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ON UNIQUELY FACTORIZABLE

MEROMORPHIC FUNCTIONS

BY MITSURU OZAWA

1. Although our knowledges on the factorization theory are increasing day
by day, the theory is still in the infancy, since almost all the fundamental prob-
lems remain unsettled. We are currently accustomed to make use of the word
"prime", however the unique factorizability into prime factors does not hold in
general. Further there is no general theorem which gives the unicity or the
non-unicity of factorization. Up to the present time we only know few theorems
concerning the unique factorizability, which are applicable to quite special classes
of entire or meromorphic functions. This paper, which may be considered as a
continuation of our earlier paper [8], is also concerned with the unique factori-
zability theorems of special types. Our results are the following theorems.

THEOREM 1. Let f(z) be a prime entire function of finite order. Assume that
f'(z) has infinitely many zeros and f(z}—c, f'(z)=0 have only finitely many common
roots for every constant c. Let p be a prime integer. Then F(z)=f(zp) is uniquely
factorizable.

THEOREM 2. Let f(z) be a prime entire function of finite order. Assume that,
for a certain constant A, f(z)=A has at least one non-zero simple root and at most
finitely many simple roots except for infinitely many multiple roots all of whose
orders are equal to μ. Assume further that f(z)=c, f(z)—0 have only finitely
many common roots for every cφA. Let p be a prime number satisfying (p, μ)=l.
Then F(z)=f(zp) is uniquely factorizable.

These two theorems can be proved by making use of our earlier theorems in
[6], [7]. Therefore we can construct corresponding theorems for an entire func-
tion of infinite order. We shall not give them here. The function zpexp (pzp)
shows that theorem 1 does not hold if we omit the main assumption in theorem 1.

THEOREM 3. Let f0(z) be the entire function defined by
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TΎ / \ 1^/1 W \μn

Π2(w)= Π (1 — — ) ,
π=ι \ Dπ /

£(#, p) is the Weierstrass primary factor

(1-x) exp x+-xz+ -. +

for a positive <5<1 and vn, μn are prime numbers satisfying 3^vn, 3^ μn, vn<vn+1,
μn<μn+ι, μn^Vm for every pair (n, m). Let F(z) be /„(*) exp /<,(*). TA^n FU) is
uniquely factorizable.

In our earlier paper [6] we had proved that /0(z) in this theorem 3 is a
periodic entire function which is prime.

THEOREM 4. Let /„(*) 62

(e'-l) exp (*»(*)+*-'),

^n(z)^ exp (en-ι,U)), e,(z)=ez .

Then F(z)=f0(z)expfo(z) is uniquely factorizable.

THEOREM 5. Let fQ(w) be π1(w)/π2(w\ where

for every pair (j, k) and

/6>r an arbitrary positive number δ and prime numbers v3, μ3 such that 3^vjf 3^//;,
Vj<vJ+1, μj<μj+1, Vj^μk- Let g0(z) be a prime entire function such that fo(g0(z))
is of order less than one. Then fo(go(z)) is uniquely factorizable.

The following theorem is an extension of Theorem 1 in [8].

THEOREM 6. Let F(z) be gι(z)ea ^*^z» , where H(w) is a polynomial and g^z)
is a prime transcendental entire function of finite order having infinitely many
zeros {zn}, which lie in the sector
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2(1 + 6) ' ^ '

ε>0 and p is the order of gι(z). Then F(z) is uniquely factonzable.

2. Proof of Theorem 1. Let us consider

F(z)=c

ί"(z)=0.

This is just

Hence there are only finitely many common roots. Evidently F'(z)= 0 has infinitely
many roots and F(z) is of finite order. Hence by our earlier theorem in [6] F(z)
is left-prime in entire sense. Let F(z) be fι(gι(z)\ If Λ and gλ are entire, then
/! is transcendental and g^ is a polynomial. Evidently F(z) is ί-ply symmetric
and asymptotically w-ply symmetric, where n=άeg g^z). Hence n= pr with a
positive integer r. We have

, r. Hence

with every α> satisfying ωp—l. Let gι(z) be anz
njr ••• +αι^+α0 Then by an

elegant theorem due to Baker-Gross [1] the following two cases are possible : 1)
gι(ωz)=λg!(z)+βf 2) g1(z)=s(z)ί+kf g1(ωz)=(s(z')J

Γc)2jrk for some polynomial s(z).

Case 1). In this case

anω
nznjr -" Jra1ωzJτa()=λ(anz

n-\- ~

Therefore λ=l, ωn=l and α; =0 for jφpt, ί=0, 1,

Let us put w=zp. Then

Since /(M;) is prime, r should be equal to 1. Hence gι(z)=apz
p-\-a0 and f(w)

fι(apw+aQ). Hence we have two equivalent factorizations of F(z).
Case 2). In this case
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that is,

+ a1(l-ώ)z+c2

Hence α/1— α/)— 0 for ; = [n/2]+l, •••, n. If n is odd, c— 0. This gives gΊ(ωz)
=gι(z). This case reduces to case 1). If n is even,

flϊ/a(l-α>n/8)8=4Λzn.

Since n=^r is even, r is even. Hence ωnlz—(ωpY12— 1. Thus c— 0. Again this
case reduces to case 1).

Assume that Λ is transcendental meromorphic (not entire) and gλ is trans-
cendental entire. Then

f*(w\J M^ , M(0)=0,

Hence

FU)=/*(w;

M(z) is a polynomial. Let U(w) be

^Ύ
Then

Here U is entire and M is a polynomial. Hence by the result already proved
M(z) should be equal to azp. Let IF be 2rp. Then

This contradicts the primeness of
Other cases are very easy to handle. We have the desired result.
The proof of Theorem 2 is quite similar as in Theorem 1.

3. Proof of Theorem 3. Let F(z) be f(g(z)\ Let / and g be transcendental
entire. Then we can make use of the same reasoning as in the proof of the
primeness of f0(z) in [9] and we can prove that / has only one zero w^. Then

f(w}=Λ(w-w1)eL^ , L(0)=0 ,

A(g(z)-wJ=Bf0(z)e*™ , M(0)=0.

Hence
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f0(z-)=D+M(z)+L(g(z}),

g(z-)

Evidently

If A/"0)^const, we have

which gives a contradiction. If N(z)=a, a should be equal to zero. Hence
M(z)=hι(ez), g(z)=h2(ez) with one- valued regular functions h^w) and h2(w) in 0<
\w\ <oo. Hence putting w=ez we have

h2(ιυ)=C ΠMΠ—

If /I!(^)ΞO, then g(z)=C fQ(z)+Wι and L is linear. Hence

Therefore EC=1 and D=Q. Therefore

f(w)=G(w—w1) exp (—(w—w^j,

Thus we have the equivalency of two factorizations. Hence we may assume
that h^w^Q. If hλ(w) is regular at w=Q,

m(r, Π,(

as r-»0. Hence L should be linear. Hence

Therefore
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fo(z)(l-EC eM^=

This means that f0(z) is a composite function. This is impossible. If hfyu) has
a pole at w=Q, by its construction

m(r, 772(—)) =o(m(r,

for r-»0. On the other hand

m(r, J

for r— »0. This is impossible. The same holds when Λ/M;) has an essential sin-
gularity at w=Q.

The remaining several cases can be treated very easily and lead us to a con-
tradiction.

4. Proof of Theorem 4. Let F(z) be f(g(z)\ Assume that / and g are
transcendental entire. In this case / has only finitely many simple zeros and
hence

If there are at least two different zeros of P(w\ then g(z) is of order one and
hence

Therefore

en(z)+β-2+(22-l) exp (en(

Let 2pλπι and 2p2πι be two roots of g(z)=wk, then L(g(z)) has the same value
at these two points. Hence 2(p1—p2)πιa should be equal to zero. Thus a— 0.
Let us put w— exp 0/n0), where n0 is defined by g(z)~ /i2(exp (Z/ΠQ)) with a one-
valued regular function hz(w) in 0< \w\ <oo. This is possible by P(g(z))—B(ez—Γ).
Then

h2(w)=B(wn»-ΐ) ,
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h2(w) is regular at w=Q. This is impossible. If there is only one zero of P(w),
then

This gives

en(z)+e-*+(ez-l) exp (en(z)+e~^

=D+M(z)+L(g(z)).

In this case M(z) satisfies M(z+2πί)=M(z) as in [9]. If M(z)=0, we have a con-
tradiction easily. Let us put M(z)=hl(ez] and g(z)=h2(ez) with one-valued regular
functions hλ(w\ hz(w) in 0<|w|<co. Let us put w—ez. Then

—

Evidently A^M;) is not regular at w=Q. If hλ(w) has an essential singularity at
10=0,

m

, exp

for an arbitrary /ί>l as r—>0. This is a contradiction. If /i^ti;) has a multiple
pole at w;—0, we have a contradiction similarly. Hence hλ(w) has a simple pole
at w=0. If L is transcendental, then as r-+0

— ~m(r, exp—

for an arbitrary /£>!. This is impossible. Hence L should be a polynomial.
Let m be the degree of L(w). Then

Therefore as
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with a constant a. Let h^w) be

around w;—0. Then mb^—\ and further

Since hι(w)—l/w should be regular at w=Q, m=l, fr_ι=l. Thus L should be
linear. Hence we have

1

+ /ι3(

where A3(w;) is an entire function. Thus

en-ι(w)+(w-l)ea/w\exp en-ι(w}-EC eh*

^D+h^+EWi.

In this case

expen-

and hence

en.1(w)

Let us put β=h3(w)—en-1(w). Then

Hence

g(z)=w1+C/(e'-l) exp (βn-^+r ')

and

Thus we have the desired equivalency of two factorizations. The remaining
several cases are easily rejected.

5. Proof of Theorem 5. Firstly it is necessary to show the primeness of
/o(u ). Let us put f0(w)=^f(g(w)\ Assume that / is transcendental meromorphic



UNIQUELY FACTORIZABLE FUNCTIONS 347

and g is transcendental entire. Then / is of order zero by Edrei-Fuchs' theorem
E3]. Further g is of order zero. Let us put f(x)=fι(x)/f2(x). Λ and /2 have
infinitely many zeros {vj} and {Wj}, respectively. In this case it is easy to show
the following fact: Once g(w)=v} has a simple root it only has simple roots.
Hence, if g(w)=Vj has a multiple root, then all the roots are multiple roots,
whose orders are not less than Vj^3. Therefore there is at most one v3 for
which g(w}=Vj has a multiple root. The same holds for g(w}=Wj. Further
either g(w)=v} or g(w)—Wj has only simple roots for every j. We may assume
that the former case occurs. Let vjl} •••, vjN be the subset of {v}} for which
every root of g(w)—vjs as a root of fo(g0(w))=0 has its order v3. Then

\ aJ *=ι \ vik )Vjk

that is,

This is evidently a contradiction, unless N=l and g(w) is linear. If g is a poly-
nomial of degree n^2, the set of zeros of fQ(w) should be asymptotically n-ply
symmetric up to their multiplicities around the point at infinity. However this
is not the case. If / is a polynomial or a rational function, then the set of zeros
and poles of f(g(w)) cannot cover all the zeros and poles of fQ(w). Thus f0(w)
is prime.

From now on we shall prove the uniqueness of the given factorization
/ofeoU))- Let /oteoO)) be f(g(z)\ Since /0(gb(*)) is of order less than one, / is
of order zero if g transcendental. Assume that / is transcendental meromorphic
and g is transcendental entire. As in the above process we have

that is,

Vjk

Since g0(z) is prime, A^ should be equal to one. Thus g=Cg0+D8Lnάf0(go)=f(g)
=f(Cgo+D). Let us put w=g0. Then fQ(w)=f(Cw+D). This gives the desired
unicity. The remaining cases can be handled very easily and we have a con-
tradiction.

6. Proof of Theorem β. Let F(z) be
Case 1). / and g are transcendental entire, (a). Suppose that f(w) has in-

finitely many zeros {wn}n=ι Let us consider g(z)=wn Then all the roots of
g(z)=wn for all n lie in the given sector. Further by the second main theorem
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Km(r, g}^ Σ Mr, wn, g}
71=1

for an arbitrary constant K and for r&E, whose measure is finite. Thus the
order pg of g satisfies pg^p. If pgl^l, then by Lemma 5 in [8] the opening φ
of the complementary sector of the given sector should satisfy φ^2π—π/ρg but
2π — π/pg<2π — π/(pg + ε)^2π — π/(pjτε)—φ. This is a contradiction. If pg<l,
then

for ^1 and

for /?<!. Hence by Lemma 6 in [8] g(z) should be linear. This is a contra-
diction.

The remaining cases can be discussed as in the proof of Theorem 1 in [8].
So we omit its details.

7. The following function

F(z)=(ez-V) exp {e*-2z+(e*-l) exp (e'-2z)}

is a little bit interesting. This function admits

(wew)° {(ez-Y) exp (ez~2z)} .

The right factor is E-prime [5] but not prime, since it admits

Firstly we shall prove the unique factorizability of F(z). Let F(z) be f(g(z)\
Assume that / and g are trascendental entire. Then / has only finitely many
zeros. If / has at least two different zeros, then g should be of order one. Hence

Let g(2p&i) and g(2p2πΐ) be equal to wl such that /(«;1)=0. Then a=— 2.
Hence
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In this case g(z) is periodic with period 2nQπi. Hence

with a one-valued regular function h^w) in 0<\w <oo. Let us put W=ez/n°.
Then

Aι(WO has a pole at W=Q. Hence L should be a polynomial. Further hι(W) is
regular at W=co. Hence L(hί(Wy) is regular at W=^°o. This is a contradiction.
If f(w)=Q has only one root w=wl9 which must be simple, then

:)-M;1)=Jβ(eβ-l)eJίCί), M(0)=0

JrD=ez-2z+(ez-l) exp (ez

Let N(z) be M(z+2ττO-M(z). If

and

imply that

This gives a contradiction. Hence N(z) reduces to a constant. If N(z)=Cφ2pπi,
then

N(r, 1, ^^)^A^(r,

This is a contradiction. If N(z)=2pπi, then ^(z+2τrί)=^(2') and 0=L(g(z+2πι)
-L(g(zy)=-2pπi-4πi. Thus ^=-2. Hence M(z)=-2z+hl(ez) and g(z)=h2(ez)
— wl with one-valued regular functions /iι(w ), hz(w) in 0<|w; |<oo. Let T^ be ez.
Then

W2

W-l
W2 ew.

This shows that hι(W) is regular at W=Q. Hence hz(W) has a double pole at
PF—0. This implies that L is linear. Let L(w)=E(w—w1). Thus
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Hence h^W^aW+β. This implies that

ECeP=l, α=l, β + D=Q, β+a=Q.

Therefore log B+2qπι=D=l show that £=«?, q=Q. Thus

-

This gives the equivalency of two factorizations. Assume that / is transcen-
dental meromorphic and g is transcendental entire. Then

n ,
\W - WQ)

g(z)-Wt=AeM^ , M(0)=0,

where P(w) is a polynomial. In this case, if P(w) has at least two zeros,

m(r, eM) ~ m(r, g)

is of order one. Hence M(z)—az and

z+(ez-l) exp (ez-2z) .

Further

We put z—2p^πι and z=2p2πι such that g(2p1πi)=g(2pzπί)=wlf f(w^— 0. Then
we have na— β— 2— 0. By two equations

g(z)-w0=Ae«* ,

we have

amAmemaz

Case 1). 0=0. Then mα=l,
a=l/m and a=2/n. Thus

=β, α^=0 (; = 1, , w— 1), a0=-B. Hence

- 1) exp (^2-2z) .

Let us put w;— exp (z/m). Then

This is evidently absurd.
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Case 2). j8 + l=0. Then β=ma. This gives a=l/n and α= —1/m. Since
i, n are positive integers, we have a contradiction.

Case 3). β^O, β + l=£θ. Then two subcases may occur.

β + l= mα, r β—ma
i)

with l ̂ q^m— 1. In these two subcases we have again a contradiction by
nα=:/3+2.

If P(w) is linear, then

g(z)-w1=C(e'-l)eN^ .

We already have

Then we have two subcases

f M(z}=z , M(z)=-z
i) I ϋ) I

( N(z}=0 [N(z)=-z.

In the former case

g(z)- wQ=Aez or g(z)—w1=C(e'—l)

and

L(g(zy)+N(z)-nM(z)+D

=ez-2z+(ez-l') exp (ez-2z) .

Then N(z}-nM(z}=-nz=-2z. Hence

^(5 U))+^=β2+(β2-l) exp (ez-2z) .

Let us put w=ez. Then

"

This gives an absurdity. In the latter case

g(z)— WQ— Ae~z or g(z)—w1=C—Ce~

and

In this case firstly we have n+l=0 and

W / If
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This implies that L is a polynomial. The left hand side is regular at w=oo but
the right hand side is not. This is impossible. Assume that / is a polynomial
and g is transcendental. In this case g must be entire. If / has two different
zeros, then g should be of order one and the same holds for f(g(z)}. This is
clearly absurd. Since / has no multiple zero, / is linear. We have nothing to
prove. Assume that / is transcendental and g is a polynomial. In this case /
must be entire. By the distribution of zeros of F, g should be of degree at
most two. If g is really quadratic, then the distribution of values of f(g(z))
should be asymptotically symmetric. However F(z) does not satisfy this sym-
metricity. Assume that / is rational and g is entire. Then

^ , Af(0)=0 ,

, M0)=0.

Here P(w) is a polynomial. Case 1). P(w) is linear. Then

Hence we have either M(^)=0, N(z)—z or M(z)= — z=N(z). Then in both cases
g(z) is of order one, which gives clearly a contradiction. Case ii). P(w) is not
linear. Since P(w) has no multiple zero, there are at least two different zeros.
Then g(z) is of order one, which is again impossible. Assume that / is rational
and g is meromorphic. Let a^ be a pole of /. Then g(z)-~ a^O. Let g^ be
1 /(g— fli)- Then F(z}=R(gl(z}} with a rational function R and entire gι(z). Thus
this case reduces to the above case.

Therefore we have the desired result.
As already remarked we have

with

A=Wew, gl=(e*-
and

Hence
F(z)=A {ft e } .

However, since /ι°/2 has an essential singularity at the origin,

does not hold if we do not admit any factorization in the extended sense. This
is a little bit inconvenience, since the associative law has been destroyed. In
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order to secure the associative law it is necessary to extend the class of admis-
sible functions. A method to do it is the following: f^f2 is admissible if /2 is
one-valued regular in 0< \z\ <oo, even if fl is transcendental entire. This method
of extension gives us a new inconvenience, since every periodic entire function
is not prime by this extension. Thus we gain an advantage together with a
disadvantage.
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