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ON THE ADELE RINGS AND ZETA-FUNCTIONS
OF ALGEBRAIC NUMBER FIELDS

By KEIICHI KOMATSU

Throughout this paper Q and Z denote the rational number field and the
rational integer ring, respectively. An algebraic number field always means an
algebraic number field of finite degree, an integer means a rational integer and
a prime number means a rational prime number. For an algebraic number field
k, we denote by k, the adele ring of k, by {,(s) the Dedekind zeta-function of
k and O, the integer ring of k. For any prime ideal p of k, k, denotes the
completion of %2 by p-adic valuation, for real place p of &, k, denotes the real
number field and for imaginary place p of %, k, denotes the complex number
field. We write N, for the norm of an ideal in k. For a Galois extension L
of a field F, we denote by Gal(L/F) the Galois group of L/F. For a set S, we
denote by card (S) the cardinarity of S. We write [G; H] for the index of a
subgroup H in a finite group G. The word “isomorphism” for topological groups,
toplogical rings and topological fields, means a topological isomorphism. The
main purpose of this paper is to prove the following theorem, which is a refine-
ment of our previous paper [4]:

THEOREM. Let m be a square free wnileger such that m+=+1, +£2, and n an
integer such that n=3. Put k=Q(X/m) and k'=Q(/2 X2Ym). If

m=1, 3,5,6,9, 10, 11,13  (mod 16),
then k4 1s not 1somorphic to kly and Cu(s)=Cu(s). If
m=2,7,14,15  (mod 16),

then ka 1s 1somorphic to kly and k s not 1somorphic to k.

For two algebraic number fields K and K’, we should notide that K=K’
implies K,=K’; and that K, =K’ implies {x(s)=Cx(s). Now we describe the
following lemma, which plays an important role in this paper :

LEMMA 1. (cf. lemma 7 of [3] and lemma 3 of [4]) Let k be an algebraic
number field, V, the set of places of k and W, the set of non-zero prime ideals
of k. We adopt sumilar notations for an algebraic number field k'. Then the
following conditions are equivalent:
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ADELE RINGS AND ZETA-FUNCTIONS 395

(1) k4 and k) are isomorphic.

(2) There exists a bijection @ of V, onto V, such that k, and k’g, are
isomorphic for every peV,.

(3) There exists a bijection ¥ of W, onto W, such that k, and k’y, are
isomorphic for every pe W,.

An immediate consequence of the above lemma is the following proposition :

PRrROPOSITION. (cf. Corollary of lemma 3 in [4]) Let k and k' be algebraic
number fields. Then ky=kYy implies {(s)=C,(s).

LEMMA 2. Let L be a fimite Galos extension of Q, let G=Gal(L/Q), and let
H and H' be subgroups of G. Let k and k' be subfields of L corresponding to
the subgroups H and H' of G, respectively. For every element o of G, let C(o)
={c"lor|r€G}. Then the following conditions are equivalent :

(1) For every element ¢ of G, card (C(o)NH)=card(C(e)NH").

(2) For every prime number p, the collection of degrees of factors of p in
k is identical with the collection of degrees of the factors of p in &’

(3) The zeta-functions {,(s) and {,.(s) are the same.

Let G be a group. An automorphism f of G is called to be an element-wise
inner automorphism, if for every element ¢ of G, ¢ and f(¢) are conjugate in G.

LEMMA 3. Let G be a fimte group, H a subgroup of G and f an element-wise
wmner automorphism of G. Then for every element ¢ of G, we have card (C(e)~\H)
=card (C(a)Nf(H)).

Proof. For any element ¢ of G, we have f(C(0))=C(s). This shows
A(C(e)NH)=C(c)Nf(H). So we have our assertion.
The following lemma owes to Gerst [2].

LEMMA 4. Let m (# =1, £2) be a square free integer, n(=3) an nteger and
7 a primtwe 2"-th voot of 1. If k, k' and L are Q(XY/m), Q(v/2 X%/ m) and
k(n), respectively, then the conditions (1), (2) and (3) of lemma 2 hold and kEF .

Proof. Put K=Q(y). Suppose that k=k’. Then there exists an integer b
such that 2’=Q(X/m7’. This shows that /2 7° is contained in Q(X/m7"). On
the other hand, for any integer a, we have KNQ(X/m»n*)=Q, which shows
V2 79’=Q. This is a contradiction. Therefore we have k=k’. Let N=Gal(L/K).
Then we have

N={r,eGlbeZ, yo=%n and X/m>=L/mn"}
H={o,=GlacZ, a 1s prime to 2, p°e=7" and XY/ m°s=%XYm}
and
H'={o,eGlacZ, a is prime to 2, n°a=n" and (v/2 XX/ m)’a=+/2 XX/ m}

The subgroup N of G is normal in G, HNN=H’\N is trivial and G=HN=H’N.
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Further for any elements og,€H, o, H’, 7,€N, we have
03'T00a=7ay and o5 'Ty0,="Tap.

Therefore we can define an automorphism f of G such that

floaty)=04t, for o.,€H, 7,=N.
Since /2 =7*"""4+%"""", we have

(W2 XX/ m)a=R (™" "o dy2" "),

Hence, if a=1, 7(mod 8), then (4/2 X2y )e=4/2 X2¥m, and if a=3, 5(mod 8),

then (&/2 X2/ m)’e=—4/2 X2Ym. On the other hand, for any element z.€N,
we have

(V2 XY e o = /T X R e
The above consideration shows the following :
Oq for a=1, 7 (mod 8)
f(0a)=3 T5i20aTyn-2 for a=3 (mod8)
Tya-30aTyn-s for a=5 (mod8).

Hence the automorphism f is an element-wise inner automorphism of G. There-
fore our assertion follows from lemma 2 and lemma 3.

LEMMA 5. Notations and assumptions being as in lemma 4, if
m=2,7,14, 15 (mod 16),
then ka=Fkly and kEFk’.

Proof. Let p be a prime number. Suppose that the decomposition of the
ideal p0, in % is as follows:

pok:"pfl o 'pgeg ) Nk/Q(‘pi):pfz fOI' 1:1’ v, g,

where p,, ---, p, are distinct prime ideals of k. From lemma 4, there exist dis-
tinct prime ideals pf, .-+, P, in k" such that

POp=D" - p2¢ and that N, o(0)=p’t for i=1, -, g.

If p is unramified in %/Q, then p is unramified in k’/Q. Therefore, for the prime
number p which is unramified in &/Q, we have kpi%k{.i for =1, -, g. Now we
assume that p is ramified in k/Q and that p#2. Since p divides m and since m
is square free, p is totally ramified in £/Q and in k’/Q. If p=1, 7(mod 8), then
Q (X m)=0Q(~ 2 X%/ m) follows from that Q, contains /2. If p=3, 5(mod 8),
then Q(X/m)=Q (v =1XX/m)=Qx(v/ 2 X%/ m) follows from that Q, contains
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v/ —2. Suppose that p=2. One can easily see that p is totally ramified in %k/Q.
Hence from lemma 1, it is sufficient to prove Q,(X/m)=Q,(v/ 2 XX/m). There
are three cases:

(1) m=2 (mod 16). Writing m=2u, we see that /u €Q,. Hence we have

(2) m=14 (mod 16). Writing m=2u, we see that +~/—u<Q,. So we have
V=2 QX m)N Qv =1XK/m). Hence we have Qu(X/m)=Qux(v—=1XX/m)=
QA2 XX/ m).

8) m=7 (mod8). Since —m=1 (mod 8) shows —me<Q,, we have /=]

EQu/m). Hence we have QuR/m)=Qu( Y2 R+ v D) =Quv/ 2 X Xm).

LEMMA 6. Notations and assumptions being as n lemma 4, 1f m=3, 5, 6, 10,
11, 13 (mod 16), then k xRy and {u(s)=C4(s).

Proof. The lemma 4 shows {,(s)=,(s). Considering the structure of G,
we see that the quandratic number fields in L are Q(v/—1), Qv 2). Q(v/=2),
Qvm), QW =m), QV2m) and Q(+~/=2m). In none of them, the ideal 2Z splits
completely. Let P be a prime divisor of the ideal 20,, D the decomposition group
of P with respect to L/Q and F the decomposition field of P with respect to
L/Q. Suppose that G=D. As G is a 2-group, there exists a maximal proper
subgroup N of G such that NDOD and that [G; N]=2. Let k, be the subfield
of L corresponding to NN. The ramification index and the degree of the ideal
Bk, in k/Q are equal to 1. Since k,/Q is a Galoi extension, the ideal 27
splits completely in k%,/Q. This is a contradiction. Hence we have G=D. Let
L, be the completion of L by P-adic valuation. We put p=PNk and p'=PNEk'.
Let K(resp. K’) be the topological closure of k(resp. ') in Ly. We should notice
K=k, and K'=F}. Since G=D, there exists a natural isomorphism ¢ of Gal(L/Q,)
onto G, where Q, is the topological closure of Q in Ly. We have ¢(Gal(Ly/K))
=H and ¢(Gal(Ls/K’))=H’. Since k%*k’, H and H’ are not conjugate in G.
This shows K= K’, which means k,=F%,. Hence we have k, %k} from lemma 1.

LEMMA 7. Let u be an element of Q, and s (=1) an wnteger. If ~/Zu€EQ,,
then a polynomal x¥ —u 15 wreducible over Q..

Proof. Suppose that there exist two polynomials
f(xX)=x"+ -+ +a and g(x)=x'4 ---+b in Q,[x]

such that x**—u=/(x)g(x). Let » be a primitive 2°-th root of 1, and let v be an
integer such that a=%u 7. We assume that 1=r<2%. We can put r=2°%.
where ¢ is a positive odd integer and where e is an integer such that O<e<s.
As a®=u", we have +a?*°=u°. Since 2 is prime to ¢, there exist two integers
a, B such that 2°"°a+cf=1. So we have

uzuzs"ea-ﬂ?c:(ua)ﬂ‘e( 4 azs *e)ﬁ
—_— )
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which is a contradiction.
The following lemma is an elementary property of an algebraic number
theory :

LEMMA 8. Let n be a positive integer, p a prime number and a a p-adic
wteger. Suppose that p* exactly divides n. For any integer s with s>ﬁ+a,
1f a=1 (mod p*), then we have ¥Va €Q,.

LEMMA 9. Let u be a 2-adic wnteger such that u==+3 (mod 8). Then for an
integer s(=1), Qu(Wu )=Q:(v 24U ).

Proof. We should notice that «/=u&Q, There are three cases:
(1) s=1. Suppose Q.(vu )=Q.(+/2u), which means Qx(vu )=Qx(+/2u). Then
there exist elements a, b in Q, such that +/2u=a+b+/u . As

2u=a?+ub®*+2abs/u ,

we conclude ab=0. If a=0, then /2 Q,, which is a contradiction. If =0,
then +/2u<Q,, which is also a contradiction.

(2) s=2. Polynomials x*—u and x'—4u are irreducible over Q, from lemma
7. Suppose that Q( Yu )= Qx(v/2 Yu). Then Q:(v2™ ¥u)=Q.( Yu )or Q:(~2" Yu)
=Q,(v~/=1 Yu). Suppose Q.,(v2 #u)=Q, §u). Then there exist elements a,
beQ.(+v/u ) such that /2 ¥u =a+b {u . Since

2/u =a?+b*v/u +2ab Yu ,

we conclude ab=0. If a=0, then /2 €Q,(~/u ), which is a contradiction. If
b=0, then /2 ¥u =Q.,(+~/u ), which is also a contradiction. Assuming
Q:(vV2 ¥u)=Q~—1 §u ), we have also a contradiction in an analogious way.

(3) s=3. Let » be a primitive 2°-th root of 1. There exists a prime number
p such that p=u (mod 2°*?). From lemma 8, we have Q,(%/p )=Q,(%/u ) and
Q2 XD )=Qo(+/2 X2/u ). Since p=+3 (mod8), it follows from the proof
of lemma 6 that Q,(3/D )EQ. (V2 X%WD).

LEMMA 10. Let m (#=+1, +£2) be a square free integer, n (=3) an wnteger

and s (£n—1) a non-negative wnteger. Suppose that there exists a 2-adic integer
u such that m=u*" and such that u==+3 (mod8). Then

$-=1
xt—m=(x2"""—u) IT (x*""***+u®) and
v=0

xzn_zzn-ln,l:(xgn—3_22n-1—su) ﬁl(xzn-s+v+22n—l—s+vu2v)
v=0

are factorizations in wreducible polynonmuals of Q.[x].

Proof. We denote by Z, the 2-adic integer ring. Since +/xue&Q, both
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polynomials x2""*—u and x2" " *+u are irreducible over Q, from lemma 7. Now,
u==+3 (mod 2% implies that u2*=1 (mod 2***) for v=1, 2, --+, s—1. Hence a poly-
nomial (x+1)2""*4u2*"» is an Eisenstein polynomial in Z,[x], for v=1, ---, s—1.
This shows that a polynomial x2" »4u2°"> is irreducible over Q,. Using lemma
4, we have that the number of the prime factors of 2 in £ is s+1. This shows
that polynomials x2" *—2""1"%y and x2"~$*tv4227~1-s+vy2v are irreducible over Q,,
for v=0, 1, ---, s—1.

LEMMA 11. Let m(#=x1, £2) be a square free integer and n(=3) an nteger.
Further we put k=Q(%m) and ¥ =Q(~2 XX m). If

m=1(mod 2"*?), then ks%ky and {.(s)=Lw(s).

Proof. It follows from lemma 4 that {,(s)={,(s). By lemma 8, we can see
that there exists a 2-adic integer u such that m=u2?". So we have

x2"—mz(x—u)(x—i—u):ﬁ:(x“—i-uzi) and

x2" —22"" Y = (2% —2u)(x® 4 2u)(x® — 2ux+2u)(x*+ 2ux+2u) Tfj;(xﬂ—l—Z”“uZ’)

are factorizations in irreducible polynomials of Q,[x]. This shows that there
exists a prime factor p of 2in £ such that the ramiflcation index and the degree
of p are 1. Considering the above factorization of the polynomial x2"®—2:" 1,
we have a contradiction.

We should notice that for the above fields % and %’, the collection of rami-
fication indexes of 2 in % is not identical with the collection of ramification
indexes of factors of 2 in k.

LEMMA 12. Notations and assumptions being as wn lemma 11, 1f m=1(mod 8),
we have kyxky and {u(s)=Lp(s).

Proof. It follows from lemma 4 that {,(s)={,(s). We may assume that
m=1(mod 2"**~%), where ¢ is a non-negative integer such that t=n—1. We use
induction on ¢. If t=0, the lemma is an immediate consequence of lemma 11.
Suppose t=1. From lemma 8, there exists a 2-adic integer u such that m=u2""t.
Suppose u=-+1(mod 8). We can easily see that m=1(mod 2"~ ¢~»*%) which proves
the lemma by applying the induction assumption. Suppose u=+3(mod8). We
put s=n—i¢. Then we have m=u?*. From lemma 10, polynomials x2"—m and
x2"—2""'m;m have the following factorizations in irreducible polynomials of Q,[x]:

x2t—m=(x2""5—u) SI:II (x2m st 4y2t)
1=0

x2"——22""1m:(x2"_s—22n—1-su)sﬁ (xgn—s+1_|_2n—l—s+zu2i) .
1=0
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Therefore in order to prove this lemma, it is sufficient to show Q,(**vu )=
Qx(v2 X™Ju ) and Q,(*'Vu )= Q.2 XY —u) for u=3(mod 8. We have
Q"W )EQy(v2 X?™Ju ) from lemma 9. If u=3(mod 8), the ideal 2Z, is fully
ramified in Q,(*"¥u )/Q,. If u=3(mod 8) and n—s>1, then the degree of the
ideal 2Z, in Q).+ 2 X?"V—u)/Q, is greater than 1. From the above consideration
one can easily see Q.(*"Vu )EQy(+/ 2 XY —wu). This completes our proof.

The above lemmas show our theorem.

REFERENCES

[1] CasseLs-Frouricu, Algebraic Number Theory, Academic Press, London NEw-
York, (1967).

[2] I. GersT, On the theory of n-th power residue and a conjecture of Kronecker,
Acta Arithmetica XII, 121-138, (1970).

[3] K. Iwasawa, On the rings of valuation vectors, Ann. of Math., 57, 331-356,
(1953).

[4] K. KomaTsu, On the adele rings of algebraic number fields, Kodai Math. Sem.
Rep., 28, 78-84, (1976).

DEPARTMENT OF MATHEMATICS
Tokyo INSTITUTE OF TECHNOLOGY





