RIEMANNIAN SUBMERSION AND THE LAPLACE-BELTRAMI OPERATOR

By Yosio Mutō

Introduction.

In the present paper we consider only Riemannian submersions $\pi:(\tilde{M}, \tilde{g}) \rightarrow$ ($B,{ }^{B} g$) such that fibers F are complete and connected and imbedded in (\tilde{M}, \tilde{g}) regularly as totally geodesic submanifolds.

It is well-known that, if φ is an eigenfunction of the Laplacian in ($B,{ }^{B} g$), the lift $\tilde{\varphi}=\varphi^{L}$ is also an eigenfunction of the Laplacian in (\tilde{M}, \tilde{g}) with the same eigenvalue [1]. The purpose of the present paper is to find corresponding relations in the case of p-forms. For p-forms we get a little more complicated result. If a p-form ω is an eigenelement of the Laplace-Beltrami operator Δ in ($B,{ }^{B} g$), the horizontal $\operatorname{lift} \tilde{\omega}=\omega^{L}$ is not always an eigenelement of the Laplace-Beltrami operator \tilde{J} in (\tilde{M}, \tilde{g}). In order that $\tilde{\omega}$ be an eigenelement with the same eigenvalue as ω, ω must satisfy a necessary and sufficient condition which is obtained in $\S 4$ of the present paper.

In § 1 we recall some properties of Riemannian submersions with totally geodesic fibers. There we use local coordinates adapted to the Riemannian submersion. In $\S 2$ fundamental formulas in covariant differentiation are given. In $\S 3$ a relation between $\tilde{\Delta} \tilde{\omega}$ and $\Delta \omega$ is obtained when $\tilde{\omega}=\omega^{L}$. In $\S 4$ a necessary and sufficient condition to be satisfied by ω such that $\Delta \omega=\lambda \omega$ is obtained in order that $\tilde{\omega}=\omega^{L}$ satisfy $\tilde{\Delta} \tilde{\omega}=\lambda \tilde{\omega}$. A simple sufficient condition is also obtained. As an application harmonic forms are studied in some special case.

Remark. In the present paper lift always means horizontal lift.

§ 1. Riemannian submersions with totally geodesic fibers.

Riemannian submersions were studied extensively by the authors R. H. Escobales [2], S. Ishihara [3], S. Ishihara and M. Konishi [4], Y. Mutō [5], T. Nagano [7], B. O'Neill [8], K. Yano and S. Ishihara [10], [11] and others.

Riemannian submersions considered in the present paper are limited to those with totally geodesic fibers only, and this means that the tensor T of B. O'Neill vanishes [8]. Tensors in the total manifold \tilde{M}, in the base manifold B or in a
fiber F are written in such letters as $\widetilde{S},{ }^{B} S$ or ${ }^{F} S$ respectively, but, if there is no possibility of confusion, tensors ${ }^{B} S$ in B are written S for short. The Riemannian metrics on \tilde{M}, B and F are denoted respectively by $\tilde{g},{ }^{B} g$ and ${ }^{F} g$.

Let \widetilde{W} be any vector field on \tilde{M}, \tilde{E} any horizontal vector field on \tilde{M} and \tilde{X} any vertical vector field on \tilde{M}. Then for example, from any (1, 1)-tensor field \tilde{S} on \tilde{M}, we get four (1, 1)-tensor fields $\tilde{S}_{H}{ }^{H}, \widetilde{S}_{H}{ }^{V}, \tilde{S}_{V}{ }^{H}, \tilde{S}_{V}^{V}$ such that

$$
\begin{gathered}
\tilde{S}=\widetilde{S}_{H}^{H}+\widetilde{S}_{H}{ }^{V}+\widetilde{S}_{V}^{H}+\widetilde{S}_{V}{ }^{V}, \\
\widetilde{S}_{H}^{H} \tilde{X}=\widetilde{S}_{H}^{V} \tilde{X}=\widetilde{S}_{V}^{H} \tilde{E}=\widetilde{S}_{V}^{V} \tilde{E}=0, \\
\tilde{g}\left(\widetilde{S}_{H}^{H} \widetilde{W}, \tilde{X}\right)=0, \quad \tilde{g}\left(\widetilde{S}_{V}{ }^{H} \widetilde{W}, \tilde{X}\right)=0, \\
\tilde{g}\left(\widetilde{S}_{H}^{V} \widetilde{W}, \tilde{E}\right)=0, \quad \tilde{g}\left(\widetilde{S}_{V}^{V} \widetilde{W}, \tilde{E}\right)=0 .
\end{gathered}
$$

It is easy to see that such a decomposition of \tilde{S} is unique. Similarly, if \tilde{S} is a (0,2)-tensor field, we have a unique decomposition

$$
\tilde{S}=\tilde{S}_{H H}+\tilde{S}_{H V}+\tilde{S}_{V H}+\tilde{S}_{V V}
$$

The (0,2)-tensor field and the (2, 0)-tensor field associated with the Riemannian metric \tilde{g} are decomposed into $\tilde{g}_{H H}+\tilde{g}_{V V}$ and $\tilde{g}^{H H}+\tilde{g}^{V V}$ respectively since $\tilde{g}_{H V}$ and $\tilde{g}^{H V}$ vanish.

We define a tensor field \tilde{R} with the following property.
\tilde{R} has only one non-vanishing part, namely,

$$
\begin{equation*}
\tilde{R}=\tilde{R}_{H H} V . \tag{1.1}
\end{equation*}
$$

Let \tilde{A} be the tensor field A in O'Neill's paper [8]. Let \tilde{E}, \tilde{F} be any horizontal vector fields and \tilde{X} any vertical vector field. Then \tilde{R} satisfies

$$
\begin{equation*}
\tilde{A}_{\widetilde{E}} \tilde{F}=-\frac{1}{2} \tilde{R}_{\widetilde{F}} \tilde{F}, \quad \tilde{g}^{(}\left(\tilde{A}_{\widetilde{E}} \tilde{X}, \tilde{F}\right)=\frac{1}{2} \tilde{g}\left(\tilde{R}_{\widetilde{E}} \tilde{F}, \tilde{X}\right) . \tag{1.2}
\end{equation*}
$$

We assume that \tilde{M} is covered by a set $\{V\}$ of coordinate neighborhoods with the following property. πV is a coordinate neighborhood of B and for any point $P \in V$ we have local coordinates $P \Leftrightarrow\left(x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{m}\right)=\left(x^{1}, \cdots, x^{n}, x^{n+1}, \cdots\right.$, $\left.x^{n+m}\right)$ such that $\pi P \Leftrightarrow\left(x^{1}, \cdots, x^{n}\right)$. If we use the natural frame attached to such a coordinate neighborhood V, the components ($\tilde{X}^{1}, \cdots, \widetilde{X}^{n}, \widetilde{X}^{n+1}, \cdots, \widetilde{X}^{n+m}$) of a vertical vector \tilde{X} satisfy $\tilde{X}^{h}=0$ where $h=1, \cdots, n$.

We use indices in the following ranges:

$$
\begin{aligned}
& h, \imath, j, \cdots, r, s, t, \cdots=1, \cdots, n \\
& \kappa, \lambda, \mu, \cdots, \rho, \sigma, \tau, \cdots=n+1, \cdots, n+m \\
& A, B, C, \cdots, R, S, T, \cdots=1, \cdots, n+m
\end{aligned}
$$

Then the covariant components of the Riemannian metric \tilde{g} are $\tilde{g}_{C B}$, or separ-
ately, $\tilde{g}_{j i}, \tilde{g}_{j \lambda}, \tilde{g}_{\mu l}, \tilde{g}_{\mu \lambda}$ where $\tilde{g}_{j \lambda}=\tilde{g}_{\lambda,}$. The covariant components ${ }^{F} g_{\mu \lambda}$ of ${ }^{F} g$ satisfy ${ }^{F} g_{\mu \lambda}=\tilde{g}_{\mu \lambda \lambda}$. The inverse matrix of (${ }^{F} g_{\mu \lambda}$) is denoted (${ }^{F} g^{\mu \lambda}$).

Now we define Γ_{\imath}^{κ} by

$$
\begin{equation*}
\Gamma_{\imath}^{\kappa}={ }^{F} g^{\kappa \tau} \tilde{g}_{i \tau} . \tag{1.3}
\end{equation*}
$$

For any vector \widetilde{W} we have $\widetilde{W}=\widetilde{W}^{H}+\widetilde{W}^{r}$. If \widetilde{W}^{A}, namely \widetilde{W}^{h} and \widetilde{W}^{n}, are the components of \widetilde{W}, and the components of \widetilde{W}^{H} and \widetilde{W}^{V} are denoted $\left(\widetilde{W}^{H}\right)^{A}$ and $\left(\widetilde{W}^{V}\right)^{4}$ respectively, then we have

$$
\begin{array}{ll}
\left(\widetilde{W}^{H}\right)^{h}=\widetilde{W}^{h}, & \left(\widetilde{W}^{H}\right)^{\kappa}=-\Gamma_{\imath}^{\kappa} \widetilde{W}^{i}, \\
\left(\widetilde{W}^{V}\right)^{h}=0, & \left(\widetilde{W}^{V}\right)^{\kappa}=\widetilde{W}^{\kappa}+\Gamma_{\imath}^{\kappa} \widetilde{W}^{i} . \tag{1.4}
\end{array}
$$

For any covariant vector \tilde{U} we have $\tilde{U}=\tilde{U}_{H}+\tilde{U}_{V}$ and

$$
\begin{array}{ll}
\left(\tilde{U}_{H}\right)_{h}=\tilde{U}_{h}-\Gamma_{h}^{\kappa} \tilde{U}_{\kappa}, & \left(\tilde{U}_{H}\right)_{n}=0, \\
\left(\tilde{U}_{V}\right)_{h}=\Gamma_{h}^{\kappa} \tilde{U}_{\kappa}, & \left(\tilde{U}_{V}\right)_{\kappa}=\tilde{U}_{\kappa} . \tag{1.5}
\end{array}
$$

Using such local coordinates and natural frames we can deduce that \tilde{R} has components

$$
\tilde{R}_{j i}{ }^{\kappa}=\left(\tilde{R}_{H H}\right)_{j i}{ }^{\kappa}=D_{j} \Gamma_{\imath}^{\kappa}-D_{i} \Gamma_{\jmath}^{\kappa}
$$

where

$$
D_{i}=\partial_{i}-\Gamma_{\imath}^{\lambda} \partial_{\lambda}, \quad \partial_{i}=\partial / \partial x^{2}, \quad \partial_{\lambda}=\partial / \partial x^{\lambda} .
$$

All other components of \tilde{R} vanish and we shall write $R_{j i}{ }^{\kappa}$ for the sake of convenience instead of $\widetilde{R}_{j i}{ }^{\kappa}$.

For the Riemannian metric ${ }^{B} g$ on the base manifold B, we have

$$
{ }^{B} g_{j i}=\tilde{g}_{j i}-\Gamma_{j}^{\mu} \Gamma_{\imath}^{\lambda} \tilde{g}_{\mu \lambda \lambda}, \quad{ }^{B} g^{J i}=\tilde{g}^{j i} .
$$

It is easy to observe that ${ }^{B} g_{j i}=\left(\tilde{g}_{H H}\right)_{j i},{ }^{B} g^{j i}=\left(\tilde{g}^{H H}\right)^{j i}$. Moreover we have

$$
\begin{gathered}
{ }^{F} g_{\mu \lambda}=\left(\tilde{g}_{V V}\right)_{\mu \lambda \lambda}, \quad{ }^{F} g^{\mu \lambda}=\left(\tilde{g}^{V V}\right)^{\mu \lambda}=\tilde{g}^{\mu \lambda}-\Gamma_{\grave{\iota}}^{\mu} \Gamma_{s}^{\lambda} \tilde{g}^{t s}, \\
\tilde{g}^{j \lambda}=-\Gamma_{\grave{\imath}}^{\lambda} \tilde{g}^{j t} .
\end{gathered}
$$

As there is no possibility of confusion we shall write $g_{j i}, g^{j i}, g_{\mu \lambda}, g^{\mu \lambda}$ for ${ }^{B} g_{j i}$, ${ }^{B} g^{j i},{ }^{F} g_{\mu \lambda},{ }^{F} g^{\mu \lambda}$ respectively.

With the use of these components we can raise and lower indices of $\widetilde{R}_{j_{2}}{ }^{\kappa}$ and get tensor fields such as $\widetilde{R}_{H}{ }^{H V}, \widetilde{R}_{H H V}$ whose components are $R_{\jmath}{ }^{2 \kappa}=R_{\jmath t}{ }^{\kappa} g^{t \tau}, R_{j i \alpha}=$ $R_{j i}{ }^{\tau} g_{\tau \kappa} . \tilde{R}^{H H V}, \tilde{R}^{H H_{V}}$ are defined similarly.

§ 2. Fundamental formulas in covariant differentiation.

Fundamental formulas of covariant differentiation have been obtained by B. O'Neill [8]. The following is only a translation into our terminology where \widetilde{W} is a vector field and \tilde{U} a 1 -form.

$$
\begin{aligned}
& \left((\tilde{\Gamma} \widetilde{W})_{H}{ }^{H}\right)_{j}{ }^{h}=D_{j}\left(\widetilde{W}^{H}\right)^{h}+{ }^{B}\left\{\begin{array}{c}
h \\
j t
\end{array}\right\}\left(\widetilde{W}^{H}\right)^{t}+\frac{1}{2} R_{j}{ }_{\tau}\left(\widetilde{W}^{V}\right)^{\tau}, \\
& \left((\tilde{\nabla} \widetilde{W})_{H}{ }^{V}\right)_{j}{ }^{\kappa}=D_{j}\left(\widetilde{W}^{V}\right)^{\kappa}+\partial_{\tau} \Gamma_{j}^{\kappa}\left(\widetilde{W}^{V}\right)^{\tau}-\frac{1}{2} R_{j t}{ }^{\kappa}\left(\widetilde{W}^{H}\right)^{t}, \\
& \left((\tilde{\nabla} \widetilde{W})_{V}{ }^{H}\right)_{\mu}{ }^{h}=\partial_{\mu}\left(\widetilde{W}^{H}\right)^{h}+\frac{1}{2} R_{t}{ }^{h}{ }_{\mu}\left(\widetilde{W}^{H}\right)^{t}, \\
& \left((\tilde{\nabla} \widetilde{W})_{V}{ }^{V}\right)_{\mu^{\kappa}}=\partial_{\mu}\left(\widetilde{W}^{V}\right)^{\kappa}+{ }^{F}\left\{\begin{array}{c}
\kappa \\
\mu \tau
\end{array}\right\}\left(\widetilde{W}^{V}\right)^{\bar{E}}, \\
& \left((\tilde{V} \tilde{U})_{H H}\right)_{\jmath \imath}=D_{j}\left(\tilde{U}_{H}\right)_{i}-{ }^{B}\left\{\begin{array}{c}
t \\
j i
\end{array}\right\}\left(\tilde{U}_{H}\right)_{t}+\frac{1}{2} R_{j i} \tau\left(\tilde{U}_{V}\right)_{\tau}, \\
& \left((\tilde{\nabla} \tilde{U})_{H V}\right)_{\lambda \lambda}=D_{j}\left(\tilde{U}_{V}\right)_{\lambda}-\partial_{\lambda} \Gamma_{j}^{\tau}\left(\tilde{U}_{V}\right)_{\tau}-\frac{1}{2} R_{\jmath}^{t} \lambda_{\lambda}\left(\tilde{U}_{H}\right)_{t}, \\
& \left((\tilde{\nabla} \tilde{U})_{V H}\right)_{\mu i}=\partial_{\mu \mu}\left(\tilde{U}_{H}\right)_{i}-\frac{1}{2} R_{\imath}{ }^{t}\left(\tilde{U}_{H}\right)_{t}, \\
& \left((\tilde{V} \tilde{U})_{V V}\right)_{\mu \lambda}=\partial_{\mu}\left(\tilde{U}_{V}\right)_{\lambda}-{ }^{F}\left\{\begin{array}{c}
\tau \\
\mu \lambda
\end{array}\right\}\left(\tilde{U}_{V}\right)_{\tau} .
\end{aligned}
$$

From these formulas we can get similar formulas of covariant differentiation of tensor fields.

From the tensor field \tilde{R} we get two important tensor fields by covariant differentiation. They are $(\tilde{\nabla} \tilde{R})_{H H H}{ }^{V}$ and $(\tilde{\nabla} \tilde{R})_{V H H}{ }^{V}$ whose leading components are

$$
\begin{equation*}
R_{k j i^{k}}=\left((\tilde{\nabla} \tilde{R})_{H H I I}\right)_{k j i}{ }^{\kappa}, \quad R_{\nu j i^{k}}=\left((\tilde{\nabla} \tilde{R})_{V H H}{ }^{V}\right)_{\nu j i^{k}} . \tag{2.1}
\end{equation*}
$$

In view of (1.1) and the fundamental formulas given above we have

$$
\left.\begin{array}{l}
R_{k j i}{ }^{\kappa}=D_{k} R_{j i}{ }^{\kappa}-{ }^{B}\left\{\begin{array}{c}
t \\
k
\end{array}\right\}
\end{array}\right\} R_{t \imath^{\kappa}-}{ }^{B}\left\{\begin{array}{c}
t \\
k \tag{2.3}
\end{array}\right\}
$$

We can raise and lower indices of such tensor fields and define for example

$$
R_{k j}{ }^{2 \kappa}=R_{k j t}{ }^{\kappa} g^{t \tau}, \quad R_{\nu j i k}=R_{\nu j i}{ }^{\tau} g_{\tau \kappa} .
$$

The following identities are obtained by direct computation or by applying identities satisfied by curvature tensors to formulas to be given a little later.

$$
\begin{gather*}
R_{k j i}{ }^{\kappa}+R_{j i{ }^{k}}{ }^{\kappa}+R_{i k j}{ }^{\kappa}=0, \tag{2.4}\\
R_{\mu j i \lambda}+R_{\lambda j i \mu \mu}=0 . \tag{2.5}
\end{gather*}
$$

Relations between the curvature tensors $\tilde{K}_{D C B A},{ }^{B} K_{k j l h},{ }^{F} K_{\nu \mu \lambda k}$ of ($\left.\tilde{M}, \tilde{g}\right)$, ($B,{ }^{B} g$), $\left(F,{ }^{F} g\right.$) have been obtained by B. O'Neill [8]. In our terminology they are

$$
\begin{aligned}
& \left(\tilde{K}_{H H H H}\right)_{k j i \hbar}={ }^{B} K_{k j i \hbar}-\frac{1}{4}\left(R_{j i}{ }^{\tau} R_{k h \tau}-R_{k \imath}{ }^{\tau} R_{j h \tau}\right)+\frac{1}{2} R_{k j}{ }^{\tau} R_{i h \tau}, \\
& \left(\tilde{K}_{H H H V}\right)_{k j i \pi}=\frac{1}{2} R_{i k j \kappa}, \\
& \left(\tilde{K}_{H V H V}\right)_{k \mu \imath \imath k}=\frac{1}{2} R_{\mu k i \hbar}-\frac{1}{4} R_{k}{ }^{t}{ }_{\mu} R_{\imath t \kappa}, \\
& \left(\tilde{K}_{V V H V}\right)_{\nu \mu \imath \kappa}=0, \\
& \left(\tilde{K}_{V V V V}\right)_{\nu \mu \lambda \pi}={ }^{F} K_{\nu \mu \lambda \pi} .
\end{aligned}
$$

For the Ricci tensors $\widetilde{R \imath c}=\tilde{K}_{H I I}+\tilde{K}_{H V}+\tilde{K}_{V H}+\tilde{K}_{V V},{ }^{B} \operatorname{Ric},{ }^{F} R \imath c$ of $(\tilde{M}, \tilde{g}),\left(B,{ }^{B} g\right)$, ($F,{ }^{F} g$) we have

$$
\begin{aligned}
& \left(\tilde{K}_{H H}\right)_{j i}={ }^{B} K_{j i}-\frac{1}{2} R_{\jmath}^{t \tau} R_{i t \tau}, \\
& \left(\tilde{K}_{H V}\right)_{j \lambda}=\frac{1}{2} g^{t s} R_{t \jmath s \lambda}, \\
& \left(\tilde{K}_{V H}\right)_{\mu i}=\frac{1}{2} g^{t s} R_{t \iota s \mu,}, \\
& \left(\tilde{K}_{V V}\right)_{\mu \lambda}={ }^{F} K_{\mu \lambda}+\frac{1}{4} R_{\mu}^{t s} R_{t s \lambda}
\end{aligned}
$$

where ${ }^{B} K_{j i},{ }^{F} K_{\mu \lambda}$ are the components of ${ }^{B} R i c,{ }^{F} R \imath c$ respectively.
From the above formulas we get

$$
\begin{align*}
& \left(\tilde{K}_{H H}{ }^{H H}\right)_{k j}{ }^{i h}={ }^{B} K_{k j}{ }^{i h}+\frac{1}{2} R_{k j}{ }^{\tau} R^{\imath h}{ }_{\tau}+\frac{1}{4}\left(R_{k}{ }^{\imath \tau} R_{\jmath}{ }^{h}-R_{\jmath}{ }^{\imath \tau} R_{k}{ }^{h}{ }_{\tau}\right), \tag{2.6}\\
& \left(\tilde{K}_{H V}{ }^{H H}\right)_{k \mu}{ }^{i h}=\frac{1}{2} R_{k}{ }^{i n}{ }_{\mu}, \tag{2.7}\\
& \left(\tilde{K}_{V V}{ }^{H H}\right)_{\nu \mu \mu}{ }^{i h}=R_{\nu}{ }^{i h}{ }_{\mu}-\frac{1}{4}\left(R_{t}{ }^{2}{ }_{\nu} R^{t h}{ }_{\mu \mu}-R_{t}{ }^{2}{ }_{\mu} R^{t h}{ }_{\nu}\right), \tag{2.8}
\end{align*}
$$

$$
\begin{align*}
& \left(\tilde{K}_{I I}{ }^{H}\right)_{\jmath}={ }^{B} K_{\jmath}{ }^{2}-\frac{1}{2} R_{t \jmath}{ }^{\tau} R^{t 2}{ }_{\tau}, \tag{2.9}\\
& \left(\tilde{K}_{V}{ }^{H}\right)_{\mu}{ }^{2}=\frac{1}{2} R_{t}{ }^{2 t}{ }_{\mu}=-\frac{1}{2} R_{t}{ }^{t{ }^{2}} . \tag{2.10}
\end{align*}
$$

§ 3. The Laplace-Beltrami operator in Riemannian submersion.

In ($B,{ }^{B} g$) let $\omega=U_{\imath_{1} \cdots{ }_{2}} d x^{\imath_{1}} \wedge \cdots \wedge d x^{\imath^{2}}$ be a p-form and Δ the Laplace-Beltrami operator. Then we have

$$
\begin{align*}
(\Delta U)_{i_{1} \cdots \imath^{2} p}= & -\nabla_{t} \nabla^{t} U_{\imath_{1} \cdots \imath_{p}}+\sum_{a=1}^{p}{ }^{B} K_{\imath_{a}}{ }^{t} U_{\imath_{1} \cdots t \cdots \imath_{p} p} \tag{3.1}\\
& +\sum_{1 \leqslant a<b \leqslant p}{ }^{B} K_{\imath_{a} \imath_{b}}{ }^{t s} U_{\imath_{1} \cdots t \cdots \cdots \cdots \imath_{p} p} .
\end{align*}
$$

Similarly in (\tilde{M}, \tilde{g}) we have for $\tilde{\omega}=\tilde{U}_{A_{1} \cdots A_{p}} d x^{A_{1}} \wedge \cdots \wedge d x^{A_{p}}$

$$
\begin{align*}
(\tilde{U} \tilde{U})_{A_{1} \cdots A_{p}}= & -\tilde{V}_{T} \tilde{V}^{T} \tilde{U}_{A_{1} \cdots A_{p}}+\sum_{a=1}^{p} \tilde{K}_{A_{a}}{ }^{T} \tilde{U}_{A_{1} \cdots T \cdots A_{p}} \tag{3.2}\\
& +\sum_{1 \leq a<b \leq p} \tilde{K}_{A_{a} A_{b}}{ }^{T S} \tilde{U}_{A_{1} \cdots T \cdots S \cdots A_{p}} .
\end{align*}
$$

We now decompose $\tilde{\Delta} \tilde{U}$ into parts,

$$
\tilde{\Delta} \tilde{U}=(\tilde{\Delta} \tilde{U})_{H \cdots H H}+(\tilde{\Delta} \tilde{U})_{H \cdots H V}+\cdots+\left(\tilde{U} \tilde{U^{\prime}}\right)_{V \cdots V} .
$$

But what we want to get is $\tilde{U} \tilde{U}$ when \tilde{U} is the lift, $\tilde{U}=U^{L}$. As \tilde{U} satisfies $\tilde{U}=$ $\tilde{U}_{H \cdots I I}$ in this case, namely, any part such as $\tilde{U}_{H \ldots V \ldots H}$ vanishes, any part of $\tilde{\Delta} \tilde{U}$ where V appears more than twice in the subscript vanishes in view of fundamental formulas of differentiation. Hence we need only to calculate $(\tilde{\Delta} \tilde{U})_{H \cdots H H H}$, $(\tilde{U} \tilde{U})_{H \cdots H H V}$ and $(\tilde{U} \tilde{U})_{H \cdots H V V}$.

In order to obtain for example $(\tilde{U} \tilde{U})_{H \cdots H}$ we first calculate the second derivative $\tilde{\nabla} \tilde{V} \tilde{U}$ where we need only $(\tilde{V} \tilde{V} \tilde{U})_{H H, H \cdots H}$ and $(\tilde{\nabla} \tilde{V} \tilde{U})_{V V, H \cdots H}$. As the required calculation is straightforward we give here only the result,

$$
\begin{aligned}
& \left(\left(\tilde{\Gamma} \tilde{\Gamma} U^{L}\right)_{H H, H \cdots H}\right)_{k_{j, \imath_{1} \cdots \imath_{p}}}=\nabla_{k} \nabla_{j} U_{2_{1} \cdots \imath_{p}}-\frac{1}{4} \sum_{a=1}^{p} R_{k j}{ }^{\tau} R_{\imath_{a}}{ }^{t}{ }_{\tau} U_{2_{1} \cdots \cdots \imath_{p}} \\
& -\frac{1}{4} \sum_{a=1}^{p} R_{k \imath_{a}}{ }^{\tau} R_{j}{ }^{t}{ }_{\tau} U_{i_{1} \ldots t \cdots \imath_{p}}, \\
& \left(\left(\tilde{\Gamma} \tilde{\nabla} U^{L}\right)_{I I H, H \cdots H V}\right)_{k, \imath_{1} \cdots \imath_{p-1}}=-\frac{1}{2} R_{k,}{ }^{t}{ }_{k} U_{\imath_{1} \cdots \imath_{p-1} t}-\frac{1}{2} R_{j}{ }^{t}{ }_{k} \nabla_{k} U_{\imath_{1} \cdots \imath_{p-1} t} \\
& -\frac{1}{2} R_{k}{ }^{\iota}{ }_{k} \nabla_{j} U_{\imath_{1} \cdots \imath{ }^{\prime} p-1^{t}},
\end{aligned}
$$

Let us define \tilde{S} by

$$
\begin{equation*}
\tilde{\nabla}_{T} \tilde{\nabla}^{T} \tilde{U}_{A_{1} \cdots A_{p}}=\tilde{S}_{A_{1} \cdots A_{p}} \tag{3.3}
\end{equation*}
$$

where $\tilde{U}=U^{L}$. Then we get from the foregoing result

$$
\begin{equation*}
\left(\tilde{S}_{H \cdots H V}\right)_{i_{1} \cdots \imath_{p-1} \kappa}=-\frac{1}{2} g^{k j} R_{k j}{ }_{k}^{t} U_{2_{1} \cdots \imath^{p}-1}-R^{t s}{ }_{k} \nabla_{t} U_{\imath_{1} \cdots \imath_{p-1} s}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\left(\tilde{S}_{H \cdots H V V}\right)_{i_{1} \cdots \imath_{p-2} c_{1} \kappa_{2}}=\frac{1}{2} R^{k t}{ }_{\kappa_{1}} R_{k}^{s} \kappa_{\kappa_{2}} U_{\imath_{1} \cdots \imath_{p-2} t s} . \tag{3.6}
\end{equation*}
$$

Substituting (2.6), (2.7), (2.8), (2.9), (2.10), (3.1), (3.3), (3.4), (3.5) and (3.6) into (3.2) we get

If $p=0$ we have only $\tilde{\Delta} \varphi^{L}=\Delta \varphi$. If $p=1$ we have only

$$
\left(\left(\tilde{J} U^{L}\right)_{H}\right)_{i}=(\nabla U)_{i}, \quad\left(\left(\tilde{U} U^{L}\right)_{V}\right)_{\kappa}=R^{t s}{ }_{k} \nabla_{t} U_{s} .
$$

$$
\begin{align*}
& \left(\left(\tilde{I} U^{L}\right)_{H \cdots H}\right)_{i_{1} \cdots \imath_{p}}=(\Delta U)_{i_{1} \cdots \imath_{p}}+\frac{1}{2} \sum_{1 \leqq a<b \leq p} R_{\imath_{a} \imath_{b}}{ }^{\tau} R^{t s} U_{U_{1} \cdots+\cdots \cdots \cdots \imath_{p}}, \tag{3.7}\\
& \left(\left(\tilde{J} U^{L}\right)_{H \cdots H V}\right)_{i_{1} \cdots \imath_{p-1}}=R^{t s}{ }_{k} \nabla_{t} U_{\imath_{1} \cdots \imath_{p-1} s}+\frac{1}{2} \sum_{a=1}^{p-1} R_{\imath_{a}}{ }^{t s}{ }_{\kappa} U_{\imath_{1} \cdots t \cdots \imath_{p-1} s}, \\
& \left(\left(\tilde{A} U^{L}\right)_{H \cdots H V V}\right)_{i_{1} \cdots \imath_{p-2} \kappa_{1} \kappa_{2}}=\left(R_{\kappa_{1}}{ }^{t s}{ }_{\kappa_{2}}-R^{k t}{ }_{\kappa_{1}} R_{k}{ }^{s} \kappa_{2}\right) U_{\imath_{1} \cdots \imath_{p-2} t s} .
\end{align*}
$$

$$
\begin{align*}
& \left(\tilde{S}_{H \ldots H}\right)_{i_{1} \cdots \imath_{p}}=g^{k J}\left(\left(\tilde{\nabla} \tilde{\nabla} U^{L}\right)_{H H, H \cdots H}\right)_{k, \imath_{1} \cdots \imath_{p}} \tag{3.4}\\
& +g^{\nu \mu}\left(\left(\tilde{\nabla} \tilde{\nabla} U^{L}\right)_{V V, H \cdots H}\right)_{\nu \mu, \imath_{1} \cdots \imath_{p}} \\
& =\nabla_{t} \nabla^{t} U_{i_{1} \cdots \imath_{p}}-\frac{1}{2} \sum_{a=1}^{p} R_{\imath_{a} s}{ }^{\tau} R^{t s}{ }_{\tau} U_{\imath_{1} \cdots t \cdots \imath_{p}} \\
& +\frac{1}{2} \sum_{1 \leqq a<b s p} R_{\imath_{a}}{ }^{t \tau} R_{\imath_{b}}{ }_{\tau}^{s} U_{\imath_{1} \cdots t \cdots s \cdots \imath_{p}},
\end{align*}
$$

$$
\begin{aligned}
& \left(\left(\tilde{\Gamma} \tilde{\Gamma} U^{L}\right)_{H H, H \ldots H V V}\right)_{k J, \imath_{1} \cdots \imath_{p-2} k_{1} \kappa_{2}} \\
& =\frac{1}{4}\left(R_{k}{ }^{t}{ }_{\kappa_{1}} R_{j}{ }_{\kappa_{k_{2}}}-R_{k}{ }^{t}{ }_{\kappa_{2}} R_{j}{ }^{s}{ }_{\kappa_{1}}\right) U_{\imath_{1} \cdots \imath_{p-2} t s}, \\
& \left(\left(\tilde{\Gamma} \tilde{V} U^{L}\right)_{V V, H \cdots H}\right)_{\nu \mu, \imath_{1} \cdots v_{p}} \\
& =-\frac{1}{2} \sum_{a=1}^{p}\left(R_{\nu \imath_{a}}{ }^{t}{ }^{\mu}+\frac{1}{2} R^{t s}{ }_{\nu} R_{\imath_{a} s \mu}\right) U_{\imath_{1} \cdots t \cdots \imath^{\prime} p}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\tilde{\nabla} \tilde{\Gamma} U^{L}\right)_{V V, H \cdots H V}=0, \quad\left(\tilde{V} \tilde{\nabla} U^{L}\right)_{V V, H \cdots H V V}=0 .
\end{aligned}
$$

§4. Eigenelement ω of the Laplace-Beltrami operator Δ in $\left(B,{ }^{B} g\right)$ such that the lift ω^{L} is also an eigenelement of \tilde{J} in ($\left.\tilde{M}, \tilde{g}\right)$.

From (3.7), (3.8) and (3.9) we get the following Main Theorem.
ThEOREM 4.1. Let $\omega=U_{i_{1} \cdots \imath_{p}} d x^{\imath_{1}} \wedge \cdots \wedge d x^{\imath_{p}}$ be an eigenelement of the LaplaceBeltramı operator Δ in the base manifold ($B,{ }^{B} g$) with eigenvalue λ. A necessary and sufficient condition that $\tilde{\omega}=\omega^{L}$ be an eigenelement of the Laplace-Beltramı operator \tilde{J} in the total manfold (\tilde{M}, \tilde{g}) with the same eigenvalue λ is that ω satisfy the following equations,
(α)

$$
\sum_{1 \leq a<b \leq p} R_{\imath_{a} \imath_{b}}{ }^{\tau} R^{t s}{ }_{\tau} U_{\imath_{1} \cdots t \cdots s \cdots \imath_{p}}=0,
$$

$$
R^{t s}{ }_{\kappa} \nabla_{t} U_{\imath_{1} \cdots \imath_{p-1} s}+\frac{1}{2} \sum_{a=1}^{p-1} R_{\imath_{a}}{ }^{t s}{ }_{\kappa} U_{\imath_{1} \cdots \cdots \cdots \imath_{p-1}}=0
$$

(r)

$$
\left(R_{\kappa_{1}}{ }^{t s}{ }_{\kappa_{2}}-R^{k t}{ }_{\kappa_{1}} R_{k}{ }^{s}{ }_{\kappa_{2}}\right) U_{i_{1} \cdots \imath_{p-2} t s}=0 .
$$

From this theorem we get a simpler theorem,
Theorem 4.2. Let ω be an eigenelement of the Laplace-Beltrami operator Δ in ($B,{ }^{B} g$). A sufficient condition that $\tilde{\omega}=\omega^{L}$ be an evgenelement of \tilde{J} in (\tilde{M}, \tilde{g}) is that ω satisfy the equations

$$
R^{t s}{ }_{k} U_{\imath_{1} \cdots \imath_{p-2} t_{s}}=0,
$$

(ε)

$$
R^{t s}{ }_{\kappa} V_{\imath_{1} \cdots \imath_{p-1} t t_{s}}=0
$$

where $d \omega=V_{\imath_{1} \cdots \imath_{p+1}} d x^{\imath_{1}} \wedge \cdots \wedge d x^{\imath_{p+1}}$.
Proof. (α) is satisfied by (δ). From (δ) we get

$$
R_{\imath_{1}}{ }^{t s \kappa} U_{\imath_{2} \cdots \imath_{p-1} t s}+R^{t s s} \nabla_{\imath_{1}} U_{\imath_{2} \cdots \imath_{p-1} t s}=0,
$$

hence

$$
\sum_{a=1}^{p-1} R_{\imath_{a}}{ }^{t s k} U_{\imath_{1} \cdots t \cdots \imath_{p-1} s}+R^{t s{ }_{a}^{t-1}} \sum_{a=1}^{p-1} \nabla_{\imath_{a}} U_{\imath_{1} \cdots \cdots \cdots \imath^{2}-1 s}=0 .
$$

From (ε) we get

$$
R^{t s \kappa} \sum_{a=1}^{p-1} \nabla_{\imath_{a}} U_{\imath_{1} \cdots t \cdots i_{p-1} s}-2 R^{t s \kappa} \nabla_{t} U_{i_{1} \cdots \imath_{p-1} s}=0
$$

This proves that (β) is satisfied. From (δ) we also get

$$
\left(\partial_{\kappa_{1}} R_{\kappa_{2}}^{t s}-\left\{\begin{array}{c}
\lambda \\
\kappa_{1} \kappa_{2}
\end{array}\right\} R_{\lambda_{\lambda}}^{t s}\right) U_{\imath_{1} \cdots \imath_{p-2} t s}=0
$$

which proves that (γ) is satisfied in view of (2.3).

Concerning (δ) and (ε) we get the following theorem.
ThEOREM 4.3. Let ω be a p-form satısfying $(\delta)_{p}$ and $(\varepsilon)_{p}$. Then $d \omega$ and $\delta \omega$ satısfy $(\delta)_{p+1},(\varepsilon)_{p+1}$ and $(\delta)_{p-1},(\varepsilon)_{p-1}$ respectively.

Proof. That ω satisfies $(\varepsilon)_{p}$ is equivalent to that $d \omega$ satisfies $(\delta)_{p+1}$. Moreover $d \omega$ always satisfies $(\varepsilon)_{p+1}$ in view of $d d=0$. Thus Theorem 4.3 is proved for $d \omega$. From

$$
R^{t s \kappa} U_{j i_{1} \cdots \imath_{p-3} t s}=0
$$

we get

$$
R^{j t s \kappa} U_{j i_{1} \cdots \imath_{p-3} t s}+R^{t s \kappa} \nabla^{j} U_{j i_{1} \cdots \imath_{p-3} t s}=0 .
$$

As $R_{k j i}{ }^{k}$ satisfies (2.4) we get

$$
R^{t s \kappa} \nabla^{J} U_{j i_{1} \cdots \imath_{p-3} t s}=0
$$

which proves that $\delta \omega$ satisfies $(\delta)_{p-1}$. As ω is an eigenelement of Δ we have $d \delta \omega=\lambda \omega-\delta d \omega$. As $d \omega$ satisfies $(\delta)_{p+1}, \delta d \omega$ satisfies $(\delta)_{p}$. Hence $d \delta \omega$ satisfies $(\delta)_{p}$. This proves that $\delta \omega$ satisfies $(\varepsilon)_{p-1}$ and completes the proof.

Applying the result obtained above to harmonic forms we get
ThEOREM 4.4. Let $\varphi=U_{i_{1} \ldots \imath_{p}} d x^{\imath_{1}} \wedge \cdots \wedge d x^{\imath_{p}}(p \geqq 2)$ be a harmonic form of ($B,{ }^{B} g$). Then φ^{L} is a harmonic form of ($\left.\tilde{M}, \tilde{g}\right)$ if φ satisfies (δ). The lift of any harmonic 1-form of $\left(B,{ }^{B} g\right)$ is a harmonic 1 -form of ($\left.\tilde{M}, \tilde{g}\right)$.

Let $(\tilde{M}, \tilde{g}, \tilde{\xi})$ be a Sasakian manifold [9]. Let there be a Riemannian submersion $\pi:(\tilde{M}, \tilde{g}) \rightarrow(M, g)$ called a Sasakian submersion [6], [10], [11]. In this submersion fibers F are generated by the Killing vector field $\tilde{\xi}$. As $\operatorname{dim} F=1$ we can write $R_{j i}$ instead of $R_{j i}{ }^{\kappa}$. $\frac{1}{2} R_{\jmath}{ }^{2}=F_{\jmath}{ }^{2}$ represents a complex structure J such that (J, g) is a Kähler structure on M. Hence $R_{j i}$ is a harmonic 2-form. This does not satisfy (α) since (α) assumes the form

$$
\begin{equation*}
R_{j i} R^{t s} U_{t s}=0 \tag{2}
\end{equation*}
$$

if $m=1, p=2$. This gives an example of harmonic forms of ($B,{ }^{B} g$) whose lift is not a harmonic form.

References

[1] M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété Riemannienne, Springer-Verlag 1971.
[2] R.H. Escobales, Riemannian submersions with totally geodesic fibers, J. Differential Geometry, 10 (1975), 253-276.
[3] S. Ishihara, Vector fields in fibred spaces with invariant Riemannian metric, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 163-178.
[4] S. Ishihara and M. Konishi, Differential geometry of fibred spaces, Publications of the study group of geometry, Tokyo, Vol. 8 (1973).
[5] Y. Mutō, On some properties of a fibred Riemannian manifold, Sci. Rep. Yokohama Nat. Univ., Sect. I, No. 1 (1952), 1-14.
[6] Y. Mutō, Riemannian submersions and critical Riemannian metrics, J. Math. Soc. Japan, 29 (1977), 493-511.
[7] T. Nagano, On fibred Riemannian manifolds, Sci. Papers College Gen. Ed. Univ. Tokyo, 10 (1960), 17-27.
[8] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459-469.
[9] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan, 14 (1962), 249-271.
[10] K. Yano and S. Ishihara, Differential geometry of fibred spaces, Kōda1 Math. Sem. Rep., 19 (1967), 257-288.
[11] K. Yano and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep., 19 (1967), 317-360.

2262-150, Tomioka-cho, Kanazawa-ku, Yokohama 236, Japan

