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INNER SUBGROUPS OF FINITE GROUPS

BY KAZUMASA NOMURA

§ 1. Introduction

Let G be a finite group, and H be a subgroup of G. We call H an inner
subgroup of G, when every automorphism of H can be extended to an inner
automorphism of G. The purpose of this paper is to prove the following theorems.

THEOREM 1. Let G be a finite group. If every subgroup of G is an inner
subgroup of G, then G is isomorphic to the symmetric groups Slt S2 or S3.

THEOREM 2. Let G be a finite solvable group. If every abelian subgroup of
G is an inner subgroup of G, then G is isomorphic to the symmetric groups Sl S2,
S3 or the quaternion group Q8.

THEOREM 3. Let G be a finite group, and S be a 2-Sylow subgroup of G.
Suppose every abelian subgroup of G is an inner subgroup of G, and every abelian
normal subgroup of S is cyclic. Then G is isomorphic to the symmetric groups
Si, S2, SΆ or the quaternion group Q8.

It is interesting to classify all finite groups whose every abelian subgroup is
an inner subgroup. It seems that Slf S2, SB and Q8 are the only examples of
such groups. A more interesting problem is to classify all finite groups whose
every cyclic subgroup is an inner subgroup. This condition is equivalent to that
the character values of the groups are all rational. But this problem seems to
be very difficult.

Theorem 1 is a corollary of Theorem 2 and the following proposition.

PROPOSITION 1. // every Sylow subgroup of a finite group G is inner sub-
group of G, then G is metacyclic.

This proposition will be proved by using a theorem of Gaschύtz on automor-
phisms of /^-groups. In the proof of Theorem 2, we shall use Theorem 3.

In the following, every notation is standard and can be found in [1]. Only
elementary results are assumed, in paticular Sylow's theorem, properties of p-
groups and automorphisms of abelian groups.

All groups will be finite.
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§ 2. Preliminaries

DEFINITION. A subgroup H of a group G is an inner subgroup of G (or znner
in G) iff NG(H)/CG(H)=Aut(H).

DEFINITION. A group G is an Al-group iff every abelian subgroup of G is
inner in G.

In this section we prove some lemmas about yl/-groups.

LEMMA 1. Let G be an Al-group, and P be a p-Sylow subgroup for a prime
divisor p of \ G \ . Then \Z(P)\=p.

Proof. By way of contradiction, assume \ Z ( P ) \ > p . Then |Aut(Z(P))| is
divided by p. Let σ be an automorphism of Z(P) of order p. Since Z(P) is an
inner subgroup of G, there exists x^NG(Z(P)\ such that x induces σ on Z(P).
We may assume x is a ^-element. Let T be a β-Sylow subgroup of NG(Z(P}}
that contains *. There exists g^NG(Z(P)} such that P*=Tby Sylow's theorem.
Then Z(P)=Z(P)g=Z(Pg)=Z(T\ Since x^T, x centralizes Z(P) = Z(T). This
contradicts the fact that x induces an automorphism of order p on Z(P).

Q. E. D.

LEMMA 2. Let G be an Al-group, and p be a prime divisor of \ G \ , then the
set of all elements of order p of G is a conjugate class of G.

Proof. Let P be a ^-Sylow subgroup of G. By Lemma 1, Z(P}=<α> and
I <β> I =ρt Since Aut«α» acts on <α> transitively and <α> is an inner subgroup
of G, all elements of <α>* are conjugate in G. Let b^P-Z(P) be an element
of order p. If such b does not exist, then we conclude the proof by Sylow's
theorem. Hence we may assume such b exists. <α, by is an elementary abelian,
p-group, and Aut«α, by) acts on <α, by* transitively. Since <α, by is an inner
subgroup of G, a and b are conjugate in G. Hence all elements of order p in P
are conjugate in G. By Sylow's theorem, all elements of order p in G are con-
jugate. Q. E. D.

LEMMA 3. Let P be a p-Sylow subgroup of a group G for a prime divisor
of \ G \ . Let M be a maximal abelian normal subgroup of P. Then we have
CG(M)=MxT for some p'-group T. If further G is an Al-group, T is also an
Al-group.

Proof. We first show that M is a £-Sylow subgroup of CG(M). Let Q be a
ί-Sylow subgroup of CG(M) such that Q^M. Since P, Q^NG(M\ we have
Q8^P for some g^NG(M\ Since CG(M}<NG(M\ Qg^CG(M)g=CG(M). Hence
we have Qg^CP(M\ Since CP(M)=M by [2] Satz (III, 12.1), we have Qg^M
and Q=M. This means M is a p-$y\ow subgroup of CG(M}. By Burnside's
theorem, there exists a normal complement T of M in CG(M}. It is clear that
CG(M)=MxT and T is a jί/-group.
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Next we suppose G is an Al-group, and show that T is also an ^47-group.
Take any abelian subgroup K of T and any automorphism σ of T. H—KM
=KxM is an abelian subgroup of G. We define an automorphism σ of H as
following:

, σ on K,
σ=\

1 identity on M.

Since H is an inner subgroup of G, we can found x^.NG(H} that induces a on
//. Since σ acts on M trivially, we have jteCc(M). Set x—yzt y^T and z<=M.
Since z acts on /ί trivially, y induces σ on AT. We have shown that any auto-
morphism σ of T is induced from an element y of T. Hence T is an ^47-group.

Q. E. D.

LEMMA 4. Every non-trivial AI-group has an even order.

Proof. If G has an element x of odd order, there exists σe Aut«#», Λ^ΛΓ1.
Hence Aut«*» is of even order. Since <*> is an inner subgroup of G, G is also
of even order. Q. E. D.

LEMMA 5. Let G be an Al-group, P be a 2-Sylow subgroup of G and M be a
maximal abelian normal subgroup of P. Then CG(M}=M.

Proof. We may assume G^l. By Lemma 4, 2 is a divisor of |G| . By
Lemma 3, we have CG(M)=MxT and T is of odd order. If TΦl, then T is of
even order by Lemma 4, a contradiction. Hence T=l. Q. E. D.

§ 3. Proof of Proposition 1

Let G be a group whose every Sylow subgroup is inner in G. We shall see
that every £-Sylow subgroup of G has order p for any prime divisor of |G| .
Then every Sylow subgroup of G is cyclic, hence G is metacyclic.

Let p be a prime divisor of | G |, and P be a £-Sylow subgroup of G. Assume
\P\>p. By Gaschiitz' theorem ([2] Satz III, 19.1), the order of the outer auto-
morphism group Aut(P)/ϊnn(P) is divided by p. Hence there exists a ^-element
σeAut(P)-Inn(P). By assumption, P is an inner subgroup of G. Hence we can
find x^NG(P} that induces σ on P by conjugation. We may assume x is a p-
element. Then the subgroup <*>P of G is a £-group, and we have <#>P2P.
Since P is a p-Sylow subgroup, we have <*>P=P and x^P. It follows that
σeΙnn(P), this contradicts the choice of σ. Q. E. D.

Let G be a group and let every subgroup of G be inner. By Proposition 1,
G is metacyclic and hence solvable. Hence we can apply Theorem 2 to conclude
that G is isomorphic to Si, S2, S3 or Q8. Set Q8={±1, ±i, ±j, ±k}. There
exists an automorphism of Qs that removes i to j, but this automorphism is not
inner. In this way, we get Theorem 1 from Proposition 1 and Theorem 2.



INNER SUBGROUPS OF FINITE GROUPS 357

§ 4. Proof of Theorem 3.

In this section, we assume G is a non-trivial ^4/-group, and S is a 2-Sylow
subgroup of G. By Lemma 4, S is not trivial. We divide the proof into several
steps.

(1) // |S|=2, then G=S2 or Sa.

Proof. We assume G>S. Set S=<τ>, τ is an involution. There exists a
normal complement L of S in G by Burnside's theorem. Since CG(S)—S by
Lemma 5, τ acts on L as a fixed-point-free automorphism of order 2. Hence L
is abelian ([1] Th. 10.1.4). Since \NG(L)/CG(L)\ = \G/L\=2 and L is an inner
subgroup of G, we have |Aut(L)|=2 and |L|=3. Hence |G|=6 and τ inverts
the elements of L. If follows G—SZ.

(2) // |S|^4 and if every abelian normal subgroup of S is cyclic, then S=Q8.

Proof. By Lemma 1, we have |Z(S)|=2 and S is non-abelian. S1 has a cyclic
subgroup M of index 2 ([2] Satz III. 7.6). The automorphism group of cyclic
2-group is also 2-group. Since M is an inner subgroup of G, we have S/Aί—
Aut(M). This implies | Aut(M) | =2, |M | =4 and | S | =8. There is two non-abelian
groups of order 8, that is Q2 and the dihedral group D8. Assume S—D8. Then
S contains an elementary abelian subgroup K of order 4. There exists an auto-
morphism τ of K of order 2. Since K is an inner subgroup of G, we can find
y^NG(K) that induces τ on K. We can take y to be 2-element. Then the group
(y^K has order 8, and it is a 2-Sylow subgroup of G. Hence K is a non-cyclic
abelian normal subgroup of a 2-Sylow subgroup of G. This contradicts the
assumption.

By way of contradiction, we suppose G is a minimal counter example for
Theorem 3. We have |S|^4 by (1) and S=Q8 by (2). Let τ be the unique
involution of S.

(3) CG(τ) is an Al-group.

Proof. Take any abelian subgroup of K of H=CG(τ) and any automorphism
σ of K.

In the case |/f |—odd, we extend σ to <7'eAut«r>X/0 Since <τ>X/ί is an
inner subgroup of G, we can find g^NG((τyxK) that induces σ' on <τ>X/ί.
Then g^CG(τ)—H and g induces σ on K.

In the case |/f |=even, we have τ^K since τ is the unique involution of H.
Since K is an inner subgroup of G, we can find g^NG(K) that induces σ on /ί.
<j fixes τ, and we have g^CG(τ)=H.

In any case σ is induced by an element of H. This means H is an Al-group.

(4) Cσ(τ)=G
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Proof. Assume CG(τ)<G. By (3), CG(τ) is an Al-group. Hence we have
CG(τ)=S by the minimality of G. Let Q be a subgroup of S. Since NG(Q}^CG(τ)
=S, NG(Q}/CG(Q} is a 2-group. Hence we can apply Frobenius' theorem ([1],
Th. 7.4.5) to S, and S has a normal ^-complement K in G. Since τ induces a
fixed-point-free automorphism of K, K is abelian ([1] Th. 10.1.4). By Lemma 1,
a £-Sylow subgroup of K has order p. Hence K is cyclic and Aut(AΓ) is abelian.
On the other hand, we have CS(K)=1 since τ$Cs(K). Hence S=Aut(/0 This
is a contradiction.

(5) 3 divides \ G \ .

Proof. Let £ be the minimal odd prime that divides |G | . Let O> be a
cyclic subgroup of order p. Since <*> is an inner subgroup of G, Λfσ«*»/CG«*»
is a cyclic group of order p—1. By the minimality of p, p—l=2m for some
integer m. But a 2-Sylow subgroup of Wσ«jt»/Cσ«;t» is a four group. Hence
m=4 and p—3.

(6) 3-Sylow subgroups of G have order 3.

Proof. Let ^ be a 3-Sylow subgroup of G. Assume |#|>3, then R is non-
abelian by Lemma 1. Hence R contains an elementary abelian subgroup L of
order 9. | Aut(L) | = | GL(2, 3)|=24 3. This contradicts the fact that L is an inner
subgroup of G and S—QS.

(7) |G|>2 3 3.

Proof. Let # be a 3-Sylow subgroup of G. Assume G—SR. By Lemma 3,
we have CG(R)=TxR and T is an ^47-group. By the minimality of G, T=S19 S2,
S3 or <p8. From τeT, 7V=1. Since T is 37-group, T^S3. If T=Q8, then J?gZ(G).
This contradicts the fact that J? is an inner subgroup of G. Hence T=<τ> and
CG(#):=<τ>Xtf. Since # is an inner subgroup, |Λ^G(^)/CG(^)| = |Aut(Λ)| =2, and
we have | G : NG(R)\— 2. This means the number of 3-Sylow subgroups of G
equals to 2, which contradicts Sylow's theorem.

(8) 7 divides \ G \ .

Proof. Let £ be the minimal prime that divides G| and is greater than 3.
Let <z> be a cyclic subgroup of order p. As in the proof of (5), p—I=2m3* for
some integers πf and k. Since 2-Sylow subgroups of NG((x))/CG((x)} are con-
tained in an elementary abelian group of order 4 and 3-Sylow subgroups have
order at most 3, we have order at most 3, we have p—1=2-3 and p—1.

(9) 7-Sylow subgroups of G have order 7.

Proof. As the proof of (6).
Let R be a 3-Sylow subgroup of G and P be a 7-Sylow subgroup of G. By

(6) and (8), R\=3 and \P\=7. Set L=NG(P).
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(10) CG(#)

Proof. By Lemma 3, CG(P)=TxP, T=Slf S2, S3 or Q8. TΦl since
Since τ is the unique involution, 7VS3. Since there is an 2-element that inverts
the elements of P, we have T^Q8. Hence T=<τ> and CG(P}=(τ}xP. The proof
of CG(R)=(τyxR is as well as above.

(11) \NL(R)\=12.

Proof. NL(R)/CL(R)^Aut(R) implies \NL(R)/CL(R)\^2. Here CL(/?)=<τ>X/?
by (10), hence |ΛΓL(/?)|=6 or 12. If |JVL(#)I=6, then |L : ΛW#)I=14. This
means the number of 3-Sylow subgroups of L equals to 14, a contradiction.

From (10) and (11), we have \NL(R)\ CL(R}\=2. There exists a 2-element
x<=NL(R)—CL(R), x must be of order 4. Since x inverts the elements of R, we
have <*>#/<r>=:S3. This means that NG(P}/CG(P}=L/(τ}P involves S8. This
contradicts the fact that Aut(P) is a cyclic group of order 6. Q. E. D.

§ 5. Proof of Theorem 2.

We shall prove Theorem 2 by way of contradiction, and suppose G is a
minimal counter example for Theorem 2. Hence G is a solvable Λ/ group of
minimal order that is distinct from Slf S2, S3 and Q8.

(1) G has no non-trivial normal 2-subgroup.

Proof. Assume there exists a non-trivial normal 2-subgroup M of G. Then
Ωl(Z(M}} is also a non-trivial normal 2-subgroup of G. Hence we may assume
M is an elementary abelian 2-group. Since G has one class of involutions by
Lemma 2, M# is the set of all involutions of G.

We see |M|— 4. If |M|=8, then G involves GL(3, 2) since M is an inner
subgroup of G. But GL(3, 2) is non-solvable and contradicts our assumption that
G is solvable. If |M |=2, then 2-Sylow subgroup of G has only one involution.
It is a contradiction by theorem 3. Hence |M|=4.

There exists a 3-element x that induces an automorphism of M of order 3.
Since |Aut«#»l is even, NG((x)) has even order. So NG((xy) has an involution
and M contains the all involutions of G, hence we have 7VV(<;*:>)^1.

Now we consider the group H= M<». Λ^«;t»^l implies \ H : Λ/#«Λ:»|^2.
This means the number of 3-Sylow subgroups of H is at most 2. By Sylow's
theorem, we get <*><//. This implies //=<^>XM, which contradicts the choice
of x.

(2) Let P be a p-Sylow subgroup of G for some prime p. If \P\ =p, then P
is not normal in G.

Proof. Assume \P\=p and P<G. From Lemma 3, we have CG(P)=TxP
where T is an /L/-group. By the minimality of G, T is isomorphic to Slf S2, S3
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or Q8. If T=l, then CG(P)=P. Hence we have NG(P)/CG(P)=G/P=Aut(P).
This implies G/P is cyclic and hence 2-Sylow subgroups of G are cyclic. But
this is impossible by Theorem 3. If T=S2, S3 or Q8, then 2-Sylow subgroup of
CG(P) has only one involution. Let 5 be a 2-Sylow subgroup of G, then Sr\CG(P)
has only one involution. Since CG(P}<G and G has one class of involutions by
Lemma 2, S has only one involution, a contradiction by Theorem 3.

(3) Let p be a prime divisor of \G\ greater than 3, then any p-Sylow sub-
group of G has order p.

Proof. Let P be a £-Sylow subgroup of G. If \P\>p, then P is non-abelian
by Lemma 1, and P contains an elementary abelian subgroup K of order p2.
This means G involves Aut(/0=GL(2, p) that is non-solvable, a contradiction.

Now we take a minimal normal subgroup M(ΦY) of G. Since G is solvable,
M is an elementary abelian group.

(4) |M|=9

Proof. From (1), (2) and (3), M is 3-group and |M|^9. If |M|^27, then G
involves GL(3, 3) that is not solvable. Hence |M|=9.

(5) G is α {2, 3} -group.

Proof. Let £ be a prime divisor of \G\ greater than 3, and 5 be a ^-Sylow
subgroup of G. From (3), we have \S =p. By Lemma 3, we have CG(S)=TxS
where T=Slt S2, SB or Q8. Hence S does not centralize M and S is embedded in
Aut(M). But this is impossible since |Aut(M)| =24 3.

(6) CG(M) contains all involutions of G.

Proof. If CG(M) has odd order, then a 2-Sylow subgroup of G is isomorphic
to a 2-Sylow subgroup of GL(2, 3). Hence |S|=24 and S has an element x of
order 8. Since <*> is an inner subgroup of G, we have ATG(<*>)/GG(<*>)=Aut(<;c>).
This implies that 25 divides |G| , a contradiction. Hence CG(M) is of even order
and contains an involution of G. Since CG(M)<G, we have (6) by Lemma 2.

Let R be a 3-Sylow subgroup of G. We have R^M. Let L be a maximal
abelian normal subgroup of R that contains M.

(7) C0(L)=L.

Proof, assume CG(L)>L. By Lemma 3, CG(L)~TxL where T is a 3' grouρ
and τ4/-group. Hence T must be S2 or Q8. Let τ be the involution of T and set
H=CG(τ\ Since τ is the unique involution of CG(L), we have CG(L)^H. Since
any automorphism of L is induced from an element of //, we have NH(L)/CH(L)
=Aut(L). On the other hand, we have NG(L)/CG(L)=Aut(L) and CG(L)=CH(L\
Hence NG(L)=NH(L). Since G has one class of involutions, r is contained in the
center of some 2-Sylow subgroup of G, and hence H contains a 2-Sylow subgroup



INNER SUBGROUPS OF FINITE GROUPS 361

of G. H also contains a 3-Sylow subgroup of G since R^NG(L)^H. Hence we
have H=G from (5), and hence τ is the unique involution of G. This is a con-
tradiction by Theorem 3.

Now let x be a 2-element that inverts the elements of L. By (7), x must be
an involution. By (6), x^CG(M\ This is a contradiction since M^L.

Q. E. D.
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