
& C_{2}^{(1)}(\varepsilon)=\frac{\Delta_{2}^{(1)}(\varepsilon)}{\Delta(\varepsilon)}=\frac{-s_{21}^{(1)} e^{\rho_{1}^{(1)}\left(t_{1}-t_{0}\right)} \hat{P}+s_{11}^{(1)} \hat{Q}}{s_{11}^{(1)} s_{22}^{(1)}}+O(\varepsilon) \tag{37}\\
& =\frac{1}{\beta+\sqrt{\beta^{2}-\gamma^{2}}}\left(-\frac{\alpha e^{\rho_{10}^{(1)}\left(t_{1}-t_{0}\right)}}{\beta-\gamma} \hat{P}(\varepsilon)+\hat{Q}(\varepsilon)\right)+O(\varepsilon) .
\end{align*}
$$

where $\rho_{1}^{(1)}=\rho_{10}^{(1)}+O(\varepsilon), \rho_{10}^{(1)}=-\frac{2 \alpha^{2}+\alpha(\beta-\gamma)}{\beta-\gamma}$.
By virtue of $s_{11}^{(1)}=s_{11}^{(2)}, s_{21}^{(1)}=s_{21}^{(2)}, s_{31}^{(1)}=s_{31}^{(2)}$, we have

$$
\begin{equation*}
C_{3}^{(1)}(\varepsilon)=\frac{\Delta_{3}^{(1)}(\varepsilon)}{\Delta(\varepsilon)}=O(\varepsilon) . \tag{38}
\end{equation*}
$$

Furthermore we obtain

$$
\begin{equation*}
C_{1}^{(2)}(\varepsilon)=\frac{\Delta_{1}^{(2)}(\varepsilon)}{\Delta(\varepsilon)}=\frac{\hat{P}}{s_{11}^{(2)}}+O(\varepsilon)=\frac{\hat{P}(\varepsilon)}{\beta-\gamma}+O(\varepsilon) . \tag{39}
\end{equation*}
$$

By virtue of $s_{11}^{(1)}=s_{11}^{(2)}, s_{21}^{(1)}=s_{21}^{(2)}, s_{31}^{(1)}=s_{31}^{(2)}$, we get

$$
\begin{equation*}
C_{2}^{(2)}(\varepsilon)=\frac{\Delta_{2}^{(2)}(\varepsilon)}{\Delta(\varepsilon)}=O(\varepsilon) . \tag{40}
\end{equation*}
$$

And we have

$$
\begin{align*}
C_{3}^{(2)}(\varepsilon) & =\frac{\Delta_{\Delta}^{(2)}(\varepsilon)}{\Delta(\varepsilon)}=\frac{-s_{31}^{(2)} e^{\rho_{1}^{(2)}\left(t_{2}-t_{0}\right)} \hat{P}+s_{11}^{(2)} \hat{R}}{s_{11}^{(2)} s_{33}^{(2)}}+O(\varepsilon) \tag{41}\\
& =\frac{1}{\beta+\sqrt{\beta^{2}-\gamma^{2}}}\left(-\frac{\alpha e^{\rho_{10}^{(2)}\left(t_{2}-t_{0}\right)}}{\beta-\gamma} \hat{P}(\varepsilon)+\hat{R}(\varepsilon)\right)+O(\varepsilon),
\end{align*}
$$

where $\rho_{1}^{(2)}=\rho_{10}^{(2)}+O(\varepsilon), \rho_{10}^{(2)}=\frac{2 \alpha^{2}+\alpha(\beta-\gamma)}{\beta-\gamma}$.
We denote generically by ε_{1}, a sufficiently small positive number such that $0<\varepsilon_{1} \leqq \varepsilon_{0}$.

By virtue of (11) and (15), we can write for $u_{1}^{(1)}(t ; \varepsilon)$

$$
\begin{aligned}
u_{1}^{(1)}(t ; \varepsilon)= & s_{11}^{(1)} C_{1}^{(1)} e^{\rho_{1}^{(1)}\left(t-t_{0}\right)}+s_{12}^{(1)} C_{2}^{(1)} e^{\rho_{2}^{(1)}\left(t-t_{1}\right)} \\
& +s_{13}^{(1)} C_{3}^{(1)} e^{\rho_{3}^{(1)}\left(t-t_{0}\right)}+\omega_{1}(\varepsilon) \\
= & \left(\hat{P}(\varepsilon)+\omega_{1}(\varepsilon) e^{-\rho_{10}^{(1)}\left(t-t_{0}\right)}\right) e^{\rho_{10}^{(1)}\left(t-t_{0}\right)}+O(\varepsilon) .
\end{aligned}
$$

The definition (24) of the $P(\varepsilon)$ and the inequality (26) imply

$$
\begin{aligned}
\hat{P}(\varepsilon)+\omega_{1}(\varepsilon) e^{-\rho_{10}^{(1)}\left(t-t_{0}\right)} \geqq \eta(\varepsilon) & >0 \\
& \left(0<\varepsilon \leqq \varepsilon_{1}, t_{1} \leqq t \leqq t_{0}\right)
\end{aligned}
$$

because $e^{-o_{10}^{\prime \prime}\left(t-t_{0}\right)} \leqq 1\left(t_{1} \leqq t \leqq t_{0}\right)$ and hence we see

$$
u_{1}^{(1)}(t ; \varepsilon)>0 \quad\left(0<\varepsilon \leqq \varepsilon_{1}, t_{1} \leqq t \leqq t_{0}\right) .
$$

Next, by virtue of (11) and (15), we have

$$
\begin{aligned}
& u_{2}^{(1)}(t ; \varepsilon)= s_{21}^{(1)} C_{1}^{(1)} e^{\rho_{1}^{(1)}\left(t-t_{0}\right)}+s_{22}^{(1)} C_{2}^{(1)} e^{\rho_{2}^{(1)}\left(t-t_{1}\right)} \\
& \quad \quad+s_{23}^{(1)} C_{3}^{(1)} e^{\rho_{3}^{(1)}\left(t-t_{0}\right)}+\omega_{2}(\varepsilon) \\
&=\left(\frac{\alpha}{\beta-\gamma} \hat{P}(\varepsilon)+\omega_{2}(\varepsilon) e^{-\rho_{10}^{(1)}\left(t-t_{0}\right)}\right) e^{\rho_{0}^{(1)}\left(t-t_{0}\right)} \\
&+\left(-\frac{\alpha e^{\rho_{1}^{(1)}\left(t_{1}-t_{0}\right)}}{\beta-\gamma} \hat{P}(\varepsilon)+\hat{Q}(\varepsilon)\right) e^{\rho_{2}^{(1)}\left(t-t_{1}\right)}+O(\varepsilon) .
\end{aligned}
$$

It follows from (24) and (26) that

$$
\begin{aligned}
\frac{\alpha}{\beta-\gamma} \hat{P}(\varepsilon)+\omega_{2}(\varepsilon) e^{-\rho_{10}^{(1)}\left(t-t_{0}\right)} & \geqq \frac{\alpha}{\beta-\gamma} \eta(\varepsilon) \\
(0 & \left.<\varepsilon \leqq \varepsilon_{1}, t_{1} \leqq t \leqq t_{0}\right),
\end{aligned}
$$

and the definition (28) of N_{1} and the inequality (30) imply

$$
-\frac{\alpha e^{\rho_{10}^{(1)}\left(t_{1}-t_{0}\right)}}{\beta-\gamma} \hat{P}(\varepsilon)+\hat{Q}(\varepsilon) \geqq \eta(\varepsilon)
$$

$$
\left(0<\varepsilon \leqq \varepsilon_{1}, t_{1} \leqq t \leqq t_{0}\right) .
$$

Hence we see

$$
u_{2}^{(1)}(t ; \varepsilon)>0 \quad\left(0<\varepsilon \leqq \varepsilon_{1}, t_{1} \leqq t \leqq t_{0}\right) .
$$

Moreover, we get

$$
\begin{aligned}
& u_{3}^{(1)}(t ; \varepsilon)=s_{31}^{(1)} C_{1}^{(1)} e^{\rho_{1}^{(1)}\left(t-t_{0}\right)}+s_{32}^{(1)} C_{2}^{(1)} e^{\sigma_{2}^{(1)}\left(t-t_{1}\right)} \\
& +s_{33}^{(1)} C_{3}^{(1)} e^{\rho_{3}^{(1)}\left(t-t_{0}\right)}+\omega_{3}(\varepsilon) \\
& =\left(\frac{\alpha}{\beta-\gamma} \hat{P}(\varepsilon)+\omega_{3}(\varepsilon) e^{-\rho_{10}^{(1)}\left(t-t_{0}\right)}\right) \rho^{\rho_{1}^{(1)}\left(t-t_{0}\right)} \\
& +\frac{\gamma}{\beta+\sqrt{\beta^{2}-\gamma^{2}}}\left(-\frac{\alpha e^{\rho_{10}^{(1)}\left(t_{1}-t_{0}\right)}}{\beta-\gamma} \hat{P}(\varepsilon)+\hat{Q}(\varepsilon)\right) e^{\rho_{2}^{(1)}\left(t-t_{1}\right)}+O(\varepsilon),
\end{aligned}
$$

and therefore, in the same way as for $u_{2}^{(1)}(t ; \varepsilon)$, we can verify

$$
u_{3}^{(1)}(t ; \varepsilon)>0 \quad\left(0<\varepsilon \leqq \varepsilon_{1}, t_{1} \leqq t \leqq t_{0}\right)
$$

Similarly we can show, by using (23), (24) and (34), that

$$
\begin{array}{ll}
u_{\jmath}^{(2)}(t ; \varepsilon)>0 & (\jmath=1,2,3) \\
& \left(0<\varepsilon \leqq \varepsilon_{1}, t_{0} \leqq t \leqq t_{2}\right) .
\end{array}
$$

Thus, we have accomplished our purpose.
Remark. 1. It is obvious that the solution $\boldsymbol{u}=\boldsymbol{u}(t ; \varepsilon)$ obtained in this paper, tends to the zero vector 0 on $t_{1} \leqq t \leqq t_{2}$ with ε.

Remark 2. If we choose sufficiently small positive constants Q, R instead of $Q(\varepsilon), R(\varepsilon)$, we obtain the desired solution. In this case, the solution $\boldsymbol{u}=\boldsymbol{u}(t ; \varepsilon)$ tends to the zero vector 0 on $t_{1}<t<t_{2}$ with ε.

References

[1] Hirasawa, Y., On singular perturbation problems of non-linear systems of differential equations, III, Comment. Math. Univ. Sancti. Pauli, 4 (1955) 93-104.
[2] Hirasawa, Y., On a singular perturbation problem for linear systems of ordinary differential equations, I, Kodai Math. J. 1 (1978), 85-88.

Department of Mathematics,
Tokyo Institute of Technology.

