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MOMENT INEQUALITIES FOR MIXING SEQUENCES

BY KEN-ICHI YOSHIHARA

1. Introduction. Let {ξJf — oo<;<oo} be a sequence of random variables
which satisfy one of the following mixing conditions
(I) ^-mixing condition, i. e.,

(1) ^(n)=sup sup — ^ I P{Ar\B)-P{A)P{B) \ [ 0 (n-oo)

or
(II) the strong mixing (s. m.) condition, i. e.,

(2) α(n)=sup sup \P(AΓΛB)-P(A)P(B)\\Q(JI->OO)
k i

where Mb

a denotes the σ-algebra generated by ξa, •••
In this paper, firstly we shall prove some moment inequalities for mixing

sequences. Secondly, using these inequalities we shall find sufficient conditions

for the almost everywhere convergence of series Σ a>£j a n d obtain the conver-

gence rates of the strong laws of large numbers, and the functional central limit

theorem for sums of (not necessarily strictly stationary) mixing sequences.

2. Preparatory lemmas.

LEMMA A (Theorem 17.2.3 in [3]). Suppose that condition (I) is satisfied and
that ξ and η are measurable over M*«, and M%+n respectively. If E\ξ\p<oo and
E\η\q<oo with p>l, q>l, p~1+q-1=l, then

LEMMA B (Lemma 2.1 in [2]). Suppose that condition (II) is satisfied and
that ξ and η are measurable over Mi M and Mt+n respectively. If E\ξ\p<oo and
E\η\q<<χ> with p>l, q>l, p^ + q'1^, then

3. Moment inequalities for sums of s. m. sequences. In what follows, we
shall agree that K denotes some absolute constant.
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THEOREM 1. Let {fj be φ-mixing with φ(n). We assume that for an even
integer m (^2)

(i) Eξi=0 and E\ξτ\
m^M(ι=l, 2, •••),

and

(ϋ) Σ
1=1

Then, for every sequence {ak} and for every integer n, we have

(5) E{ Σ a£t)
m^cmAZn (all bm n^l)

b+l

ι=b+l

where cm is an absolute constant depending only on m and

6 + 7?

(6) Aln= Σ, a\.

Proof of Theorem 1. (5) is easily proved in the case m=2, and so is omitted
(cf. the proof of Theorem 3).

For simplicity of the proofs, we explicitely consider the case where m=i and
b=0 an essentially same but more laborious proof holds for more general m(^6).
Put Al,n=Al. We note that

E( Σ a^zy= Σ aiEξi+ Σ a\a)Eξ\ξ)Λ- Σ afcjEξlξj

(7)
+ Σ CLlajakEζlξjξkΛ- Σ aιaJakaιEξiξJξkξι.

From Holder's inequality

(8) Σαϊfl

By Lemma A

(9)

*Έ at Σ {φ(j-i)} m+ Σ α|α) {φ(j-i)}3'4]
1=1 .7=1+1 z<j

and similarly

Now, we shall show
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(11)
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I Σ alajakEξϊζjξk\^KAt,.
ι<l<k

Since (£ | fJ 2 ) 2 ^£ | f t |
4 ^M<cx3 and Eζt=0, so using Lemma A and Holder's

inequality, we have the followings:

Σ ahjakEζίξjξk\

"ί?" Σ1 Σ

I Σ <$
i<j<lι

j-iik-j

^ .Σ

( Σ

{φ(qψ

Σ

+2{E\ξΛi}1/*{E\ζiξk\Ψ/*{φ(j-i)}1/2l

"Έ11 Σ (αM+
l

+ ((Σ4)Σ Σα!
p=l i-ί q=ί

Hence, we have (11). Similarly, we have

I Σ a^
i<j<k

(
q=ί

I Σ ataj
ί<j<k

Σ aiajakaιEζiξjξkξι\=KAi.
j<k<l

(12)

(13)

Next, we shall prove

(14)

For fixed i, let Σ ί υ , Σ[2 ) and Σ? } be respectively the components of the summa-
tion Σ for j—i^(k—j, l—k), k—j^(j—i, l—k) and l—k^(j—i,k—j). From

%<j<k<l
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Lemma A

72-3

72-3

= ^ Σ Σ? [άla]-^a\a\} {φ(j — i)}1/4c

Σ
r=l

Σ al)'-Σ Σ I α t + P +Σ

72-3 72-1-2 72-3 V n-p-q—ί

Έ ~Σ }U+A* Σ -Σ Σ
p-q—

Σ
jp=l Q=l ι-\

£ KAi {1 + ΣP {φ{ρ))1/4} ^ /Γilί

Similarly, we have

ΈΈ?\aiajakaι\\Eξιξ]ξkξι

72-3
— VM2)

and

71-3

/ ' / 11

So, we have (14). Hence, from (7)-(14), we have (5) in the case where m=i
and b=0.

From Theorem F in [4] and Theorem 1, we have the following conclusion
(cf. [1, p. 102], [9, p. 83] and [11])

THEOREM 2. Let the conditions of Theorem 1 is satisfied for some even in-
teger. If m—2y then

(15) £(max | Σ? aiζι\
2)^c2Ain(log22n) (all b^O, n^

l^j^n ι=b+l

and if m^4, then
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b+j

(16) £(max | Σ α^l m )^c m Λ^ (all b^O, n ^
i^jύn ι b + iι=b+i

Here, cm(m=2, 4, •••) are constants defined in Theorem 1.

4. Moment inequalities for sums of s. m. sequences.

THEOREM 3. Let {£J be a s. m. sequence with coefficient a(n). We assume
that for some δ>0 and for an even integer m(^2)

(i) £&=() and E\ξ%\n+δ^M<oo ( ι=l , 2, •••),

and

(ii) Σ (i+l) m / 2 " 1 W0} 3 / ( m + 5 ) <oo .

Then, for every sequence {αj and for every integer n, we have

(17) E( δ Σ fl^r^cUPn (all b^O, n^ΐ),
δ+i

where c'm is an absolute constant depending only on m. Hence, the analogous
inequalities to (15) and (16) hold.

The first part of Theorem 3 is analogously proved to the proof of Theorem
1, using Lemma B instead of Lemma A and so is omitted.

5. Functionals of mixing sequences. For a strictly stationary mixing pro-
cess {ξj}, let Hi be a Hubert space of random variables, measurable with
respect to M\, and U an isometric operator on i/ϋoo. Let Y^H-oo be a random
element such that EY=0 and E | F | 2 + a < o o for some <^0. Define

(18) Yj=UΎ 0 = 0 , ± 1 , ±2, •••)

and put

(19) φ(k)=E\Y-E(Y\Mik)\^ (ft=l, 2, •••).

THEOREM 4. Let {ξj} be a strictly stationary, φ-mixing sequence. Let

be the strictly stationary sequence defined by (18) with δ=0. If
CO

Σ ψ1/2(k)<oo, then for every sequence {ak} and for every w(^l)

(20) Var (*Σ aιYτ)SKMQA\ n (all b^

Hence, for every n^l

b+j

(21) £(max( Σ aιYι)
2)SKMQAln(\og2n)2 (all b^

l ύ ύ n ι b l
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Here, M0^max{EY2, {EY2}1/2}.

Proof. Without loss of generality, we may assume that b=0. From the
proof of (18.6.4) in [3]

where j>ι and [s] denotes the largest integer p such that pSs. Thus, (20)
follows, since

Σ α?+ Σ αff {φ1/2(P)+Ψυ\P)}
ι=ι ι=i p=i

ΣαSΣ
.7 = 2 ς = l

(21) follows easily from (20).
Analogously, using inequalities in the proof of Theorem 18.6.2 in [3] we

have the following

THEOREM 5. Let the strictly stationary sequence {ξJ be s. m. and consider
the strictly stationary sequence {Yj} defined by (18) with some δ>0. If

Σ M έ F / ( W ) < ω and Σ {φ(k)}δ/C2+δ'<oo,

then for any n (^ l )

(22) Var ( i f atYι)^KM1Al,n (all b^O)
1=6+1

and so

(23) E{ max *Σ aιYι)
2^KM1Al,n(\og In)2 (all b^O).Σ

ι=b+l

Here, M ^ m a x ^ l Y\2+δ, {E\Y\2+δ}2/2+δ).

6. Some applications.

(I) Almost sure convergence of series Σ aιξι.
1 = 1

THEOREM 6. Let {fj 6^ α s. m. mixing sequence of random variables with

Eζi=0. Then, the series yΣaiξι is convergent almost surely, if Σ α?log 2ι and for
l l
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some δ>0 the following conditions are satisfied:

(i) £ | £ J a + ^ / £ C ι = l , 2 , •••), and

(ii) Σ {α(n)}3/C2+δ)<oo.

Proof Let N=N(ή) be an arbitrary function of n such that JV>?z. If (i)
holds, then from Theorem 1

E{ Σ ai
ι=n

where d= Σ α? log 2i, and so
l

Hence, by the Beppo-Levi theorem

Σ f» — > 0 a. s.

The rest of the proof is obtained by the method of the proof of Theorem
3.2.1 in [8], using Theorem 2 instead of Theorem 3.1.1 in [8] and so is omitted.

If (ii) holds, from Theorem 3 we have the desired conclusion analogously.
For functionals of mixing processes the following theorem holds:

THEOREM 7. For a strictly stationary mixing process {ξj}, let {Yj} be the

process defined in Section 5. Then the series Σ o,iξι is convergent almost surely

if Σ<2?log2z<co and one of the following conditions holds:

t = l

(i) {ξt} is φ-mixing with 1Lφυ\ϊ)<^ and Σ 0 1 / 2 ( O < ° ° ,

or
(ii) {£,} is s.m. with Σ {α(n)}o 7 C 2 + < 5 )<oo, E\Y\2+δ<^ and

71 = 1

Σ {ψ(n)}δ/C2+δ'<co (<5>0).
71 = 1

Remark. It is obvious from the proof of Theorem 6 that the conclusions of

Theorems 6 and 7 remain true, if we replace the condition Σ a\\og2i<oo by the
ι=l

condition
CO

Σ α?(log ι)(log log i)(log log log f)1+ε<oo
t = l

for some ε>0.
(II) The rate of the convergence in the strong law of large numbers.
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THEOREM 8. Let m^4 be an even integer. If the conditions of Theorem 2
or 3 are satisfied, then the followings hold:
(i) if An-^oo, then for each ε>0 and δ>0

(24) P{ Σ αι£i=0{i4n(log Λn)
1/m(log log AnY

1+δ>/n})=l
ι=i

and

(
/j2/m j v

(ii) ί/ y4n-^co αnrf al^cA2

n(n^nQ, 0<c<ϊ), then for each ε>0 αwd δ>0

(26) ?

( 2 7 )

This theorem follows from Theorems 5-8 in [4] and Theorems 2 and 3.
(Ill) The functional central limit theorem for (not necessarily strictly sta-

tionary) mixing sequences. In what follows, we assume that {ξJ is a sequence
of random variables centered at expectations with variances Eξ\ uniformly
bounded by 1. Put

(28) Sn= Σ ξx, sl=E(Sl), σ%= max Eξl

We shall assume that si —> oo.
Consider the point sl/s%(l^k^n) on the real line. Order them linearly and

discard those bigger than 1. Set

and define a random function XN(t) in C[0, 1] by

(30) Xn(t)=s^st

and linear between those points. Similarly define a random function Yn(t) in
DίO, 1] by setting r n ( i )=s^S* if t=s~2sl Throughout the interior of the parti-
tion intervals (tι-1, tt) we define Yn{t) to be constant equaling any value between
YnίU-J and YM.

We shall suppose that one of the following conditions holds.

(a) {ξn} satisfies Condition (I) with Σ n{^(n)} 1 / 4<oo, and EζίύK(.ι=l, 2, •••), and
n = \

(b) {ξn} satisfies Condit ion (II) w i t h Σ naδ/i+δ(n)<oo, a n d E\ξt\
A+δ<K(ι=l, 2, •••)

ί
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for some δ>0.
Now, we write

(31) Sn=Σ£i=Σjo+Σ*,
1 = 1 3=1 3=1

where we set

Here, we put

the integers h and k being at our disposal.
A double sequence of real numbers is called an admissible pair for {ξn} if

<7* 2 ' Bn

(32)

or

according to whether Condition (I) or (II) is assumed to hold.

LEMMA. Suppose that (a) or (b) holds. Let («„, sn) be any admissible pair
for {ζn} Then we can represent Sn in the form (31) subject to the following
conditions.

(33)

uniformly in l^jίsl. Moreover

(34) E( Σ ZjY^KKnS*, E{ Σ Λ ) =
J^l jίl

The proof of this lemma is easily obtained by the method of the proof of Lemma
4 in [7], using Theorems 1 and 3, and so is omitted.

By Lemma we have the following theorem which is a generalization of
Theorem 1 in [8].

THEOREM 10. Suppose that {ξn} satisfies either (a) or (b). Let (ιcn, BN) be
any admissible pair and let y^ynjiwith df Fnj) be the sequence of random varia-
bles associated with it according to Lemma. Then

(35) Xn -^> W and Yn-^W



MOMENT INEQUALITIES 325

where W is standard Browman motion if and only if, for any ε>0

(36) s - 2 Σ ( y*dFnj—>0 (n — * oo)

Proof The proof is carried out by the same method of the proof of Theorem

1 in [8], using Theorems 1 and 3 instead of condition a) in [8] and so is omitted.
(IV) The rate of convergence to normality. Let {ξJ be a strictly stationary,

n

s. m. sequence of random variables with Eξi==0. Put 5 0 =0 and Sn=
yΣζJ, and

. 7 = 1

assume that

(37) f § f o ^

if the series is convergent. It is known that if £ | f J 2 + δ < c o and Σ {a(j)} δ/2+δ<oo

for some δ>0, then the series in (37) is absolutely convergent, (cf. [3], Theorem
18.5.3)

THEOREM 11. Let {ξJ be a strictly stationary, s. m. sequence of random varia-
bles with Eξi=0 and E\ξi\*+δ<™ for some δ>0. If a(n)=O(e~rn) for some γ>0,
then

(38) Jn

where

(39) =e
-oo V27Γ

Proof Let n be any positive integer fixed. Let

] (cr>2),

Define

and

V

Σ S

Put

ί7f=(var371)-1/a

7ι ( ι=l , - , fe).

Then
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X 1 = 1

+ sup\Φ(x-2εn)-Φ(x)\+sup φ,VkVarVl x 1
v v i t σ / IVn σ

n

Σ ζ%\ =εnΐl

where ε n =n" 1 / 7 .
Now, by the method used in the proof of Theorem 2 in [5], we shall show

(40)

Let Ylf' ,Yk be independently and identically distributed random variables
each having the same df as that of ηf. Thus, £1^=0, Var Yt=l and from
Theorem 1

E\Y%\ 3 -(var ηxΓ
/2E\ Vl

k

Applying Lemma 1 in [6, p. 109] to the sum &~1/2Σ Y3, we obtain

for all t such that \t\^K1\
/~k .

On the other hand, as η*r§ are s. m., so for all n sufficiently large and for
all t

eίtk~m^) - Π
J=l

and from Theorem 1

\ E e
itk-v2

for all | ί | sufficiently small.
Hence, from Theorem 3 in [β, p. I l l ] it follows that for some α>0

Cakι/

J-ak
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Σ yf)} -U

\ t\

Thus, we have (40).

From inequalities (3.3) and (3.4) in [6, p. 114] and Theorem 1 we have the

following inequalities:

(41) supl Φ(x-2εn)-Φ(x)\ ^2εn=
x

sup

(42)

feVar?1 x_
Vn σ '

__ I k Var r]1—nσ2

I n(Vk Var ηx-

< K

Var

n

- P
n

Vi 1

Σζ
1=1

(43)

(44)

< KrΓmk {E\ζA2+0"

P(\ Σ
ι k( + q

=O(n~1/7).

Hence, by (40)-(44), we have (38) and the proof is completed.
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