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RIEMANNIAN SUBMERSION AND THE

LAPLACE-BELTRAMI OPERATOR

BY Yosio MUTO

Introduction.

In the present paper we consider only Riemannian submersions π : (M, g)—»
(B, Bg) such that fibers F are complete and connected and imbedded in (M, g)
regularly as totally geodesic submanifolds.

It is well-known that, if φ is an eigenfunction of the Laplacian in (B, Bg),
the lift φ=φL is also an eigenfunction of the Laplacian in (M, g) with the same
eigenvalue [1]. The purpose of the present paper is to find corresponding rela-
tions in the case of p-forms. For p-forms we get a little more complicated result.
If a p-form ω is an eigenelement of the Laplace-Beltrami operator Δ in (B, Bg)f

the horizontal lift ω=ωL is not always an eigenelement of the Laplace-Beltrami
operator Δ in (M, g). In order that ω be an eigenelement with the same eigenvalue
as ω, ω must satisfy a necessary and sufficient condition which is obtained in § 4
of the present paper.

In § 1 we recall some properties of Riemannian submersions with totally
geodesic fibers. There we use local coordinates adapted to the Riemannian sub-
mersion. In § 2 fundamental formulas in covariant differentiation are given. In
§ 3 a relation between Δω and Δω is obtained when ω—ωL. In § 4 a necessary
and sufficient condition to be satisfied by ω such that Δω—λω is obtained in order
that ω=ωL satisfy Δω—λω. A simple sufficient condition is also obtained. As
an application harmonic forms are studied in some special case.

Remark. In the present paper lift always means horizontal lift.

§ 1. Riemannian submersions with totally geodesic fibers.

Riemannian submersions were studied extensively by the authors R. H. Esco-
bales [2], S. Ishihara [3], S. Ishihara and M. Konishi [4], Y. Mutδ [5], T. Nagano
[7], B. O'Neill [8], K. Yano and S. Ishihara [10], [11] and others.

Riemannian submersions considered in the present paper are limited to those
with totally geodesic fibers only, and this means that the tensor T of B. O'Neill
vanishes [8]. Tensors in the total manifold M, in the base manifold B or in a
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fiber F are written in such letters as S, BS or FS respectively, but, if there is no
possibility of confusion, tensors BS in B are written S for short. The Rieman-
nian metrics on M, B and F are denoted respectively by g, Bg and Fg.

Let W be any vector field on M, E any horizontal vector field on M and X
any vertical vector field on M. Then for example, from any (1, l)-tensor field S
on M, we get four (1, l)-tensor fields SH

H, SH

V, SV

H, Sv

v such that

It is easy to see that such a decomposition of 5 is unique. Similarly, if S is a
(0, 2)-tensor field, we have a unique decomposition

The (0, 2)-tensor field and the (2, 0)-tensor field associated with the Riemannian
metric g are decomposed into gππ+gw and gHHjrgvv respectively since gHV and
gHV vanish.

We define a tensor field R with the following property.
R has only one non-vanishing part, namely,

(1.1) R = RπHV.

Let A be the tensor field A in O'Neill's paper [8]. Let E, F be any horizontal
vector fields and X any vertical vector field. Then R satisfies

(1.2) ~EF=-RχF , g(zX, F}=g(R~EF, X) .

We assume that M is covered by a set {V} of coordinate neighborhoods with
the following property. πV is a coordinate neighborhood of B and for any point
Pe V we have local coordinates P<=>(x\ ••• , xn, y\ ••• , ym)=(x\ ••• , xn, xn+1, ••• ,
xn+m) such that πP&(xl, •••, xn\ If we use the natural frame attached to such
a coordinate neighborhood F, the components (X1, •••, Xn, Xn+1, •-, Zn+m) of a
vertical vector X satisfy Xh=0 where h— 1, ••• , n.

We use indices in the following ranges :

h, i, j, —, r, s, /, — =1, •••, n,

£, ,̂ //, ••• , £, σ, τ, ••• =n+l, -•• , n+m ,

A, B, C, - , R, 5, T, - =1, - , n+m .

Then the covariant components of the Riemannian metric g are gCBf or separ-
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ately, gjiy gjλ, gμl, gμλ where g^=g^ The covariant components Fgμλ of Fg satisfy
F§μλ—gμλ- The inverse matrix of (Fgμχ) is denoted (Fgμλ\

Now we define Γ* by

(1.3) Γf=Fgκgir.

For any vector W we have W=WH+WV. If WA, namely Wh and Wκ, are
the components of W, and the components of WH and ί̂ 7 are denoted (WH}A

and (W7)A respectively, then we have

(1.4)
(Wv)h=Q , (Wv}κ=

For any covariant vector 0 we have U=UH+0V and

(UH\=Uh-Γκ

hUκ, (UH\=Q,
(1.5)

Φv\=Γκ

hUκ, (Uv\=UK.

Using such local coordinates and natural frames we can deduce that R has
components

RjS^RHπ^ji^DjΠ-DtΓ*

where

All other components of $ vanish and we shall write J?^/ for the sake of con-
venience instead of Rjiκ.

For the Riemannian metric Bg on the base manifold B, we have

It is easy to observe that Bgji=(gHH)ji, Bgjί—(gHH}jί. Moreover we have

gj2=-Γ}gjί.

As there is no possibility of confusion we shall write gjit gjί, gμχ, gμλ for Bgjt,
Bgjί, Fgμλ, Fgμλ respectively.

With the use of these components we can raise and lower indices of Rjf and
get tensor fields such as RH

HV ', RHHV whose components are R3

lκ=R3L

κgtl, RJίκ=
Rjigτt RHHV> RHHv are defined similarly.
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§ 2. Fundamental formulas in covariant differentiation.

Fundamental formulas of covariant differentiation have been obtained by B.
O'Neill [8]. The following is only a translation into our terminology where W
is a vector field and 0 a 1-form.

From these formulas we can get similar formulas of covariant differentiation
of tensor fields.

From the tensor field 7? we get two important tensor fields by covariant
differentiation. They are (P ' R}HHHV and (PR}VHHV whose leading components are

(2.1)

In view of (1.1) and the fundamental formulas given above we have

(2.2) B B

(2.3)

We can raise and lower indices of such tensor fields and define for example
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The following identities are obtained by direct computation or by applying
identities satisfied by curvature tensors to formulas to be given a little later.

(2.4) Rk

(2.5)

Relations between the curvature tensors KDCBAy

 BKkjlh,
 FKvμλκ of (M, g\

(B, Bg), (F, Fg) have been obtained by B. O'Neill [8], In our terminology they
are

1 1
jiti— Kkjih Ύ^ ^ khτ ^kιTRjhr) I ~ό~ Hk^Kihr >

For the Ricci tensors Rιc=KHn+K:HV+KVH+Kvvt

 BRic, FRιc of (M, g\ (B, Bg),
(F, Fg) we have

(KHH}ji=BKji——RjtΓRitr ,

where BKjif

 FKμλ are the components of BRic, FRιc respectively.
From the above formulas we get

(2.6) (KH^^^^K.^^R.^R^+^R^R^-R^R

(2.7) (RπvaHϊ*μ

ih=^Rkih

μ,

(2.8) (Kvv

HH\^R^μ-~(Rt\JR
ί\-R^μR

ί\}f
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(2.10) (Kv

H)μ

l=—Rt

lt

μ=——Rt

tl

μ.

§ 3. The Laplace-Beltrami operator in Riemannian submersion.

In (B, Bg) let ω—Ull...lpdxllΛ ••• /\dxlp be a p-form and Δ the Laplace-Beltrami
operator. Then we have

(3.1) ι

_ι yι BZX- ίs/7
Λί ίliίp lαl6 ^'Γ - Ί

Similarly in (A/, g) we have for ω—0Al...ApdxΛlA ••• ΛdxAf

(3.2)

We now decompose /£/ into parts,

But what we want to get is Jί7 when 0 is the lift, U=UL. As ί? satisfies £[=
ϋ^...// in this case, namely, any part such as UH.,.V...H vanishes, any part of ΔU
where V appears more than twice in the subscript vanishes in view of funda-
mental formulas of differentiation. Hence we need only to calculate (ΔU)H ..HHH>
(ΔU}H...HHV and (ΔU}H...HVv.

In order to obtain for example (ΔU)H...H we first calculate the second deriva-
tive VVϋ where we need only (ΫΫϋ)HHtH...H and (?PU)rr,H>..H As the required
calculation is straightforward we give here only the result,

*....0*,,,Γ̂

I P

1 1
\\VVU )HH,H Ήv)kj,ι1"Ίp-1κ

== 2~RkjtκUlr..ιp_ίt «" R 3* & k
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)HH,H -HVV)kj,ι1 ιp-2κ1κ2

Let us define § by

(3.3)

where U=UL. Then we get from the foregoing result

(3.4) (Sa...H )ί,..lp

I _
+ 2

(3.5) (5jr...ιrκ)i1..α1,-1«=-

(3.6)

Substituting (2.6), (2.7), (2.8), (2.9), (2.10), (3.1), (3.3), (3.4), (3.5) and (3.6) into
(3.2) we get

(3.7)

(3.8)

(3.9)

If />=0 we have only ΔψL=Aψ. If ί=l we have only
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§ 4. Eigenelement ω of the Laplace Beltrami operator Δ in (B, Bg) such that
the lift ωL is also an eigenelement of Δ in (M, g).

From (3.7), (3.8) and (3.9) we get the following Main Theorem.

THEOREM 4.1. Let ω=Ulr..lpdxll/\ ••• /\dxlp be an eigenelement of the Laplace-
Beltrami operator Δ in the base manifold (B, Bg) with eigenvalue λ. A necessary
and sufficient condition that ω—ωL be an eigenelement of the Laplace-Beltrami
operator Δ in the total manifold (M, g) with the same eigenvalue λ is that ω satisfy
the following equationsf

1 p-i

From this theorem we get a simpler theorem,

THEOREM 4.2. Let ω be an eigenelement of the Laplace-Beltrami operator Δ
in (B, Bg). A sufficient condition that ω=ωL be an eigenelement of Δ in (M, g) is
that ω satisfy the equations

(δ) Λ' .ίV,,-,..̂ ,

(e) Λίs,yn...tp.lίs=0

where dω=Vtl...ίp+1dxll/\ ••• Adxlf+1.

Proof, (α) is satisfied by (δ). From (δ) we get

hence

'Utl...t...tp_1,+Ru' ΣV,βt7,r..ί...tp.1.=0.
α=l

From (s) we get

This proves that (β) is satisfied. From (S) we also get

which proves that (r) is satisfied in view of (2.3).
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Concerning (§) and (ε) we get the following theorem.

THEOREM 4.3. Let ω be a p-form satisfying (δ)p and (ε)p. Then dω and δω
satisfy (δ)p+1, 0)p+ι and (δ)p,l9 (ε)p-ι respectively.

Proof. That ω satisfies (ε)p is equivalent to that dω satisfies (δ)p+1. More-
over dω always satisfies (ε)p+ι in view of dd=Q. Thus Theorem 4.3 is proved
for dω. From

we get

^tw£/yi1

As Rkji

κ satisfies (2.4) we get

which proves that δω satisfies (δ)p_ι. As ω is an eigenelement of Δ we have
dδω=λω—δdω. As ύfω satisfies (δ)p+ι, ddω satisfies (S)p. Hence ddω satisfies (δ)p.
This proves that δω satisfies (ε)p_ι and completes the proof.

Applying the result obtained above to harmonic forms we get

THEOREM 4.4. Let φ=Ulr..lpdxll/\ ••• /\dxlv (£Ξ>2) be a harmonic form of
(B, Bg). Then φL is a harmonic form of (M, g) if φ satisfies (δ). The lift of any
harmonic I- form of (B, Bg) is a harmonic I- form of (M, g).

Let (M, g, I) be a Sasakian manifold [9]. Let there be a Riemannian sub-
mersion π : (M, g)-^>(M, g) called a Sasakian submersion [6], [10], [11]. In this
submersion fibers F are generated by the Killing vector field ξ. As dim F=l we

can write Rjt instead of Rjf. —Rjl= Fjl represents a complex structure / such

that (/, g) is a Kahler structure on M. Hence R^ is a harmonic 2-form. This
does not satisfy (a) since (α) assumes the form

if m— 1, p—2. This gives an example of harmonic forms of (B, Bg) whose lift
is not a harmonic form.
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