ON THE ADELE RINGS AND ZETA-FUNCTIONS OF ALGEBRAIC NUMBER FIELDS

By Keiichi Komatsu

Throughout this paper Q and Z denote the rational number field and the rational integer ring, respectively. An algebraic number field always means an algebraic number field of finite degree, an integer means a rational integer and a prime number means a rational prime number. For an algebraic number field k, we denote by k_A the adele ring of k, by $\zeta_k(s)$ the Dedekind zeta-function of k and O_k the integer ring of k. For any prime ideal $\mathfrak p$ of k, $k_{\mathfrak p}$ denotes the completion of k by $\mathfrak p$ -adic valuation, for real place $\mathfrak p$ of k, $k_{\mathfrak p}$ denotes the real number field and for imaginary place $\mathfrak p$ of k, $k_{\mathfrak p}$ denotes the complex number field. We write $N_{k/Q}$ for the norm of an ideal in k. For a Galois extension k of a field k, we denote by k0 the cardinarity of k1. We write k2 the index of a subgroup k3 the cardinarity of k4. We write k5 the index of a subgroup k6 in a finite group k6. The word "isomorphism" for topological groups, topological rings and topological fields, means a topological isomorphism. The main purpose of this paper is to prove the following theorem, which is a refinement of our previous paper k4:

THEOREM. Let m be a square free integer such that $m \neq \pm 1, \pm 2$, and n an integer such that $n \geq 3$. Put $k = Q(2\sqrt[n]{m})$ and $k' = Q(\sqrt{2} \times 2\sqrt[n]{m})$. If

$$m \equiv 1, 3, 5, 6, 9, 10, 11, 13 \pmod{16}$$
,

then k_A is not isomorphic to k'_A and $\zeta_k(s) = \zeta_{k'}(s)$. If

$$m \equiv 2, 7, 14, 15 \pmod{16}$$
,

then k_A is isomorphic to k'_A and k is not isomorphic to k'.

For two algebraic number fields K and K', we should notide that $K \cong K'$ implies $K_A \cong K'_A$ and that $K_A \cong K'_A$ implies $\zeta_K(s) = \zeta_{K'}(s)$. Now we describe the following lemma, which plays an important role in this paper:

LEMMA 1. (cf. lemma 7 of [3] and lemma 3 of [4]) Let k be an algebraic number field, V_k the set of places of k and W_k the set of non-zero prime ideals of k. We adopt similar notations for an algebraic number field k'. Then the following conditions are equivalent:

Received July 4, 1977.

- (1) k_A and k'_A are isomorphic.
- (2) There exists a bijection Φ of V_k onto $V_{k'}$ such that $k_{\mathfrak{p}}$ and $k'_{\Phi(\mathfrak{p})}$ are isomorphic for every $\mathfrak{p} \in V_k$.
- (3) There exists a bijection Ψ of W_k onto $W_{k'}$ such that $k_{\mathfrak{p}}$ and $k'_{\Psi(\mathfrak{p})}$ are isomorphic for every $\mathfrak{p} \in W_k$.

An immediate consequence of the above lemma is the following proposition: PROPOSITION. (cf. Corollary of lemma 3 in [4]) Let k and k' be algebraic number fields. Then $k_A \cong k'_A$ implies $\zeta_k(s) = \zeta_{k'}(s)$.

- LEMMA 2. Let L be a finite Galois extension of Q, let G=Gal(L/Q), and let H and H' be subgroups of G. Let k and k' be subfields of L corresponding to the subgroups H and H' of G, respectively. For every element σ of G, let $C(\sigma) = \{\tau^{-1}\sigma\tau \mid \tau \in G\}$. Then the following conditions are equivalent:
 - (1) For every element σ of G, card $(C(\sigma) \cap H) = \operatorname{card}(C(\sigma) \cap H')$.
- (2) For every prime number p, the collection of degrees of factors of p in k is identical with the collection of degrees of the factors of p in k'.
 - (3) The zeta-functions $\zeta_k(s)$ and $\zeta_{k'}(s)$ are the same.

Let G be a group. An automorphism f of G is called to be an element-wise inner automorphism, if for every element σ of G, σ and $f(\sigma)$ are conjugate in G.

LEMMA 3. Let G be a finite group, H a subgroup of G and f an element-wise inner automorphism of G. Then for every element σ of G, we have card $(C(\sigma) \cap H)$ = card $(C(\sigma) \cap f(H))$.

Proof. For any element σ of G, we have $f(C(\sigma))=C(\sigma)$. This shows $f(C(\sigma)\cap H)=C(\sigma)\cap f(H)$. So we have our assertion.

The following lemma owes to Gerst [2].

LEMMA 4. Let $m \ (\neq \pm 1, \pm 2)$ be a square free integer, $n (\geq 3)$ an integer and η a primitive 2^n -th root of 1. If k, k' and k are $k(2^n)$, $k(\sqrt{2} \times 2^n)$ and $k(\eta)$, respectively, then the conditions (1), (2) and (3) of lemma 2 hold and $k \cong k'$.

Proof. Put $K=Q(\eta)$. Suppose that $k\cong k'$. Then there exists an integer b such that $k'=Q(2\sqrt[n]{m}\eta^b)$. This shows that $\sqrt{2}\eta^{-b}$ is contained in $Q(2\sqrt[n]{m}\eta^b)$. On the other hand, for any integer a, we have $K\cap Q(2\sqrt[n]{m}\eta^a)=Q$, which shows $\sqrt{2}\eta^{-b}\in Q$. This is a contradiction. Therefore we have $k\cong k'$. Let N=Gal(L/K). Then we have

$$\begin{split} N &= \{ \tau_b \in G \mid b \in \mathbf{Z}, \ \eta^{\tau_b} = \eta \ \text{ and } \ 2 \sqrt[n]{m} \tau^b = 2 \sqrt[n]{m} \ \eta^b \} \\ H &= \{ \sigma_a \in G \mid a \in \mathbf{Z}, \ a \ \text{ is prime to 2, } \eta^{\sigma_a} = \eta^a \ \text{ and } \ 2 \sqrt[n]{m} \sigma_a = 2 \sqrt[n]{m} \} \end{split}$$

and

$$H' = \{\sigma'_a \in G \mid a \in \mathbb{Z}, a \text{ is prime to 2, } \eta^{\sigma'_a} = \eta^a \text{ and } (\sqrt{2} \times 2\sqrt[n]{m})^{\sigma'_a} = \sqrt{2} \times 2\sqrt[n]{m}\}$$

The subgroup N of G is normal in G, $H \cap N = H' \cap N$ is trivial and G = HN = H'N.

Further for any elements $\sigma_a \in H$, $\sigma'_a \in H'$, $\tau_b \in N$, we have

$$\sigma_a^{-1} \tau_b \sigma_a = \tau_{ab}$$
 and $\sigma_a'^{-1} \tau_b \sigma_a' = \tau_{ab}$.

Therefore we can define an automorphism f of G such that

$$f(\sigma_a \tau_b) = \sigma'_a \tau_b$$
 for $\sigma_a \in H$, $\tau_b \in N$.

Since $\sqrt{2} = \eta^{2^{n-3}} + \eta^{-2^{n-3}}$, we have

$$(\sqrt{2} \times 2^{n/m})^{\sigma_a} = 2^{n/m} (\eta^{2^{n-3}a} + \eta^{-2^{n-3}a}).$$

Hence, if $a\equiv 1$, $7 \pmod 8$, then $(\sqrt{2}\times 2\sqrt[n]{m})^{\sigma_a}=\sqrt{2}\times 2\sqrt[n]{m}$, and if $a\equiv 3$, $5 \pmod 8$, then $(\sqrt{2}\times 2\sqrt[n]{m})^{\sigma_a}=-\sqrt{2}\times 2\sqrt[n]{m}$. On the other hand, for any element $\tau_c\in N$, we have

$$(\sqrt{2}\times 2\sqrt[n]{m})^{\tau_c\sigma'}a^{\tau_c^{-1}}=\sqrt{2}\times 2\sqrt[n]{m}\eta^{ac-c}$$
.

The above consideration shows the following:

$$f(\sigma_a) = \begin{cases} \sigma_a & \text{for } a \equiv 1, 7 \pmod{8} \\ \tau_{2^{n-2}}^{-1} \sigma_a \tau_{2^{n-2}} & \text{for } a \equiv 3 \pmod{8} \\ \tau_{2^{n-3}}^{-1} \sigma_a \tau_{2^{n-3}} & \text{for } a \equiv 5 \pmod{8} \end{cases}.$$

Hence the automorphism f is an element-wise inner automorphism of G. Therefore our assertion follows from lemma 2 and lemma 3.

LEMMA 5. Notations and assumptions being as in lemma 4, if

$$m \equiv 2, 7, 14, 15 \pmod{16}$$
,

then $k_A \cong k'_A$ and $k \cong k'$.

Proof. Let p be a prime number. Suppose that the decomposition of the ideal pO_k in k is as follows:

$$pO_k = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_g^{e_g}$$
, $N_{k/Q}(\mathfrak{p}_i) = p^{f_i}$ for $i = 1, \dots, g$,

where $\mathfrak{p}_1, \dots, \mathfrak{p}_g$ are distinct prime ideals of k. From lemma 4, there exist distinct prime ideals $\mathfrak{p}'_1, \dots, \mathfrak{p}'_g$ in k' such that

$$pO_{k'}=\mathfrak{p}_{1}^{\prime e_{1'}}\cdots\mathfrak{p}_{g}^{\prime e_{g'}}$$
 and that $N_{k'/Q}(\mathfrak{p}_{i}^{\prime})=p^{f_{1}}$ for $i=1,\cdots,g$.

If p is unramified in k/Q, then p is unramified in k'/Q. Therefore, for the prime number p which is unramified in k/Q, we have $k_{\mathfrak{p}_i} \cong k'_{\mathfrak{p}_i}$ for $i=1, \cdots, g$. Now we assume that p is ramified in k/Q and that $p \neq 2$. Since p divides m and since m is square free, p is totally ramified in k/Q and in k'/Q. If $p\equiv 1, 7 \pmod 8$, then $Q_p(2\sqrt[n]{m})=Q_p(\sqrt{2}\times 2\sqrt[n]{m})$ follows from that Q_p contains $\sqrt{2}$. If $p\equiv 3, 5 \pmod 8$, then $Q_p(2\sqrt[n]{m})\cong Q_p(\sqrt{-1}\times 2\sqrt[n]{m})=Q_p(\sqrt{2}\times 2\sqrt[n]{m})$ follows from that Q_p contains

- $\sqrt{-2}$. Suppose that p=2. One can easily see that p is totally ramified in k/Q. Hence from lemma 1, it is sufficient to prove $Q_p(\sqrt[2n]{m}) \cong Q_p(\sqrt{2} \times \sqrt[2n]{m})$. There are three cases:
- (1) $m\equiv 2\pmod{16}$. Writing m=2u, we see that $\sqrt{u}\in Q_2$. Hence we have $Q_2(2\sqrt[n]{m})=Q_2(\sqrt{2}\times 2\sqrt[n]{m})$.
- (2) $m\equiv 14\pmod{16}$. Writing m=2u, we see that $\sqrt{-u}\in Q_2$. So we have $\sqrt{-2}\in Q_2(2\sqrt[n]{m})\cap Q_2(\sqrt{-1}\times 2\sqrt[n]{m})$. Hence we have $Q_2(2\sqrt[n]{m})\cong Q_2(\sqrt{-1}\times 2\sqrt[n]{m})=Q_2(\sqrt{2}\times 2\sqrt[n]{m})$.
- (3) $m\equiv 7\pmod 8$. Since $-m\equiv 1\pmod 8$ shows $\sqrt{-m}\in Q_2$, we have $\sqrt{-1}\in Q_2(\sqrt{m})$. Hence we have $Q_2(\sqrt[2n]{m})\cong Q_2\left(\frac{\sqrt{2}}{2}\sqrt[2n]{m}(1+\sqrt{-1})\right)=Q_2(\sqrt{2}\times \sqrt[2n]{m})$.

LEMMA 6. Notations and assumptions being as in lemma 4, if $m \equiv 3, 5, 6, 10, 11, 13 \pmod{16}$, then $k_A \cong k_A'$ and $\zeta_k(s) = \zeta_{k'}(s)$.

Proof. The lemma 4 shows $\zeta_k(s) = \zeta_{k'}(s)$. Considering the structure of G, we see that the quandratic number fields in L are $Q(\sqrt{-1})$, $Q(\sqrt{2})$, $Q(\sqrt{-2})$ $(Q\sqrt{m}), Q(\sqrt{-m}), Q(\sqrt{2m})$ and $Q(\sqrt{-2m})$. In none of them, the ideal 2Z splits completely. Let \mathfrak{P} be a prime divisor of the ideal 20_L , D the decomposition group of $\mathfrak P$ with respect to L/Q and F the decomposition field of $\mathfrak P$ with respect to L/Q. Suppose that $G \neq D$. As G is a 2-group, there exists a maximal proper subgroup N of G such that $N \supset D$ and that [G; N] = 2. Let k_1 be the subfield of L corresponding to N. The ramification index and the degree of the ideal $\mathfrak{P}_{\bigcap} k_1$ in k_1/Q are equal to 1. Since k_1/Q is a Galoi extension, the ideal 2Zsplits completely in k_1/Q . This is a contradiction. Hence we have G=D. Let $L_{\mathfrak{p}}$ be the completion of L by \mathfrak{P} -adic valuation. We put $\mathfrak{p}=\mathfrak{P}\cap k$ and $\mathfrak{p}'=\mathfrak{P}\cap k'$. Let K(resp. K') be the topological closure of k(resp. k') in $L_{\mathfrak{D}}$. We should notice $K \cong k_{\mathfrak{p}}$ and $K' \cong k'_{\mathfrak{p}}$. Since G = D, there exists a natural isomorphism φ of $Gal(L/Q_2)$ onto G, where Q_2 is the topological closure of Q in $L_{\mathfrak{P}}$. We have $\varphi(Gal(L_{\mathfrak{P}}/K))$ =H and $\varphi(Gal(L_{\mathfrak{D}}/K'))=H'$. Since $k \cong k'$, H and H' are not conjugate in G. This shows $K \cong K'$, which means $k_p \cong k'_p$. Hence we have $k_A \cong k'_A$ from lemma 1.

LEMMA 7. Let u be an element of Q_2 and $s \ (\ge 1)$ an integer. If $\sqrt{\pm u} \notin Q_2$, then a polynomial $x^{2^8}-u$ is irreducible over Q_2 .

Proof. Suppose that there exist two polynomials

$$f(x)=x^{r}+\cdots+a$$
 and $g(x)=x^{t}+\cdots+b$ in $Q_{2}[x]$

such that $x^{2^s}-u=f(x)g(x)$. Let η be a primitive 2^s -th root of 1, and let v be an integer such that $a=\sqrt[2^s]{u}$ η^v . We assume that $1\leq r<2^s$. We can put $r=2^ec$. where c is a positive odd integer and where e is an integer such that $0\leq e< s$. As $a^{2^s}=u^r$, we have $\pm a^{2^s-e}=u^c$. Since 2 is prime to c, there exist two integers α , β such that $2^{s-e}\alpha+c\beta=1$. So we have

$$u=u^{2^{s-e}\alpha+\beta c}=(u^{\alpha})^{2^{s-e}}(\pm a^{2^{s-e}})^{\beta}$$
,

which is a contradiction.

The following lemma is an elementary property of an algebraic number theory:

LEMMA 8. Let n be a positive integer, p a prime number and α a p-adic integer. Suppose that p^a exactly divides n. For any integer s with $s > \frac{1}{p-1} + a$, if $\alpha \equiv 1 \pmod{p^s}$, then we have $\sqrt[n]{\alpha} \in Q_p$.

LEMMA 9. Let u be a 2-adic integer such that $u \equiv \pm 3 \pmod{8}$. Then for an integer $s(\geq 1)$, $Q_2(\sqrt[2^5]{u}) \cong Q_2(\sqrt{2}\sqrt[2^5]{u})$.

Proof. We should notice that $\sqrt{\pm u} \notin Q_2$. There are three cases:

(1) s=1. Suppose $Q_2(\sqrt{u}) \cong Q_2(\sqrt{2u})$, which means $Q_2(\sqrt{u}) = Q_2(\sqrt{2u})$. Then there exist elements a, b in Q_2 such that $\sqrt{2u} = a + b\sqrt{u}$. As

$$2u = a^2 + ub^2 + 2ab\sqrt{u}$$
.

we conclude ab=0. If a=0, then $\sqrt{2} \in Q_2$, which is a contradiction. If b=0, then $\sqrt{2u} \in Q_2$, which is also a contradiction.

(2) s=2. Polynomials x^4-u and x^4-4u are irreducible over Q_2 from lemma 7. Suppose that $Q_2(\sqrt[4]{u})\cong Q_2(\sqrt{2}\sqrt[4]{u})$. Then $Q_2(\sqrt{2}\sqrt[4]{u})=Q_2(\sqrt[4]{u})$ or $Q_2(\sqrt{2}\sqrt[4]{u})=Q_2(\sqrt[4]{u})$. Suppose $Q_2(\sqrt{2}\sqrt[4]{u})=Q_2(\sqrt[4]{u})$. Then there exist elements a, $b\in Q_2(\sqrt[4]{u})$ such that $\sqrt{2}\sqrt[4]{u}=a+b\sqrt[4]{u}$. Since

$$2\sqrt{u} = a^2 + b^2\sqrt{u} + 2ab \sqrt[4]{u}$$

we conclude ab=0. If a=0, then $\sqrt{2} \in Q_2(\sqrt{u})$, which is a contradiction. If b=0, then $\sqrt{2} \sqrt[4]{u} \in Q_2(\sqrt{u})$, which is also a contradiction. Assuming $Q_2(\sqrt{2} \sqrt[4]{u}) = Q_2(\sqrt{-1} \sqrt[4]{u})$, we have also a contradiction in an analogious way.

(3) $s \ge 3$. Let η be a primitive 2^s -th root of 1. There exists a prime number p such that $p \equiv u \pmod{2^{s+2}}$. From lemma 8, we have $Q_2(\sqrt[2^s]{p}) = Q_2(\sqrt[2^s]{u})$ and $Q_2(\sqrt{2} \times \sqrt[2^s]{p}) = Q_2(\sqrt{2} \times \sqrt[2^s]{u})$. Since $p \equiv \pm 3 \pmod{8}$, it follows from the proof of lemma 6 that $Q_2(\sqrt[2^s]{p}) \not\equiv Q_2(\sqrt{2} \times \sqrt[2^s]{p})$.

LEMMA 10. Let $m \ (\neq \pm 1, \pm 2)$ be a square free integer, $n \ (\geq 3)$ an integer and $s \ (\leq n-1)$ a non-negative integer. Suppose that there exists a 2-adic integer u such that $m=u^{2^8}$ and such that $u\equiv \pm 3 \ (\text{mod } 8)$. Then

$$x^{2^n}-m=(x^{2^{n-s}}-u)\prod_{\nu=0}^{s-1}(x^{2^{n-s+\nu}}+u^{2^{\nu}})$$
 and

$$x^{2^{n}}-2^{2^{n-1}}m=(x^{2^{n-s}}-2^{2^{n-1-s}}u)\prod_{\nu=0}^{s-1}(x^{2^{n-s+\nu}}+2^{2^{n-1-s+\nu}}u^{2^{\nu}})$$

are factorizations in irreducible polynomials of $Q_2[x]$.

Proof. We denote by Z_2 the 2-adic integer ring. Since $\sqrt{\pm u} \oplus Q_2$, both

polynomials $x^{2^{n-s}}-u$ and $x^{2^{n-s}}+u$ are irreducible over Q_2 from lemma 7. Now, $u\equiv\pm 3\pmod{2^s}$ implies that $u^{2\nu}\equiv 1\pmod{2^{\nu+1}}$ for $\nu=1,\,2,\,\cdots,\,s-1$. Hence a polynomial $(x+1)^{2^{n-\nu}}+u^{2^{s-\nu}}$ is an Eisenstein polynomial in $Z_2[x]$, for $\nu=1,\,\cdots,\,s-1$. This shows that a polynomial $x^{2^{n-\nu}}+u^{2^{s-\nu}}$ is irreducible over Q_2 . Using lemma 4, we have that the number of the prime factors of 2 in k is s+1. This shows that polynomials $x^{2^{n-s}}-2^{n-1-s}u$ and $x^{2^{n-s+\nu}}+2^{2^{n-1-s+\nu}}u^{2\nu}$ are irreducible over Q_2 , for $\nu=0,\,1,\,\cdots,\,s-1$.

LEMMA 11. Let $m(\neq \pm 1, \pm 2)$ be a square free integer and $n(\geq 3)$ an integer. Further we put $k=Q(2\sqrt[n]{m})$ and $k'=Q(\sqrt[n]{2}\times 2\sqrt[n]{m})$. If

$$m \equiv 1 \pmod{2^{n+2}}$$
, then $k_A \cong k'_A$ and $\zeta_k(s) = \zeta_{k'}(s)$.

Proof. It follows from lemma 4 that $\zeta_k(s) = \zeta_{k'}(s)$. By lemma 8, we can see that there exists a 2-adic integer u such that $m = u^{2^n}$. So we have

$$x^{2^n} - m = (x - u)(x + u) \prod_{i=2}^{n-1} (x^{2^i} + u^{2^i})$$
 and

$$x^{2^{n}}-2^{2^{n-1}}m=(x^{2}-2u)(x^{2}+2u)(x^{2}-2ux+2u)(x^{2}+2ux+2u)\prod_{i=3}^{n-1}(x^{2^{i}}+2^{2^{i-1}}u^{2^{i}})$$

are factorizations in irreducible polynomials of $Q_2[x]$. This shows that there exists a prime factor $\mathfrak p$ of 2 in k such that the ramification index and the degree of $\mathfrak p$ are 1. Considering the above factorization of the polynomial $x^{2^n}-2^{2^{n-1}}m$, we have a contradiction.

We should notice that for the above fields k and k', the collection of ramification indexes of 2 in k is not identical with the collection of ramification indexes of factors of 2 in k'.

LEMMA 12. Notations and assumptions being as in lemma 11, if $m \equiv 1 \pmod 8$, we have $k_A \cong k'_A$ and $\zeta_k(s) = \zeta_{k'}(s)$.

Proof. It follows from lemma 4 that $\zeta_k(s) = \zeta_{k'}(s)$. We may assume that $m \equiv 1 \pmod{2^{n+2-t}}$, where t is a non-negative integer such that $t \leq n-1$. We use induction on t. If t=0, the lemma is an immediate consequence of lemma 11. Suppose $t \geq 1$. From lemma 8, there exists a 2-adic integer u such that $m = u^{2^{n-t}}$. Suppose $u \equiv \pm 1 \pmod{8}$. We can easily see that $m \equiv 1 \pmod{2^{n-(t-1)+2}}$, which proves the lemma by applying the induction assumption. Suppose $u \equiv \pm 3 \pmod{8}$. We put s=n-t. Then we have $m=u^{2^s}$. From lemma 10, polynomials $x^{2^n}-m$ and $x^{2^n}-2^{n-1}m$ have the following factorizations in irreducible polynomials of $Q_2[x]$:

$$x^{2^n}-m=(x^{2^{n-s}}-u)\prod_{i=0}^{s-1}(x^{2^{n-s+i}}+u^{2^i})$$

$$x^{2^{n}}-2^{2^{n-1}}m=(x^{2^{n-s}}-2^{2^{n-1-s}}u)\prod_{i=0}^{s-1}(x^{2^{n-s+i}}+2^{n-1-s+i}u^{2^{i}}).$$

Therefore in order to prove this lemma, it is sufficient to show $Q_2({}^{2^n}\sqrt[3]{u})\cong Q_2(\sqrt{2}\times{}^{2^n}\sqrt[3]{u})$ and $Q_2({}^{2^n}\sqrt[3]{u})\cong Q_2(\sqrt{2}\times{}^{2^n}\sqrt[3]{-u})$ for $u\equiv 3 \pmod 8$. We have $Q_2({}^{2^n}\sqrt[3]{u})\cong Q_2(\sqrt{2}\times{}^{2^n}\sqrt[3]{u})$ from lemma 9. If $u\equiv 3 \pmod 8$, the ideal $2Z_2$ is fully ramified in $Q_2({}^{2^n}\sqrt[3]{u})/Q_2$. If $u\equiv 3 \pmod 8$ and n-s>1, then the degree of the ideal $2Z_2$ in $Q_2(\sqrt{2}\times{}^{2^n}\sqrt[3]{-u})/Q_2$ is greater than 1. From the above consideration one can easily see $Q_2({}^{2^n}\sqrt[3]{u})\cong Q_2(\sqrt{2}\times{}^{2^n}\sqrt[3]{-u})$. This completes our proof.

The above lemmas show our theorem.

REFERENCES

- [1] Cassels-Frohlicii, Algebraic Number Theory, Academic Press, London New-York, (1967).
- [2] I. GERST, On the theory of *n*-th power residue and a conjecture of Kronecker, Acta Arithmetica XII, 121-138, (1970).
- [3] K. IWASAWA, On the rings of valuation vectors, Ann. of Math., 57, 331-356, (1953).
- [4] K. Komatsu, On the adele rings of algebraic number fields, Kōdai Math. Sem. Rep., 28, 78-84, (1976).

DEPARTMENT OF MATHEMATICS
TOKYO INSTITUTE OF TECHNOLOGY