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ON THE ADELE RINGS AND ZETA-FUNCTIONS

OF ALGEBRAIC NUMBER FIELDS

BY KEIICHI KOMATSU

Throughout this paper Q and Z denote the rational number field and the
rational integer ring, respectively. An algebraic number field always means an
algebraic number field of finite degree, an integer means a rational integer and
a prime number means a rational prime number. For an algebraic number field
k, we denote by kA the adele ring of k, by ζ^(s) the Dedekind zeta-f unction of
k and Ok the integer ring of k. For any prime ideal p of k, k$ denotes the
completion of k by p-adic valuation, for real place p of kt k$ denotes the real
number field and for imaginary place p of k, k$ denotes the complex number
field. We write Nk/Q for the norm of an ideal in k. For a Galois extension L
of a field F, we denote by Gal(L/F] the Galois group of L/F. For a set S, we
denote by card (S) the cardinarity of S. We write [G H~] for the index of a
subgroup H in a finite group G. The word "isomorphism" for topological groups,
toplogical rings and topological fields, means a topological isomorphism. The
main purpose of this paper is to prove the following theorem, which is a refine-
ment of our previous paper [4] :

THEOREM. Let m be a square free integer such that m^±l, ±2, and n an
integer such that n^3. Put k=Q(^m) and k'=Q(V~2Xψm\ If

m=l, 3, 5, 6, 9, 10, 11, 13 (mod 16) ,

then kA is not isomorphic to k'A and ζ*(s)=ζΛ>(s). //

m=2, 7, 14, 15 (mod 16),

then kA is isomorphic to k'A and k is not isomorphic to k' .
For two algebraic number fields K and K1 ', we should notide that K = Kf

implies KA^K'A and that KA=K'A implies ζ#(s)— ζκ>(s\ Now we describe the
following lemma, which plays an important role in this paper :

LEMMA 1. (cf. lemma 7 of [3] and lemma 3 of [4]) Let k be an algebraic
number field, V k the set of places of k and Wk the set of non-zero prime ideals
of k. We adopt similar notations for an algebraic number field k' . Then the
following conditions are equivalent :
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(1) kA and kf

A are isomorphic.
(2) There exists a bijection Φ of Vk onto Vk such that k$ and k'φ^ are

isomorphic for every pe Vk

(3) There exists a bijection ?P" of WΛ onto Wk> such that &p and k'ψ^ are
isomorphic for every $^Wk.

An immediate consequence of the above lemma is the following proposition :
PROPOSITION, (cf. Corollary of lemma 3 in [4]) Let k and kf be algebraic

number fields. Then kA=k'A implies ζk(s)=ζk'(s)

LEMMA 2. Let L be a finite Galois extension of Q, let G=Gal(L/Q\ and let
H and Hf be subgroups of G. Let k and k' be sub fields of L corresponding to
the subgroups H and H' of G, respectively. For every element σ of G, let C(σ)
~{τ~1στ\τ^G} . Then the following conditions are equivalent:

(1) For every element σ of G, card (C(σ)n#)=card(C(σ)n#')
(2) For every prime number p, the collection of degrees of factors of p in

k is identical with the collection of degrees of the factors of p in k' .
(3) The zeta-functions ζΛ(s) and C^(s) are the same.
Let G be a group. An automorphism / of G is called to be an element-wise

inner automorphism, if for every element σ of G, σ and f(σ) are conjugate in G.

LEMMA 3. Let G be a finite group, H a subgroup of G and f an element-wise
inner automorphism of G. Then for every element σ of G, we have card (C(σ}r\H)

Proof. For any element σ of G, we have f(C(σ))=C(σ). This shows
f(C(σ}r^H}=C(σ}r\f(H}. So we have our assertion.

The following lemma owes to Gerst [2].

LEMMA 4. Let m (=£±1, ±2) be a square free integer, n(^3) an integer and
Ύ] a primitive 2n-th root of 1. // k, k' and L are Q(%yin), Q(*/~2X ^\/ln) and
k(η\ respectively, then the conditions (1), (2) and (3) of lemma 2 hold and k^k''.

Proof. Put K=Q(η}. Suppose that k = k'. Then there exists an integer b
such that k/=Q(ψmηb}. This shows that V2V δ is contained in Q(^Έηb). On
the other hand, for any integer a, we have Kr\Q(^lnr]a}=Q, which shows
V2"^~δ^Q. This is a contradiction. Therefore we have k£k'. Let N=Gal(L/K).
Then we have

—t /7-v?/-/ 2 ̂ / ~ft 2 ft/ TI b\

', a is prime to 2, η°a=ηa and ^\/mσa=^m}

and

H'={σ'aeG\a^Z, a is prime to 2, rjσ'a = ηa and (VTx ^\/m)σ>a= V2"X2-^m}

The subgroup TV of G is normal in G, Hr\N=H/r\N is trivial and G^=HN=H7N.
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Further for any elements σa^H, σ'a^H' ', τb<^N, we have

o-alτbθ~a=τab and σίΓ^δtfα— Tα&

Therefore we can define an automorphism f of G such that

f(σa^b}=ffa^b for σa<^H,

Since V~2=η2n~*+η~2n~s, we have

Hence, if a = l, 7 (mod 8), then (VTx^mX^VTx^m, and if α^3, 5 (mod 8),
then (VTx^m)σ α = — VTx^m- On the other hand, for any element
we have

The above consideration shows the following :

7 a for α = l, 7 (mod 8)

/(*«)= for αΞΞ3 (mod 8)

for <2ΞΞ5 (mod 8).

Hence the automorphism / is an element-wise inner automorphism of G. There-
fore our assertion follows from lemma 2 and lemma 3.

LEMMA 5. Notations and assumptions being as in lemma 4, if

m=2, 1, 14, 15 (mod 16),

then kA = k'A and

Proof. Let p be a prime number. Suppose that the decomposition of the
ideal pOk in k is as follows :

pOk=W ••• }** , Nk/Q(M=pf* for z=l, - , g,

where pj, ••• , $g are distinct prime ideals of k. From lemma 4, there exist dis-
tinct prime ideals $, ••• , ̂  in &7 such that

ίO*'=}>;eι' •-•#*' and that 7V^/ρ(t>ί)=ί/l for ί=l, - , #.

If jί? is unramified in k/Q, then /? is unramified in k'/Q. Therefore, for the prime
number p which is unramified in k/Q, we have kH = k'y for i=l, ••• , g. Now we

assume that p is ramified in k/Q and that pΦ2. Since p divides m and since m
is square free, /> is totally ramified in k/Q and in k'/Q. If />=!, 7 (mod 8), then
W2^m)=Qp( \A2~X 2Λ^m) follows from that Qp contains V2~ If P=3, 5 (mod 8),
then Qp(^/m)-Op(Vz :ΪX2v/m)=Qp(v/yx2v/m) follows from that (?p contains
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V^ Suppose that p=2. One can easily see that p is totally ramified in k/Q.
Hence from lemma 1, it is sufficient to prove <5P(

2^m) = Qp(VTx2^m). There
are three cases :

(1) m=2 (mod 16). Writing m=2u, we see that «J~ϊΓ ^.Q2. Hence we have
_

(2) mΞΞl4 (mod 16). Writing m—lu, we see that \/-u^Q2. So we have
). Hence we have <?2(

2^m) = Q2(V^X2^m) =
_

(3) m=7 (mod 8). Since —m=l (mod 8) shows V-m^Qz, we have V-

<?2(Vm). Hence we have (

LEMMA 6. Notations and assumptions being as in lemma 4, if ra=Ξ3, 5, 6, 10,
11, 13 (mod 16), then kA^k'A and C*(s)=ζΛ,(s).

Proof. The lemma 4 shows ζ*(s)=ζft.(s). Considering the structure of G,
we see that the quandratic number fields in L are Q(V--i), Q(V~2~). QCV-TJ),
(QVm\ ^(V37^), Q(V2m} and <5(V-2w). In none of them, the ideal 2Z splits
completely. Let $ be a prime divisor of the ideal 2QL, D the decomposition group
of $ with respect to L/Q and F the decomposition field of $ with respect to
L/Q. Suppose that GΦD. As G is a 2-grouρ, there exists a maximal proper
subgroup N of G such that 7VZ)D and that [G ΛΓ|=2. Let ^ be the subfield
of L corresponding to N. The ramification index and the degree of the ideal
Sβn&i m &ι/ζ? are equal to 1. Since kJQ is a Galoi extension, the ideal 2Z
splits completely in kJQ. This is a contradiction. Hence we have G=D. Let
Lp be the completion of L by $-adic valuation. We put p— $n& and ^^^Pn^.
Let 7Γ(resp. /Γ) be the topological closure of &(resρ. k') in Laj. We should notice
K=k$ and Kf = k). Since G=D, there exists a natural isomorphism ^> of Gal(L/Q2)
onto G, where Q2 is the topological closure of Q in L$. We have ψ(Gal(L%/K})
=H and φ(Gal(L^/Kf}}=Hf. Since ^$jfe', // and /f are not conjugate in G.
This shows K^K1 ', which means k^kf

v. Hence we have kA^k'A from lemma 1.

LEMMA 7. Let u be an element of Q2 and s (^1) an integer. If <^~±ΰ
then a polynomial x2S—u is irreducible over Qz.

Proof. Suppose that there exist two polynomials

f(x)=χr+ ... +α and g(χ)=χ'-i ----- \-b in (J2M

such that xzS— u=f(x)g(x). Let η be a primitive 2s-th root of 1, and let v be an
integer such that a—^'ΰ'jf. We assume that l^r<2s. We can put r— 2ec.
where c is a positive odd integer and where e is an integer such that 0^e<s.
As a2S—ur, we have ±a2$~e= uc. Since 2 is prime to c, there exist two integers
a, β such that 2s~ea+cβ = 1. So we have
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which is a contradiction.
The following lemma is an elementary property of an algebraic number

theory :

LEMMA 8. Let n be a positive integer, p a prime number and a a p-adic

integer. Suppose that pa exactly divides n. For any integer s with s> - - — \-a,
_ ^

if a = l (mod ps}, then we have %/aΓ^Qp.

LEMMA 9. Let u be a 2-adic integer such that W Ξ ± 3 (mod 8). Then for an
integer s(^l), Q2(

2

Proof. We should notice that V±w^Q 2 . There are three cases:
(1) s— 1. Suppose 02(Vw~) = 02(V2w), which means £?2(Vw~)— (?2(V2w). Then

there exist elements a, b in Q2 such that ^/2ΰ—a-{-b\/ΰ~ As

we conclude ab=Q. If α=0, then vΊΓ^Q2, which is a contradiction. If b~ 0,
then V2weζ)2, which is also a contradiction.

(2) s=2. Polynomials r1 — u and r1— 4w are irreducible over Q2 from lemma

7. Suppose that Q2( ^zΓ) = Q2(VT VϊΓ). Then Q2( vT ^tΓ)=Qz( %u~) or Q2(VZ~ ^w~)
=02(v/:rT tfw~). Suppose Q2(VT ViΓ)=ί?2( #«")• Then there exist elements α,
btΞQ2(Vΰ~) such that V"2" tlu~=a+b t/ϊΓ. Since

we conclude αb— 0. If α— 0, then VT^OaCVίΓ), which is a contradiction. If
fe = 0, then V1Γ Vw~eQ2(V^~), which is also a contradiction. Assuming
ζ?2(VΊΓ Λ/w~)=Q2(v/:rΐ ^ϊΓ), we have also a contradiction in an analogious way.

(3) s^3. Let η be a primitive 2s-th root of 1. There exists a prime number

p such that p=u (mod 2S+2). From lemma 8, we have 02(
2^5")=θ2(2^ϊΓ) and

02(\/"2"X2^?")=θ2(V2"X2^ϊΓ). Since /)=±3 (mod 8), it follows from the proof
of lemma 6 that <22(

2

LEMMA 10. L<?ί m (^±1, ±2) ^ α square free integer, n (^3) an integer
and s (^n— 1) α non-negative integer. Suppose that there exists a 2-adic integer
u such that m=u*s and such that u=±3 (mod 8). Then

) Π(xzn-s+VJruzv) and
y=0

are factorizations in irreducible polynomials of <32Dt].

Proof. We denote by Z2 the 2-adic integer ring. Since V^tΰ&Qz, both
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polynomials x2n~s— u and x2U~s-\-u are irreducible over Q2 from lemma 7. Now,
u=±3 (mod23) implies that u2V=l (mod2y+1) for y=l, 2, — , s-1. Hence a poly-
nomial (;t+l)2n~v+w2S~v is an Eisenstein polynomial in Z2[#], for v— 1, ••• , 5—1.
This shows that a polynomial *2Tl~y+w2S~v is irreducible over Q2. Using lemma
4, we have that the number of the prime factors of 2 in k is s+1. This shows
that polynomials x*

n-*—2n~l-'u and X2*-*+»+2*n-l-*+vu*v are irreducible over Q2f

for υ=0, 1, — , s-1.

LEMMA 11. L^ί m(^±l, ±2) 6e α square free integer and n(^3) an integer.
Further we put k=Q(^m) and k'=Q(V~2X*Vm) If

m=l(mod2n+2), f/iβn kA<£k'A and ζ*(s)=ζΛ.(s).

Proof. It follows from lemma 4 that ζ*(s)=ζ* (s). By lemma 8, we can see
that there exists a 2-adic integer u such that m—u2U. So we have

χ2n-m=(x-u}(x+u)nΐi(x2ljru2ί) and
1=2

t^^^w^Ot'^wX c^wX^^ Z = 3

are factorizations in irreducible polynomials of ζ)2M This shows that there
exists a prime factor £ of 2 in £ such that the ramification index and the degree
of p are 1. Considering the above factorization of the polynomial x2n— 2zn~lm,
we have a contradiction.

We should notice that for the above fields k and k', the collection of rami-
fication indexes of 2 in k is not identical with the collection of ramification
indexes of factors of 2 in k'.

LEMMA 12. Notations and assumptions being as in lemma 11, if m=l(modδ) r

we have kA^k'A and ζk(s)=ζk>(s\

Proof. It follows from lemma 4 that ζk(s)=ζk'(s) We may assume that
mΞl(mod 2n+2"ί), where t is a non-negative integer such that t^n—l. We use
induction on t. If ί=0, the lemma is an immediate consequence of lemma 11.
Suppose ί^l. From lemma 8, there exists a 2-adic integer u such that m=u27l~t.
Suppose WΞΞ±l(mod8). We can easily see that m^l(mod 2n~α~1)+2), which proves
the lemma by applying the induction assumption. Suppose w=±3(mod8). We
put s=n—t. Then we have m=u2S. From lemma 10, polynomials x2n—m and
x2U—2n~1m have the following factorizations in irreducible polynomials of Q2M

χzn-m=(x2n-s-u) Π (x2n-s+ljτu2ί)
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Therefore in order to prove this lemma, it is sufficient to show Q2(
2n~Jΰ~)^

and Qz(
2n^ϊΓ}^Qz(^~2Xzn^^u) for w=3(modδ). We have

2n^O from lemma 9. If w^3(mod 8), the ideal 2Z2 is fully
ramified in Q2(

2n'^ϊΓ)/Qz. If w^3(mod 8) and n-s>l, then the degree of the
ideal 2Z2 in Q2(VT X ^'J^ύVQz is greater than 1. From the above consideration
one can easily see Q2(

2V^)£φ2(VTx2V--w) This completes our proof.
The above lemmas show our theorem.
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