ON THE ADELE RINGS AND ZETA-FUNCTIONS OF ALGEBRAIC NUMBER FIELDS

By Keiichi Komatsu

Throughout this paper Q and Z denote the rational number field and the rational integer ring, respectively. An algebraic number field always means an algebraic number field of finite degree, an integer means a rational integer and a prime number means a rational prime number. For an algebraic number field k, we denote by k_{A} the adele ring of k, by $\zeta_{k}(s)$ the Dedekind zeta-function of k and O_{k} the integer ring of k. For any prime ideal p of k, k_{p} denotes the completion of k by \mathfrak{p}-adic valuation, for real place \mathfrak{p} of $k, k_{\mathfrak{p}}$ denotes the real number field and for imaginary place \mathfrak{p} of $k, k_{\mathfrak{p}}$ denotes the complex number field. We write $N_{k / Q}$ for the norm of an ideal in k. For a Galois extension L of a field F, we denote by $\operatorname{Gal}(L / F)$ the Galois group of L / F. For a set S, we denote by card (S) the cardinarity of S. We write $[G ; H]$ for the index of a subgroup H in a finite group G. The word "isomorphism" for topological groups, toplogical rings and topological fields, means a topological isomorphism. The main purpose of this paper is to prove the following theorem, which is a refinement of our previous paper [4]:

Theorem. Let m be a square free integer such that $m \neq \pm 1, \pm 2$, and n an integer such that $n \geqq 3$. Put $k=Q(\sqrt[2]{m})$ and $k^{\prime}=Q(\sqrt{2} \times 2 \sqrt[n]{m})$. If

$$
m \equiv 1,3,5,6,9,10,11,13 \quad(\bmod 16),
$$

then k_{A} is not isomorphic to k_{A}^{\prime} and $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$. If

$$
m \equiv 2,7,14,15 \quad(\bmod 16)
$$

then k_{A} is isomorphic to k_{A}^{\prime} and k is not isomorphic to k^{\prime}.
For two algebraic number fields K and K^{\prime}, we should notide that $K \cong K^{\prime}$ implies $K_{A} \cong K_{A}^{\prime}$ and that $K_{A} \cong K_{A}^{\prime}$ implies $\zeta_{K}(s)=\zeta_{K^{\prime}}(s)$. Now we describe the following lemma, which plays an important role in this paper:

Lemma 1. (cf. lemma 7 of [3] and lemma 3 of [4]) Let k be an algebravc number field, V_{k} the set of places of k and W_{k} the set of non-zero prome vdeals of k. We adopt similar notations for an algebraic number field k^{\prime}. Then the following conditions are equivalent:

Received July 4, 1977.
(1) k_{A} and k_{A}^{\prime} are isomorphic.
(2) There exists a bijection Φ of V_{k} onto $V_{k^{\prime}}$ such that k_{\natural} and $k^{\prime} \oplus(p)$ are isomorphic for every $\mathfrak{p} \in V_{k}$.
(3) There exists a bijection Ψ of W_{k} onto $W_{k^{\prime}}$ such that k_{p} and $k^{\prime} \Psi(p)$ are isomorphic for every $\mathfrak{p} \in W_{k}$.

An immediate consequence of the above lemma is the following proposition:
Proposition. (cf. Corollary of lemma 3 in [4]) Let k and k^{\prime} be algebraic number fields. Then $k_{A} \cong k_{A}^{\prime}$ implies $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$.

Lemma 2. Let L be a finte Galors extension of Q, let $G=\operatorname{Gal}(L / Q)$, and let H and H^{\prime} be subgroups of G. Let k and k^{\prime} be subfields of L corresponding to the subgroups H and H^{\prime} of G, respectively. For every element σ of G, let $C(\sigma)$ $=\left\{\tau^{-1} \sigma \tau \mid \tau \in G\right\}$. Then the following conditions are equivalent:
(1) For every element σ of G, card $(C(\sigma) \cap H)=\operatorname{card}\left(C(\sigma) \cap H^{\prime}\right)$.
(2) For every prime number p, the collection of degrees of factors of p in k is identical with the collection of degrees of the factors of p in k^{\prime}.
(3) The zeta-functions $\zeta_{k}(s)$ and $\zeta_{k^{\prime}}(s)$ are the same.

Let G be a group. An automorphism f of G is called to be an element-wise inner automorphism, if for every element σ of G, σ and $f(\sigma)$ are conjugate in G.

Lemma 3. Let G be a finte group, H a subgroup of G and f an element-wise inner automorphism of G. Then for every element σ of G, we have card $(C(\sigma) \cap H)$ $=\operatorname{card}(C(\sigma) \cap f(H))$.

Proof. For any element σ of G, we have $f(C(\sigma))=C(\sigma)$. This shows $f(C(\sigma) \cap H)=C(\sigma) \cap f(H)$. So we have our assertion.

The following lemma owes to Gerst [2].
Lemma 4. Let $m(\neq \pm 1, \pm 2)$ be a square free integer, $n(\geqq 3)$ an integer and η a pramutive 2^{n}-th root of 1. If k, k^{\prime} and L are $Q(\sqrt[n]{m}), Q(\sqrt{2} \times 2 \sqrt[n]{m})$ and $k(\eta)$, respectively, then the conditions (1), (2) and (3) of lemma 2 hold and $k \neq k^{\prime}$.

Proof. Put $K=Q(\eta)$. Suppose that $k \cong k^{\prime}$. Then there exists an integer b such that $k^{\prime}=Q\left(\sqrt[2 n]{m} \eta^{b}\right)$. This shows that $\sqrt{2} \eta^{-b}$ is contained in $Q\left(\sqrt[2 n]{m} \eta^{b}\right)$. On the other hand, for any integer a, we have $K \cap Q\left(\sqrt[2 n]{m} \eta^{a}\right)=Q$, which shows $\sqrt{2} \eta^{-b} \in Q$. This is a contradiction. Therefore we have $k \neq k^{\prime}$. Let $N=\operatorname{Gal}(L / K)$. Then we have

$$
\begin{aligned}
& N=\left\{\tau_{b} \in G \mid b \in \boldsymbol{Z}, \eta^{z}=\eta \text { and } \sqrt[2 n]{m} \bar{z}^{b}=\sqrt[2 n]{m} \eta^{b}\right\} \\
& H=\left\{\sigma_{a} \in G \mid a \in \boldsymbol{Z}, a \text { is prime to } 2, \eta^{\sigma_{a}}=\eta^{a} \text { and } \sqrt[2 n]{m^{\sigma_{a}}}=\sqrt[2 n]{m}\right\}
\end{aligned}
$$

and

$$
H^{\prime}=\left\{\sigma_{a}^{\prime} \in G \mid a \in \boldsymbol{Z}, a \text { is prime to } 2, \eta^{\sigma_{a}^{\prime}}=\eta^{a} \text { and }(\sqrt{2} \times \sqrt[2 n]{m})^{\sigma_{a}^{\prime}}=\sqrt{2} \times \sqrt[n]{m}\right\}
$$

The subgroup N of G is normal in $G, H \cap N=H^{\prime} \cap N$ is trivial and $G=H N=H^{\prime} N$.

Further for any elements $\sigma_{a} \in H, \sigma_{a}^{\prime} \in H^{\prime}, \tau_{b} \in N$, we have

$$
\sigma_{a}^{-1} \tau_{b} \sigma_{a}=\tau_{a b} \quad \text { and } \quad \sigma_{a}^{\prime-1} \tau_{b} \sigma_{a}^{\prime}=\tau_{a b}
$$

Therefore we can define an automorphism f of G such that

$$
f\left(\sigma_{a} \tau_{b}\right)=\sigma_{a}^{\prime} \tau_{b} \quad \text { for } \quad \sigma_{a} \in H, \tau_{b} \in N .
$$

Since $\sqrt{2}=\eta^{2^{n-3}}+\eta^{-2^{n-3}}$, we have

$$
(\sqrt{2} \times \sqrt[2 n]{m})^{\sigma} a=\sqrt[2 n]{m}\left(\eta^{2^{n-3} a}+\eta^{-2^{n-3} a}\right)
$$

Hence, if $a \equiv 1,7(\bmod 8)$, then $(\sqrt{2} \times 2 \sqrt[n]{m})^{\sigma} a=\sqrt{2} \times 2 n / \bar{m}$, and if $a \equiv 3,5(\bmod 8)$, then $(\sqrt{2} \times \sqrt[2 n]{m})^{\sigma_{a}}=-\sqrt{2} \times \sqrt[2 n]{m}$. On the other hand, for any element $\tau_{c} \in N$, we have

$$
(\sqrt{2} \times 2 \sqrt[n]{m})^{=c \sigma^{\prime}} a^{z_{c}^{-1}}=\sqrt{2} \times 2 n \bar{m} \eta^{a c-c}
$$

The above consideration shows the following :

$$
f\left(\sigma_{a}\right)=\left\{\begin{array}{lll}
\sigma_{a} & \text { for } & a \equiv 1,7(\bmod 8) \\
\tau_{2^{n-2}}^{-1} \sigma_{a} \tau_{2^{n-2}} & \text { for } & a \equiv 3 \quad(\bmod 8) \\
\tau_{2^{n-3}}^{-1} \sigma_{a} \tau_{2^{n-3}} & \text { for } & a \equiv 5 \quad(\bmod 8)
\end{array}\right.
$$

Hence the automorphism f is an element-wise inner automorphism of G. Therefore our assertion follows from lemma 2 and lemma 3.

Lemma 5. Notatıons and assumptions being as in lemma 4, if

$$
m \equiv 2,7,14,15 \quad(\bmod 16)
$$

then $k_{A} \cong k_{A}^{\prime}$ and $k \nexists k^{\prime}$.
Proof. Let p be a prime number. Suppose that the decomposition of the ideal $p O_{k}$ in k is as follows:

$$
p O_{k}=p_{1}^{e_{1}} \cdots \mathfrak{p}_{g}^{e g}, \quad N_{k / Q}\left(\mathfrak{p}_{i}\right)=p^{f_{\imath}} \text { for } i=1, \cdots, g,
$$

where $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{g}$ are distinct prime ideals of k. From lemma 4 , there exist distinct prime ideals $\mathfrak{p}_{1}^{\prime}, \cdots, \mathfrak{p}_{g}^{\prime}$ in k^{\prime} such that

$$
p O_{k^{\prime}}=\mathfrak{p}_{1}^{\prime e_{1}^{\prime}} \cdots \mathfrak{p}_{g}^{\prime \prime} g^{\prime} \quad \text { and that } N_{k^{\prime}, Q}\left(\mathfrak{p}_{i}^{\prime}\right)=p^{f_{2}} \text { for } i=1, \cdots, g \text {. }
$$

If p is unramified in k / Q, then p is unramified in k^{\prime} / Q. Therefore, for the prime number p which is unramified in k / Q, we have $k_{p_{i}} \cong k_{p_{2}^{\prime}}^{\prime}$ for $i=1, \cdots, g$. Now we assume that p is ramified in k / Q and that $p \neq 2$. Since p divides m and since m is square free, p is totally ramified in k / Q and in k^{\prime} / Q. If $p \equiv 1,7(\bmod 8)$, then $Q_{p}(2 \sqrt[n]{m})=Q_{p}\left(\sqrt{ } 2^{-} \times \sqrt[n]{m}\right)$ follows from that Q_{p} contains $\sqrt{2}$. If $p \equiv 3,5(\bmod 8)$, then $Q_{p}(2 \sqrt[n]{m}) \cong Q_{p}(\sqrt{-1} \times 2 \sqrt[n]{m})=Q_{p}(\sqrt{2} \times 2 \sqrt[n]{m})$ follows from that Q_{p} contains
$\sqrt{-2}$. Suppose that $p=2$. One can easily see that p is totally ramified in k / Q. Hence from lemma 1 , it is sufficient to prove $Q_{p}(\sqrt[2 n]{m}) \cong Q_{p}(\sqrt{2} \times 2 \sqrt[n]{m})$. There are three cases:
(1) $m \equiv 2(\bmod 16)$. Writing $m=2 u$, we see that $\sqrt{u} \in Q_{2}$. Hence we have $Q_{2}(\sqrt[n]{m})=Q_{2}(\sqrt{2} \times \sqrt[2 n]{m})$.
(2) $m \equiv 14(\bmod 16)$. Writing $m=2 u$, we see that $\sqrt{-u} \in Q_{2}$. So we have $\sqrt{-2} \in Q_{2}(2 \sqrt[n]{m}) \cap Q_{2}(\sqrt{-1} \times 2 \sqrt[n]{m})$. Hence we have $Q_{2}(2 \sqrt[n]{m}) \cong Q_{2}(\sqrt{-1} \times 2 \sqrt[n]{m})=$ $Q_{2}(\sqrt{2} \times \sqrt[2 n]{m})$.
(3) $m \equiv 7(\bmod 8)$. Since $-m \equiv 1(\bmod 8)$ shows $\sqrt{-m} \in Q_{2}$, we have $\sqrt{-1}$ $\in Q_{2}(\sqrt{m})$. Hence we have $Q_{2}(2 n / \bar{m}) \cong Q_{2}\left(\frac{\sqrt{2}}{2} \sqrt[n]{m}(1+\sqrt{-1})\right)=Q_{2}(\sqrt{2} \times \sqrt[2 n]{m})$.

Lemma 6. Notations and assumptions being as in lemma 4, if $m \equiv 3,5,6,10$, $11,13(\bmod 16)$, then $k_{A} \neq k_{A}^{\prime}$ and $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$.

Proof. The lemma 4 shows $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$. Considering the structure of G, we see that the quandratic number fields in L are $Q(\sqrt{-1}), Q(\sqrt{2}) . Q(\sqrt{-2})$, $(Q \sqrt{m}), Q(\sqrt{-m}), Q(\sqrt{2 m})$ and $Q(\sqrt{-2 m})$. In none of them, the ideal $2 Z$ splits completely. Let \mathfrak{B} be a prime divisor of the ideal $20_{L}, D$ the decomposition group of \mathfrak{B} with respect to L / Q and F the decomposition field of \mathfrak{B} with respect to L / Q. Suppose that $G \neq D$. As G is a 2 -group, there exists a maximal proper subgroup N of G such that $N \supset D$ and that $[G ; N]=2$. Let k_{1} be the subfield of L corresponding to N. The ramification index and the degree of the ideal $\mathfrak{F}_{\cap} \cap k_{1}$ in k_{1} / Q are equal to 1 . Since k_{1} / Q is a Galoi extension, the ideal $2 Z$ splits completely in k_{1} / Q. This is a contradiction. Hence we have $G=D$. Let $L_{\mathfrak{p}}$ be the completion of L by \mathfrak{P}-adic valuation. We put $\mathfrak{p}=\mathfrak{P} \cap k$ and $\mathfrak{p}^{\prime}=\mathfrak{P}_{\mathfrak{P}} \cap k^{\prime}$. Let K (resp. K^{\prime}) be the topological closure of k (resp. k^{\prime}) in $L_{\mathfrak{B}}$. We should notice $K \cong k_{p}$ and $K^{\prime} \cong k_{p}^{\prime}$. Since $G=D$, there exists a natural isomorphism φ of $\operatorname{Gal}\left(L / Q_{2}\right)$ onto G, where Q_{2} is the topological closure of Q in $L_{\mathfrak{\beta}}$. We have $\varphi\left(\operatorname{Gal}\left(L_{\mathfrak{B}} / K\right)\right)$ $=H$ and $\varphi\left(\operatorname{Gal}\left(L_{\mathfrak{B}} / K^{\prime}\right)\right)=H^{\prime}$. Since $k \neq k^{\prime}, H$ and H^{\prime} are not conjugate in G. This shows $K \nsubseteq K^{\prime}$, which means $k_{p} \nsubseteq k_{p}^{\prime}$. Hence we have $k_{A} \nsubseteq k_{A}^{\prime}$ from lemma 1 .

Lemma 7. Let u be an element of Q_{2} and $s(\geqq 1)$ an integer. If $\sqrt{ \pm u} \notin Q_{2}$, then a polynomıal $x^{2 s}-u$ is irreducible over Q_{2}.

Proof. Suppose that there exist two polynomials

$$
f(x)=x^{r}+\cdots+a \text { and } g(x)=x^{t}+\cdots+b \text { in } Q_{2}[x]
$$

such that $x^{2^{s}}-u=f(x) g(x)$. Let η be a primitive 2^{s}-th root of 1 , and let v be an integer such that $a=\sqrt[2 s]{u} \eta^{v}$. We assume that $1 \leqq r<2^{s}$. We can put $r=2^{e} c$. where c is a positive odd integer and where e is an integer such that $O \leqq e<s$. As $a^{2 s}=u^{r}$, we have $\pm a^{2^{s-e}}=u^{c}$. Since 2 is prime to c, there exist two integers α, β such that $2^{s-e} \alpha+c \beta=1$. So we have

$$
\left.u=u^{2^{s-e} \alpha+\beta c}=\left(u^{\alpha}\right)^{2^{s-e}}\left(\pm a^{2 s-e}\right)\right)^{\beta},
$$

which is a contradiction.
The following lemma is an elementary property of an algebraic number theory :

Lemma 8. Let n be a positive integer, p a prime number and α a p-adic integer. Suppose that p^{a} exactly divides n. For any integer s with $s>\frac{1}{p-1}+a$, if $\alpha \equiv 1\left(\bmod p^{s}\right)$, then we have $\sqrt[n]{\alpha} \in Q_{p}$.

Lemma 9. Let u be a 2-adic integer such that $u \equiv \pm 3(\bmod 8)$. Then for an integer $s(\geqq 1), Q_{2}(\sqrt[2 s]{u}) \nsubseteq Q_{2}(\sqrt{2} \sqrt[2]{\sqrt[s]{u}})$.

Proof. We should notice that $\sqrt{ \pm u} \notin Q_{2}$. There are three cases:
(1) $s=1$. Suppose $Q_{2}(\sqrt{ } \bar{u}) \cong Q_{2}(\sqrt{2 u})$, which means $Q_{2}(\sqrt{ } \bar{u})=Q_{2}(\sqrt{2 u})$. Then there exist elements a, b in Q_{2} such that $\sqrt{2 \bar{u}}=a+b \sqrt{\bar{u}}$. As

$$
2 u=a^{2}+u b^{2}+2 a b \sqrt{u}
$$

we conclude $a b=0$. If $a=0$, then $\sqrt{2} \in Q_{2}$, which is a contradiction. If $b=0$, then $\sqrt{2 u} \in Q_{2}$, which is also a contradiction.
(2) $s=2$. Polynomials $x^{4}-u$ and $x^{4}-4 u$ are irreducible over Q_{2} from lemma 7. Suppose that $Q_{2}(\sqrt[4]{u}) \cong Q_{2}(\sqrt{2} \sqrt[4]{u})$. Then $Q_{2}(\sqrt{2} \sqrt[4]{u})=Q_{2}(\sqrt[4]{u})$ or $Q_{2}(\sqrt{2} \sqrt[4]{u})$ $=Q_{2}(\sqrt{-1} \sqrt[4]{u})$. Suppose $Q_{2}(\sqrt{2} \sqrt[4]{u})=Q_{2}(\sqrt[4]{u})$. Then there exist elements a, $b \in Q_{2}(\sqrt{u})$ such that $\sqrt{2} \sqrt[4]{u}=a+b \sqrt[4]{u}$. Since

$$
2 \sqrt{\bar{u}}=a^{2}+b^{2} \sqrt{\bar{u}}+2 a b \sqrt[4]{u},
$$

we conclude $a b=0$. If $a=0$, then $\sqrt{2} \in Q_{2}(\sqrt{ } \bar{u})$, which is a contradiction. If $b=0$, then $\sqrt{2} \sqrt[4]{\bar{u}} \in Q_{2}(\sqrt{\bar{u}})$, which is also a contradiction. Assuming $Q_{2}(\sqrt{2} \sqrt[4]{u})=Q_{2}(\sqrt{-1} \sqrt[4]{u})$, we have also a contradiction in an analogious way.
(3) $s \geqq 3$. Let η be a primitive 2^{s}-th root of 1 . There exists a prime number p such that $p \equiv u\left(\bmod 2^{s+2}\right)$. From lemma 8 , we have $Q_{2}(\sqrt[2 s]{p})=Q_{2}(\sqrt[2 s]{u})$ and $Q_{2}(\sqrt{2} \times \sqrt[25]{p})=Q_{2}(\sqrt{2} \times \sqrt[2 s]{u})$. Since $p \equiv \pm 3(\bmod 8)$, it follows from the proof of lemma 6 that $Q_{2}(\sqrt[25]{p}) \nsubseteq Q_{2}(\sqrt{2} \times \sqrt[2 s]{p})$.

Lemma 10. Let $m(\neq \pm 1, \pm 2)$ be a square free integer, $n(\geqq 3)$ an integer and $s(\leqq n-1)$ a non-negative integer. Suppose that there exists a 2-adic integer u such that $m=u^{2 s}$ and such that $u \equiv \pm 3(\bmod 8)$. Then

$$
\begin{aligned}
& x^{2^{n}}-m=\left(x^{2 n-s}-u\right) \prod_{\nu=0}^{s-1}\left(x^{2 n-s+\nu}+u^{2^{\nu}}\right) \text { and } \\
& x^{2^{n}-2^{n-1}} m=\left(x^{2 n-s}-2^{2 n-1-s} u\right) \prod_{\nu=0}^{s-1}\left(x^{2 n-s+\nu}+2^{2 n-1-s+\nu} u^{2 \nu}\right)
\end{aligned}
$$

are factorizations in irreducible polynomıals of $Q_{2}[x]$.
Proof. We denote by Z_{2} the 2-adic integer ring. Since $\sqrt{ \pm u} \notin Q_{2}$, both
polynomials $x^{2 n-s}-u$ and $x^{2^{n-s}}+u$ are irreducible over Q_{2} from lemma 7. Now, $u \equiv \pm 3\left(\bmod 2^{3}\right)$ implies that $u^{2 \nu} \equiv 1\left(\bmod 2^{\nu+1}\right)$ for $\nu=1,2, \cdots, s-1$. Hence a polynomial $(x+1)^{2^{n-\nu}+u^{2^{s-\nu}}}$ is an Eisenstein polynomial in $Z_{2}[x]$, for $\nu=1, \cdots, s-1$. This shows that a polynomial $x^{2^{n-\nu}+u^{s-\nu}}$ is irreducible over Q_{2}. Using lemma 4, we have that the number of the prime factors of 2 in k is $s+1$. This shows that polynomials $x^{2 n-s}-2^{n-1-s} u$ and $x^{2 n-s+\nu}+2^{2^{n-1-s+\nu} u^{2 \nu}}$ are irreducible over Q_{2}, for $\nu=0,1, \cdots, s-1$.

Lemma 11. Let $m(\neq \pm 1, \pm 2)$ be a square free integer and $n(\geqq 3)$ an integer. Further we put $k=Q(\sqrt[2 n]{m})$ and $k^{\prime}=Q(\sqrt{2} \times \sqrt[2 n]{m})$. If

$$
m \equiv 1\left(\bmod 2^{n+2}\right) \text {, then } k_{A} \cong k_{A}^{\prime} \text { and } \zeta_{k}(s)=\zeta_{k^{\prime}}(s) \text {. }
$$

Proof. It follows from lemma 4 that $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$. By lemma 8, we can see that there exists a 2 -adic integer u such that $m=u^{2 n}$. So we have

$$
\begin{aligned}
& x^{2^{n}}-m=(x-u)(x+u) \prod_{\imath=2}^{n-1}\left(x^{2^{2}}+u^{2^{i}}\right) \text { and } \\
& x^{2^{n}}-2^{2^{n-1}} m=\left(x^{2}-2 u\right)\left(x^{2}+2 u\right)\left(x^{2}-2 u x+2 u\right)\left(x^{2}+2 u x+2 u\right) \prod_{\imath=3}^{n-1}\left(x^{2}+2^{2 \imath-1} u^{2^{2}}\right)
\end{aligned}
$$

are factorizations in irreducible polynomials of $Q_{2}[x]$. This shows that there exists a prime factor \mathfrak{p} of 2 in k such that the ramiflcation index and the degree of \mathfrak{p} are 1 . Considering the above factorization of the polynomial $x^{2^{n}-2^{2 n-1} m}$, we have a contradiction.

We should notice that for the above fields k and k^{\prime}, the collection of ramification indexes of 2 in k is not identical with the collection of ramification indexes of factors of 2 in k^{\prime}.

Lemma 12. Notations and assumptions being as in lemma 11 , if $m \equiv 1(\bmod 8)$, we have $k_{A} \neq k_{A}^{\prime}$ and $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$.

Proof. It follows from lemma 4 that $\zeta_{k}(s)=\zeta_{k^{\prime}}(s)$. We may assume that $m \equiv 1\left(\bmod 2^{n+2-t}\right)$, where t is a non-negative integer such that $t \leqq n-1$. We use induction on t. If $t=0$, the lemma is an immediate consequence of lemma 11. Suppose $t \geqq 1$. From lemma 8, there exists a 2 -adic integer u such that $m=u^{2 n-t}$. Suppose $u \equiv \pm 1(\bmod 8)$. We can easily see that $m \equiv 1\left(\bmod 2^{n-(t-1)+2}\right)$, which proves the lemma by applying the induction assumption. Suppose $u \equiv \pm 3(\bmod 8)$. We put $s=n-t$. Then we have $m=u^{2 s}$. From lemma 10, polynomials $x^{2^{n}}-m$ and $x^{2 n}-2^{n-1} m$ have the following factorizations in irreducible polynomials of $Q_{2}[x]$:

$$
\begin{aligned}
& x^{2^{n}}-m=\left(x^{2 n-s}-u\right) \prod_{\imath=0}^{s-1}\left(x^{2^{n-s+\imath}}+u^{2^{i}}\right) \\
& x^{2^{n}}-2^{2^{n-1}} m=\left(x^{2^{n-s}}-2^{2 n-1-s} u\right) \prod_{\imath=0}^{s-1}\left(x^{2 n-s+\imath}+2^{n-1-s+\imath} u^{2^{i}}\right) .
\end{aligned}
$$

Therefore in order to prove this lemma, it is sufficient to show $Q_{2}(2 \sqrt[n-s]{u}) \cong$ $Q_{2}(\sqrt{2} \times \sqrt[2 n-s]{u})$ and $Q_{2}(\sqrt[2 n-s]{u}) \neq Q_{2}(\sqrt{2} \times \sqrt[2 n-s]{-u})$ for $u \equiv 3(\bmod 8)$. We have $Q_{2}(\sqrt[2 n-s]{u}) \nsubseteq Q_{2}(\sqrt{2} \times \sqrt[2 n-s]{u})$ from lemma 9. If $u \equiv 3(\bmod 8)$, the ideal $2 Z_{2}$ is fully ramified in $Q_{2}(\sqrt[2 n-s]{u}) / Q_{2}$. If $u \equiv 3(\bmod 8)$ and $n-s>1$, then the degree of the ideal $2 Z_{2}$ in $Q_{2}(\sqrt{2} \times \sqrt[2 n-9]{-u}) / Q_{2}$ is greater than 1. From the above consideration one can easily see $Q_{2}(\sqrt[2 n-5]{u}) \neq Q_{2}(\sqrt{2} \times \sqrt[2 n-s]{-u})$. This completes our proof.

The above lemmas show our theorem.

References

[1] Cassels-Frohlicil, Algebraic Number Theory, Academic Press, London NewYork, (1967).
[2] I. Gerst, On the theory of n-th power residue and a conjecture of Kronecker, Acta Arithmetica XII, 121-138, (1970).
[3] K. Iwasawa, On the rings of valuation vectors, Ann. of Math., 57, 331-356, (1953).
[4] K. Komatsu, On the adele rıngs of algebraic number fields, Kōdai Math. Sem. Rep., 28, 78-84, (1976).

Department of Mathematics
Tokyo Institute of Technology

