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RIEMANNIAN SUBMERSION AND THE
LAPLACE-BELTRAMI OPERATOR

By Yosio Mut0o

Introduction.

In the present paper we consider only Riemannian submersions = : (1, £H—
(B, 8g) such that fibers F are complete and connected and imbedded in (A7[, 2
regularly as totally geodesic submanifolds.

It is well-known that, if ¢ is an eigenfunction of the Laplacian in (B, g),
the lift §=¢” is also an eigenfunction of the Laplacian in (M, £) with the same
eigenvalue [1]. The purpose of the present paper is to find corresponding rela-
tions in the case of p-forms. For p-forms we get a little more complicated result.
If a p-form w is an eigenelement of the Laplace-Beltrami operator 4 in (B, 2g),
the horizontal lift #=w?’ is not always an eigenelement of the Laplace-Beltrami
operator 4din (M, £). In order that @ be an eigenelement with the same eigenvalue
as w, w must satisfy a necessary and sufficient condition which is obtained in §4
of the present paper.

In §1 we recall some properties of Riemannian submersions with totally
geodesic fibers. There we use local coordinates adapted to the Riemannian sub-
mersion. In §2 fundamental formulas in covariant differentiation are given. In
§3 a relation between 4@ and dw is obtained when @=w?. In §4 a necessary
and sufficient condition to be satisfied by w such that do=2Aw is obtained in order
that @=e” satisfy d@=2@. A simple sufficient condition is also obtained. As
an application harmonic forms are studied in some special case.

Remark. In the present paper lift always means horizontal lift.

§1. Riemannian submersions with totally geodesic fibers.

Riemannian submersions were studied extensively by the authors R. H. Esco-
bales [2], S. Ishihara [3], S. Ishihara and M. Konishi [4], Y. Mutd [5], T. Nagano
[7], B. O’'Neill [8], K. Yano and S. Ishihara [10], [11] and others.

Riemannian submersions considered in the present paper are limited to those
with totally geodesic fibers only, and this means that the tensor T of B. O’'Neill
vanishes [8]. Tensors in the total manifold A7I, in the base manifold B or in a
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fiber F are written in such letters as S, 2S or FS respectively, but, if there is no
possibility of confusion, tensors BS in B are written S for short. The Rieman-
nian metrics on M B and F are denoted respectively by g, Zg and g

Let W be any vector ﬁeld on M E any horizontal vector field on M and X
any vertical vector field on M. Then for example, from any (1, 1)-tensor field §
on M, we get four (1, 1)-tensor fields Sz#, §,¥, §,#, 8,7 such that

38HW, =0, #SHW, X)=0,
8 W, Ey=0, g8, W, E)=0.

It is easy to see that such a decomposition of § is unique. Similarly, if Sisa
(0, 2)-tensor field, we have a unique decomposition

§:§HH+§HV+S~VH+§VV .

The (0, 2)-tensor field and the (2, 0)-tensor field associated with the Riemannian
metric g are decomposed into Znn+ Gy and 77+ 5V" respectively since Fyy and
&%V vanish.

We define a tensor field £ with the following property.

R has only one non-vanishing part, namely,

(1.]) ﬁ:ﬁyyy.

Let A be the tensor field A in O’Neill’s paper [8]. Let E~, F be any horizontal
vector fields and X any vertical vector field. Then B satisfies

12) BpF=mBsF, 3R, Fy=g 2055, 5.

We assume that M is covered by a set {V} of coordinate neighborhoods with
the following property. =V is a coordinate neighborhood of B and for any point
P=V we have local coordinates P=(x!, -+, x%, y%, -+, y™)=(x?, ---, x", x™*, -

x™m™) such that zP=(x?, ---, x*). If we use the natural frame attached to such
a coordinate nelghborhood V, the components (X3, ---, X», X»+1, ... Xn+m) of a
vertical vector X satisfy X*=0 where h= 1, -, n
We use indices in the following ranges:

h’ 1, j; e, 1, S, i, eee :]_’ e, n,
K, /Z, Yy "ty Py O, Ty ot :n_|_1, e T’H-m,
A B, C o RS, T, =1, e, nbm.

Then the covariant components of the Riemannian metric g are g¢p, or separ-
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ately, §ji, &5 &u» &ua Where §;,;=5;,. The covariant components 7g,.; of Tg satisfy
#g.:=8Zur The inverse matrix of (g, is denoted ("g*4).
Now we define I’ by

1.3) I'i="g~g;:.

For any vector W we have W=WH#+W". If W4, namely W" and W*, are
the components of W, and the components of W¥ and W" are denoted (IW#)4
and (W")4 respectively, then we have

(Waye=Wr,  (WHyr=—T5W,
1.4)
(Wye=o0, (WYye=We-TEWi .

~ ~

For any covariant vector U we have U=0,+U, and

(ﬁH)hZﬁh“‘Fﬁﬁm (ﬁH)A.:O)
(1.5) . N N
(UV)h:rl,foy (UV)x:Ulc-

Using such local coordinates and natural frames we can deduce that B has
components
ﬁjix:<ﬁHHV)jiK:Djrf_DiF§
where
D;=0,—1I'%9;, 0,=0/ox", 0,=0/0x*.

All other components of B vanish and we shall write R, for the sake of con-

venience instead of ﬁji‘.
For the Riemannian metric 2g on the base manifold B, we have

ngi:.gii—rﬁl[’fg/ﬂ ’ Bgit=git,
It is easy to observe that Zg;;=(Zun);;, 2g’*=(g7%)". Moreover we have
ngl:(gVV);zl s Fg/d:(g.VV)/Mzng_['g[";IgNts ’
Fit=—T} gt

As there is no possibility of confusion we shall write gj;, g%, g., g* for gy,
Bgit, Fg,; Tgi* respectively.

With the use of these components we can raise and lower indices of R #+* and
get tensor fields such as B,¥", By whose components are R“=R," g", R,;.=

R g REEV BHH, are defined similarly.



332 YOSIO MUTO

§ 2. Fundamental formulas in covariant differentiation.

Fundamental formulas of covariant differentiation have been obtained by B.
O’Neill [8]. The following is only a translation into our terminology where W
is a vector field and U a 1-form.

(7 W)™, = DA W1+ jht}(WHH%R,h(WV)f :
« W>H”>;”=Dj<WV>f+a,I’:<WV>T—%RJ<WH>‘ :
(@ W»”M‘=8#<W”>"+%Rh<v7ﬂ>‘,

(@ Wy r=a {5 Yoy,

@ Oun=DA0n="{ | JO vt 5 RO,
( D))= DD =0 KO~ RO
(D=0, O = RED

@ Or=0,00="{ [}

From these formulas we can get similar formulas of covariant differentiation
of tensor fields.

From the tensor field # we get two important tensor fields by covariant
differentiation. They are (7 R)yuy” and (7 R)yzy” whose leading components are

2.1 Rkji”:((ﬁﬁ)ﬁﬁuv)k]’i'c ’ RvjiE:((Vﬁ)VHHV)»jiK .

In view of (1.1) and the fundamental formulas given above we have

B(t Bt
22) Ruse=DuRy= () JRu="{,| JRuHo.TiRse
F 1
23) Rupit=0.Ryi+ { © 1Ry (R AR~ RAR
We can raise and lower indices of such tensor fields and define for example

- t _
Ry =Ry g™, R, jix—=Ryji" Gex -
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The following identities are obtained by direct computation or by applying
identities satisfied by curvature tensors to formulas to be given a little later.

(2.4) Rpji"+ Rjir"+ Rir,"=0,
(2.5) R jiatRaje,=0.

Relations between the curvature tensors I?DCBA, BK by "Kypae Of (1\7[, ),
(B, Bg), (F, Tg) have been obtained by B. O’Neill [8]. In our terminology they
are

~ 1 1
(KHHHH)kjih:BKkjih_Z(RjiTRkhr_szerhr)'f_? Ry Rine,

(kHHHV)kji/c:'_z— Rik]/z s

r 1 1
(KHVHV)kyztszﬂkl/:—-—ZRkt/tthl: s

~
(KVVHV))J/M,/::O ’
(KVVVV)U/M/c:FKv;M/c .

For the Ricci tensors R’E:kHII+kHV+kVI{+Kyv, BRic, "Ric of (M, 2, (B, Bg),
(F, Fg) we have

~y 1 -
(KHH)ji:BKji—’E R,"Ry.,

Y 1
(KHV)jZ:?g“RmZ ,

~ 1
(KVH>yi=_2_gtsRns/l »
1
4

where 2K;;, “K,; are the components of 2Ric, “Ric respectively.
From the above formulas we get

(kVV>p1:FK;42+ st/ARtSZ

o ) . | 1 -

(26) (KHHHH)klzthKk]zh_l_?Rk]rthr_‘_Z(sz.-R]ht_RJt.Rkh:) s
Y X 1 )

2.7) Ky =5 R,

(2~8) (I?VVHH)‘J,uih:Ruihy_%(RtlvRth/t—' Rtl,uRth) ’



334 YOSIO MUTO

1

2.9) (Ru™) ="K} =5 Ri/R",
2 10 k HY 11— 1 R, = 1 te
( . ) ( v )/z —3 t /J—"—"ERt ° -

§3. The Laplace-Beltrami operator in Riemannian submersion.

In (B, Zg) let @=U, .., dx""\ -+ Ndx'? be a p-form and 4 the Laplace-Beltrami
operator. Then we have

D
(31) (AU){I...lp:—VtVLU11.4.7,p+ aE:lBKlatU’r"t'“lp

B t
Kigis" Uspotsoy -

12albsp

Similarly in (M, g) we have for G=U,,.4,dx 1A -+ Ndx*?
-~ = o~ A P A ~
(3.2) (AU)AI-»APZ_VTVTUAI'-'AP+ EZ;IKAQTUAY--TmAp

> kA 4 TS[jA TernSe Ay -
1sd<psp @70 1 D

We now decompose AU into parts,
A0=d0) g+ @D gy + -+ + @Dy .

But what we want to get is 40 when U is the lift, U=U% As U satisfies L~7~=
Uy in this case, namely, any part such as Unvon vanishes, any part of Yilig
where V appears more than twice in the subscript vanishes in View~of funda-
mental formulas o~f differentiation. Hence we need only to calculate (A0 g..zmm,
(Aﬁ)lln-HHV and (Aﬁ)HmHVV- -

In order to obtain for example (4U)y..; we first calculate the second deriva-
tive 770 where we need only (770 yw.u.w and TP Dyy, yr.r.  As the required
calculation is straightforward we give here only the result,

O 1 2 _
(FPUS pm, HeH) ks, zlu-zp:VijUzl»--zp—Z uz;} Rk;‘Rza‘:Uzl-»tmzp

12 _
——Z— azleklatR] -Ull'”t'"lp »
((77UL) ) ———1—R t U _lRtV U
HH,H-HV/)kj rp-1p-167" P ky eYrpapogt 2 1 &V kEYapap-gt
1 t
.__-—2—Rk 'CVlel“'lp‘lt >
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(OVUS . mr1vv) s g ey
= R R o R R ) Uy
(PPU v, mrem)op 1y

12 L s
=5 aj‘:l (vaatu+—2—Rt vR1a3/1> Uiy,

1
tr 3 (R Rt Rt yRif ) Uipetsiny s

Zl§a<b§p
(77UL)VV,H-~HV:0; (77UL)VV.H..-HVV=0-
Let us define S by
3.3) VTﬁTﬁAlmAp:gAlmAp
where U=UZ. Then we get from the foregoing result
B4 (§H~-~H)i1~~‘tp:gk]((7‘7UL)I-IH.Hn-H)kan“-zp
‘l_gy”((ﬁﬁUL)VVy HWH)»/;, 1ty

Y4
:V,V‘U“...Lp—% 3 Rio"REU,

bt

1 -
‘I‘_ 2 RzathRtbsrUzr-‘tm&utp H

2 15albsp
~ 1
(35) (SH.A.HV)il...,p_l,c=——z*gk’Rk,tﬁU“...lp_lt—R”,;VtU“‘..lp_ls 5
& — 1 kt s
(36) (SH~~HVV)i1~~-1p_2r:1r2‘—‘2— R rcle /czUzy--tp—gts .

Substituting (2.6), (2.7), (2.8), (2.9), (2.10), (3.1), (3.3), (3.4), (3.5) and (3.6) into
(3.2) we get

- 1 -
(37) (AU y= @Dty 5 B Rigy ROUrpetsny
A17L — Pts 122 ts
3.8) (U t0)ig = ROT U posst 2 Rig Vgt
(3'9) ((JUL)H~-~HVV)i1~-~1p_2/c1/c2Z(R/clwrcz_Rktlrles/cz)Uu---lp—zts .

If p=0 we have only dp*=g¢p. If p=1 we have only

@UHu)=P U, ([dU")=R"F,U,.



336 YOSIO MUTO

§4. Elgenelement w of the Laplace-Beltraml operator 4 in (B, 3g) such that
the lift w’ is also an eigenelement of 4 in (M ).

From (3.7), (3.8) and (3.9) we get the following Main Theorem.

THEOREM 4.1.  Let @=U,,..,dx"'A -+ Adx'? be an exgenelement of the Laplace-
Beltrami operator 4 n the base manzfold (B, Bg) with eigenvalue 2. A necessary
and suﬁiczent condition that &= a)L be an eigenelement of the Laplace-Beltram
operator 4 n the total manifold (M &) with the same eigenvalue A is that w satisfy
the followwng equations,

<a) l§a§§pRlaleRtsfUzl...t...s..,tpzo ,

ts 1271 "
(‘B) R KVtU”"'lp‘ls_*_? az=1 Rza ;:Uun.z‘..zp—ls'—‘-o ’
@ (ReyPey= R¥e,Ri* ) Uy yes=0.

From this theorem we get a simpler theorem,

THEOREM 4.2. Let w be an etgenelement of the Laplace-Beltrami operator 4
wm (B, Bg). A sufficient condition that 3=w" be an eigenelement of 4 in (M, g) 1s
that w satisfy the equations

(0 RYUs o pygts=0,
(e) R¥Viyapo1es=0
where dw=V .., dx" A -+ Ndx'P*.

Proof. (a) is satisfied by (0). From (0) we get

RlltstZZWlp_lts‘l_ RNEV” Ulz-"lp-lts:O ’
hence

2 zl»--tn-tp ls_i_R”K 2 VlaUlln-L'"Lp 18 O-
From (¢) we get
p-1 ,
Rt 412;1 ViaUipting1s— 2RV Uy oy 1s=0.
This proves that (8) is satisfied. From (0) we also get

which proves that (y) is satisfied in view of (2.3).
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Concerning (0) and (¢) we get the following theorem.

THEOREM 4.3. Let @ be a p-form satisfying (0), and (¢)p,. Then dw and éw
satisfy (0)p+1, (€)ps+1 and (0)p-1, (€)p-1 respectively.

Proof. That w satisfies (¢), is equivalent to that de satisfies (),+;- More-
over dw always satisfies (g),4; in view of dd=0. Thus Theorem 4.3 is proved
for dw. From

Rtstjil---lp-at-":O
we get
RthUjirutp_;;ts"'RtsijUjil-nzp_gLs:O .

As R,;" satisfies (2.4) we get
RtMVJUjil‘..zp_sts:O

which proves that dw satisfies (§),-,. As o is an eigenelement of 4 we have
dow=Aw—ddw. As dw satisfies (0),+1, 0dw satisfies (0),. Hence ddw satisfies (9),.
This proves that dw satisfies (¢),-, and completes the proof.

Applying the result obtained above to harmonic forms we get

THEOREM 4.4. Let @=U,papdx"A - Adx'» (p=2) be a harmomic form of
(B, Bg). Then ¢" 1s a harmomc form of (M, &) if ¢ satisfies (0). The lift of any
harmonic 1-form of (B, Bg) is a harmonic 1-form of (M, 2).

Let (M, 2, €) be a Sasakian manifold [9]. Let there be a Riemannian sub-
mersion z: (M, §)—(M, g) called a Sasakian submersion [6], [10], [11]. In this
submersion fibers F are generated by the Killing vector field &. As dim F=1 we

. . 1
can write Rj; instead of R;;". ?Rszf represents a complex structure J such

that (/, g is a Kdihler structure on M. Hence R;; is a harmonic 2-form. This
does not satisfy (a) since (a) assumes the form

(a)z RjiRtsUts:O

if m=1, p=2. This gives an example of harmonic forms of (B, 2g) whose lift
is not a harmonic form.
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