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REAL HYPERSURFACES OF A COMPLEX MANIFOLD

AND DISTRIBUTIONS WITH COMPLEX STRUCTURE

BY KENTARO YANO AND SHIGERU ISHIHARA

The purpose of the present paper is to study real hypersurfaces of a complex
manifold, distributions with complex structure induced on a real hypersurface
from that of the ambient manifold, pseudo-conformal mappings between two real
hypersurfaces and infinitesimal pseudo-conformol transformations on a real hyper-
surface.

In § 1 we state some preliminaries on almost contact structures and an ele-
mentary lemma. In § 2 we study real hypersurfaces of an almost complex
manifold and show that a hyperdistribution with complex structure is induced on
the real hypersurface. We then show that, if we choose a local affine normal,
there is on a real hypersurface an almost contact structure associated with the
hyperdistribution endowed with complex structure. § 3 is devoted to the study
of affine connections induced on the real hypersurface form an affine connection
of the ambient complex manifold with respect to which the complex structure is
covariantly constant. In § 4 we study pseudo-conformal mappings and in § 5
infinitesimal pseudo-conformal transformations.

§ 1. Preliminaries

Let there be given, in a manifold M of odd dimension 2n+l(^3), a tensor
field / of type (1,1), a vector field ξ and a 1-form θ satisfying

(1.1) f*=-l+θ®ξ, /£=0, θof=0, Θ(ξ)=l,

I being the identity tensor field of type (1,1), or

(1.2) feafb

e=-δi+θ£a, / β

α £ β = 0 , θefb

e=O, θeξ'=l,

fb

a, ξa and θb denoting components of /, ξ and θ respectively. Then the triple
(/, ξ, θ) is called an almost contact structure in M. In the sequel, manifolds,
tensor fields, connections and mappings we consider are assumed to be differen-
t i a t e and of class C°° unless otherwise stated and the indices a, b, c, d, e, •••
run over the range {1, 2, •••, 2n+l}, the summation convention being used with
respect to this system of indices.
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We define tensor fields S of type (1, 2), G of type (0, 2), T of type (0, 2), P
of type (1,1) and Q of type (0, 1) as those with components

(1.3) Scb

a=fcΨefb

a-fbΨef

(1.4) Gcb=fc\Veθb-Vbθe),

(1.5) Tcb=Gcb-Gbc,

(1.6) Pb

a=-lξePefb

a-(Peξ

(1.7) Q 6 = - K β F

respectively, where V denotes the operator of covariant differentiation with
respect to an arbitrary symmetric affine connection in M. We easily see that
these tensor fields are independent of the symmetric connection V used to define
them. Then S and G are respectively called the torsion tensor and the Levi
tensor of (/, ξ, θ). The following propositions are well known [4] :

(Pi) S=0 implies 7 = 0 , P=0 and Q=0;

(P2) P=0 implies Q=0.

When the tensor field S vanishes identically, the almost contact structure
(/, ξ, θ) is said to be normal.

We now state an elementary lemma for later use. Let V be a vector space
over real number field with complex structure F. That is, F: V —»• V is a linear
transformation satisfying F2=—I. Then V is necessarily even-dimensional, say
dim 1^=272+2(^4). Take arbitrarily a (2?z+l)-dimensional subspace W of V.
Then FW is also (2n+l)-dimensional. We can now state

LEMMA 1.1. Put D=Wr\FW and N=FW-D. Then FD = D, FNaW, V
= WJrFW, dim D=2n, N= {axo+y\a^R, aφO, y<^D), x0 being a fixed element of
N, and any element x of N is uniquely represented as x—axo+yia^R, y^D).

The subset iV appearing in Lemma 1.1 has two connected components, each
of which is homeomorphic to a Euclidean space of dimension 2n+l. The subset
TV is called the affine normal space to W in the vector space V with complex
structure F.

§ 2. Hypersurfaces of an almost complex manifold.

Let M be an almost complex manifold of real dimension 2n+2(^4) with
almost complex structure F, where F is a tensor field of type (1,1) in M satisfy-
ing F2——I, i.e.

(2.1) FkhF%

k=-δi,
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F%

h denoting components of F. In the sequel, the indices h, i, j , k, ••• run over
the range {1, 2, •••, 2n+2} and the summation convention will be used with res-
pect to this system of indices.

Let there be given a hypersurface M immersed in M. For each point P of
M, denote the tangent space to M and that to M at P by TP(M) and TP(M)
respectively. Then the subspace DP = TP{M)r\FTP{M) is 2n-dimensional and
hence the correspondence P •-» DP defines a distribution D of dimension 2?ι in M.
Since FD=D, we can define a tensor field / of type (1,1) in D by JX=FX, X
being an arbitrary vector field belonging to D. Then F2=—I implies J2= — ID,
where ID denotes the identity tensor field of type (1,1) in D. Thus the D is
called a hyperdistribution with complex structure J in M and said to be induced
in M from F by the immersion [3].

Since the tangent space TP(M) is a vector space with complex structure F,
by Lemma 1.1 the subspace TP(M) of TP{M) has its affine normal space NP. We
call N= \J NP the affine normal bundle to the hypersurface M. Since NP has

PGM

two connected components, each of which is homeomorphic to a Euclidean space,
N has a global cross-section if M is oπentable.

Let 0 be a coordinate neighborhood of M such that any connected component
U of ϋr\M is a coordinate neighborhood of M. In the sequel by U we mean
such a coordinate neighborhood of M. Take a local cross-section C of the aifine
normal bundle Af over U and call it a local affine normal to M in U. Then by
Lemma 1.1 FC is tangent to M in U and hence

(2.2) ξ=-$C

is a non-vanishing vector field in U. Next, for any vector field X m M, we can
decompose F Z uniquely as

(2.3) FX=fX+θ(X)C,

where fX is tangent to M. Thus / and θ are a tensor field of type (1,1) and a
1-form in U respectively. Applying F to (2.3) and using F2=—I, we find — X
=(f2X-θ(X)ξ)+θ(fX)C, which implies

(2.4) p=-I+θ®ξ, #°./=o.

If we put Z = f in (2.3), we obtain Fζ=f(ξ)+θ(ξ)C. On the other hand (2.2) gives
Fξ=C. Hence we get

(2.5) / £ = 0 , 0Cf)=l.

Equations (2.4) and (2.5) show that the triple (/, ξ, θ) is an almost contact struc-
ture in U, which is called an almost contact structure induced in M by an affine
normal C in U. A vector field X in M belongs to D if and only if FX belongs
to D. Thus, because of (2.3), X belongs to D if and only if Θ(X)=Q. Hence the
distribution D is defined by 6=0 in U. Therefore the almost contact structure
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(/, ξ, θ) is associated with the hyperdis-tribution D with complex structure [3].
We now take another affine normal C to M in U. Then by Lemma 1.1 we

have

(2.6) C=^-(C+A),

where a is a non-vanishing function and A a vector field being tangent to M
and belonging to D, a and A being defined in U. Thus we have

(2.7) f=f-θ®A, ξ=^{ζ-fA), θ=aθ,

where (/, f, (?) is the almost contact structure induced in M by (2.3) and (2.5), C
being replaced by C. The change (2.7) of almost contact structures has been
discussed in [3] and is called a change of almost contact structures associated
with D.

§ 3. Induced affine connections

We now assume that the ambient manifold M is a complex manifold of com-
plex dimension n + l ( ^ 2 ) with complex structure F. It is well known that there
is a symmetric affine connection V satisfying ^F—0, i. e.

(3.1) PΛ Λ =0

KL C7] In the sequel we fix this affine connection V.
Consider a real hypersurface M immersed in M and a coordinate neighborhood

U of M such that U is a connected component of Ur\M, 0 being a coordinate
neighborhood of M. Let (xh) and (ya) be coordinates in ί7 and in U respectively.
We assume that M is represented in 0 by

(3.2) xh=xh(ya).

Take an affine normal C to M in U and put

(3.3) Bb

h=dxh/dya

in U. Then Bb=Bb

hd/dxh and C=Chd/dxh form an affine (2n+2)-frame along t/.
Thus on putting

we have

(3.4) Bb

ιBai=δΐ, Bt

ld=0, B\Cι=0, dCl=l;

(3.5) β,*B ,+C f tC i=δf
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Thus Ba=Baidxι and C=ddxι form a coframe dual to {Bb, Q along U.
The affine connection V induced in U from F with respect to the affine

normal C has, by definition, components given by

(3.6) Γ%={dcBb

h+Γ%Be^Bb

i)B\,

where db=d/dyb and Γh

jt denote components of V in 0. Since V is symmetric,
i.e. since Γ)i—Γh

%v F is also symmetric, i.e. Γ%=Γξc. Thus if we define the so-
called van der Waerden- Bortolotti covariant derivative of Bb

h along M by

(3.7) FcBb

h=

in U, then we have (F cBb

h)Ba

h=0, which shows that VcBb

h is of the form

(3.8) VcBb

h=hcbC
h,

where hcb are defined by

(3.9) ho^hfMdcBf+ΓϊiBc'BfiC*

and are called components of the covariant second fundamental tensor h of M
with respect to the affine normal C, h being of type (0,2).

Differentiating Bb

hBa

h=d% covariantly along M and using (3.8) and ChBa

h—0,
we find Bb\FcB

a

h)=0, from which

(3.10) FcB\=Hc

aClf

where FcB
a

ι are defined by

(3.11) FcB
a

i=d

in U and Hc

a by

(3.12) Hc

a=

The Hc

a are called components of the mixed second fundamental tensor H of M
with respect to the affine normal C in U, H being of type (1.1).

We next differentiate BaiCl=0 covariantly along M and use (3.10). Then
we obtain Hc

a+Ba

i(FcC
i)=0f from which

(3.13) FcC
h=-Hc

aBa

h+lcC
h,

where lc are defined by

(3.14) icH

and FcC
h by

(3.15) Fc

in U. The lc are called components of the third fundamental tensor I of M with
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respect to the affine normal C in U, I being of type (0,1). The / gives a linear
connection in the one-dimensional vector bundle

W {aCP\a<ΞR} over U.

Finally, differentiating B^d—^ covariantly along M and using (3.8), CiBb

l—0
and CiCι=l, we find / c+C ι(Γ cC ι)=0, from which

(3.16) F ed=-hebB\-leCtf

where FCCZ are defined in U by

(3.17) FcC^dcd-ΓhBc'Cn.

Equations (3.8) and (3.10) are those of Gauss for the real hypersurface M and
equations (3.11) and (3.13) are those of Weingarten for M.

Consider a vector field X=Xhd/dxh tangent to M. Then we have Xh=XaBa\
Thus using (3.8), we have

(3.18) FeX
h=(FeX

a)Ba

h+hebX
bCh,

where we have put in U

Let (/, ξ, θ) be the almost contact structure induced in M by the affine
normal C to M in U. Then (2.2) and (2.3) can be written as

(3.19) Px

hC%=-?Bb

h,

(3.20) Fz

hBb

ι=fb

aBa

h+lbC
h

respectively. Applying Fc to (3.20) and using FcPι

h=Bc

iFjPt

h=Qf we obtain

where we have used (2.2), (2.3) with X=Bb> (3.16) and (3.17). Thus we obtain

(3.21) Fcfb

a=-hcbξ
a+Hc

aθb,

(3.22) Fcθb=-hcefb

e-lcθb.

Next, applying Fc to (3.19), we have in a similar way as above

from which

(3.23) Fcξ
a=f/Hc

e+lcξ
a,

(3.24) Hc

eθe=hceξ
e.
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Substituting (3.21), (3.22) and (3.23) into (1.3) and using (3.24), we obtain

(3.26) Gcb=-(hcb+fc

efb

dhed)+hbeξ
eθc-fc%θb,

(3.28) Qb=h~{leξe)θb-hedξ
efb

d.

When a hyperdistribution D with complex structure / is given in a manifold
of odd dimension and when Scb

a=0, (mod θc, θb) is satisfied for an almost contact
structure (/, ξ, θ) associated with D, the D is said to be torsionless [3]. Thus
we have from (3.25)

THEOREM 3.1. For any real hypersurface M of a complex manifold the in-
duced hyperdistribution D of M with complex structure J is always torsionless.

Equations (3.26) imply

THEOREM 3.2. For any real hypersurface M of a complex manifold, the Levi
tensor G of an almost contact structure (/, ξ, θ) induced in M has components of
the form

(3.29) Gcb=-(hcb+f/fb

dhed) (mod. θe, θb)

in U, when an affine normal C to M is given in a coordinate neighborhood U of M.
Theorem 3.2 implies that

G(X, Y)=G(Y, X), G(JX, JY)=G(X, Y)

for any vector fields X and Y belonging to the hyperdistribution D with complex
structure /. Equations (3.25) imply

THEOREM 3.3. Let (/, ζ, θ) be an almost contact structure induced on a real
hypersurface M of a complex manifold by giving an affine normal C to M in a
coordinate neighborhood U of M. Then (/, ξ, θ) is normal if and only if

(3.30) He

afb

e-fe

aHb

e-lbξ
a=0, (mod Θb).

We take another affine normal C to M in U and assume C is given by (2.6).

Denote by V, I, h and H respectively the induced affine connection, the third

fundamental tensor, the covariant and the mixed second fundamental tensors of

M in U, which are determined by (3.6), (3.14), (3.9) and (3.12) in terms of C.

Then components Γ?b of 7, hcb of h, Hb

a of /ί and Ίb of / are respectively given by

(3.31)

Γ%=Γ%-hcbA
a, hcb=ahcb,

HatHaFAa+(l+h



296 KENTARO YANO AND SHIGERU ISHIHARA

ίb=lb+hbeA
e-Fblog \a\,

where a is a non-vanishing function and Λ=ΛaBa

hd/dxh is a vector field belong-
ing to D, both being defined in U. To obtain (3.31), we have used (2.6), Bb

h=
Bb

h and

(3.32) Ba

i=B\-ΛaCι, Ct=Ct,

where

Theorem 3.2 and hcb=ahcb appearing in (3.21) imply the following well known
theorem [1], [2], [3], [5] :

THEOREM 3.4. Let (/, ξ, θ) and (/, f, θ) be two almost contact structures
induced on a real hypersurface M and assume that they are related to each other
by (2.7). Then

Gcb~aGcb (mod#c, θb),

a being a non-vanishing function, where Gcb and Gcb are respectively components
of the Levi tensors of (/, ξ, θ) and (/, f, θ).

Theorem 3.4 shows that the restriction GD of the Levi tensor G to D is
determined up to a non-vanishing factor. Thus GD is sometimes called the Levi
tensor of the induced hyperdistribution D with complex structure. When G is
of the maximum rank 2n everywhere in M, the real hypersurface M is said to
be non-degenerate. By Theorem 3.1, for any real hypersurface M of a complex
manifold the hyperdistribution D of M with complex structure is torsionless.
This fact means that any real hypersurface M admits a pseudo-conformal struc-
ture when M is non-degenerate [1], [2], [5].

§ 4. Pseudo-conformal mappings.

Let M and fM be two manifolds admitting hyperdistributions D and 'D with
complex structures / and '] respectively. Assume that there is a homeomorphism
φ : M-*'M such that, for any vector field X belonging to D, φ*X belongs to rD
and φ*J=fJφ*> where φ* denotes the differential of φ. Then φ: M-*'M is
called a pseudo-conformal mapping [3], [5].

Let φ\ M-^M be a holomorphic transformation of the ambient complex
manifold M with complex structure F. Then φ*F=Fφ*, where φ* denotes the
differential of φ. Consider real hypersurfaces M and 'M immersed in M and
assume φ(M)='M. Denote by φ: M-*'M the restriction of φ to M. Then φ
is a homeomorphism and is called the mapping induced from φ. Let D and 'D
be the hyperdistributions with complex structure induced in M and fM respec-
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tively. Denote by / and '/ the complex structures induced in D and 'D respec-
tively. Then we can easily verify that φ*X belongs to fΌ whenever X belongs
to D and that φ*J=fJφ*. Thus φ: M-^'M is a pseudo-conformal mapping.
Hence we have the following well known theorem [1], [2], [5] :

THEOREM 4.1. Any holomorphic transformation φ : M —> M of the ambient
complex manifold M induces a pseudo-conformal mapping φ: M-^'M, where M
and 'M are real hypersurfaces in M such that /M=φ(M).

Let φ : M ' —* M and φ : M —• 'M be taken as above. If we take an affine
normal C to M in a coordinate neighborhood U of M, then C=φ*(C) is also an
affine normal to 'M in /U=φ(U) because of φ*F=Fφ*. Thus, taking an affine
normal rC to 'M in 'U, we get because of (2.6)

(4.1) c=±-UC+A)

in 'U, where a is a non-vanishing function and A a vector field belonging to 'D,
both being defined in ΊJ. Let (/, ζ, θ) be the almost contact structure induced
in M by the affine normal C to M in U. Let ('/, 'ξ, fθ) be the almost contact
structure induced in 'M by the affine normal 'C to 'M in 'U. Then putting

(4.2) ϊ=Φ*AΦ*Tι, ξ=φξ, θ=θ°φ,

we see that (/, ξ, θ) is an almost contact structure associated with 'Ό in 'U.
Thus, taking account of (2.7), we have from (4.1)

(4.3) /=7-^®A, ξ=~{ξ-'fA), θ = a'θ.

In general, the following lemma prevails [3] :

LEMMA 4.2. For a homeomorphism φ M^'M of a manifold M admitting a
hyperdistributwn with complex structure onto another rM, (4.3) is a necessary and
sufficient condition for φ' M->fM to be a pseudo-conformal mapping.

Let φ : M-> M, φ : M-^'M and other notions be fixed as above. Take a
coordinate neighborhood 0 of M with coordinates (xh) and put /U=φ(U), which
is a coordinate neighborhood of M with coordinates (uh). Then φ\ M-+ M will
be locally represented by

(4.4) uh=Φ\xι)

with respect to 0 and /U. If we take complex coordinates (zλ) and (wλ) in 0
and 'Ό respectively, then (4.4) is represented as follows:

(4.5) wλ=Φ\zf, zV),

w h e r e zP=~z1*. In t h e s e q u e l t h e ind ices λ, μ, v, ••• r u n o v e r t h e r a n g e {1, 2, •••,
n + 1 } . T h e n w e c a n eas i ly p r o v e
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LEMMA 4.3. The condition φ*F=Fφ* is equivalent to each of the following
conditions (4.6), (4.7) and (4.8):

for any point P of 0 where Ft

h and /Fι

h are components of F in 0 and in fU
respectively:

(4.8) dΦ2Adz1 Adz2A ••• Adzn+1=O.

Denote by (ya) and (ηa) coordinates of M in U and those of 'Min ^respec-
tively. Then φ'1: 'M—*M will be represented by

(4.9) y«=ψ*(V

b)

with respect to U and /U. Moreover the hypersurfaces M and 'M are assumed
to be represented by

(4.10) xh=x\ya) and uh=u\ηa)

respectively with respect to the pairs (U, 0) and (fU, Ό). Putting

„, dxh

"b ~ dub

we obtain

inU and 'Bf=^r in'U,

LEMMA 4.4. The condition (4.3) for the φ M-^'M 'which is 'induced from
φ : M—>M is equivalent to each of the following conditions (4.11) and (4.12):

for any point P of U

(4.12) d($λ*ϊ)/\d(zιή)/\ •

where i: A4—+ M denotes the immersion of M.

Proof Denote components of C in 0, those of 'C in 'fj and those of C in
'Ό by Ch, 'Cn and Ch respectively. Then we have for any point P of U

On the other hand we easily obtain
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Transvecting (4.6) with Γ β / - ^ - 1 and using (4.13) and (4.14), we obtain

which is equivalent to

(4.16)

Equation (4.16) is equivalent to (4.3). Thus (4.15) is equivalent to (4.3). Finally,
if we take account of Lemma 4.3 and (4.14), we see easily that (4.15) is equivalent
to (4.12). Therefore Lemma 4.4 is proved.

Let there be given abstractly a homeomorphism φ : M-*'M and assume that
φ is represented by

(4.17) uh=Φ\ya) or wλ=Φ\ya)

with respect to U and 'U. Then in a way similar to that used for the proof of
Lemma 4.4 we can prove

LEMMA 4.5. For any homeomorphism φ: M-^'M, which is abstractly given,
the condition (4.3) is equivalent to the condition

(4.18) d02Ad(z^i)A ••• Λd(zn+1oi)=0,

where z* M—>Mιs the immersion of M.

We now assume that M and 'M are real hypersurfaces analytically immersed
in M and that φ : M-*'M is an analytic homeomorphism. Then, as is well
known, the differential equation (4.8) with unknown functions Φ\zμ, zμ) has a
local solution Φλ satisfying the boundary condition

along M, when Φλ satisfy the condition (4.18) [5]. Therefore, taking account of
Theorem 4.1, Lemmas 4.2, 4.3, 4.4 and 4.5, we can prove the following well known
theorem [1], [2], [5] :

THEOREM 4.6. Let M and 'M be real hypersurfaces analytically immersed in
a complex manifold M and assume that φ' M—*'M is an analytic homeomorphism.
Then φ is pseudo-conformal if and only if, for any point P belonging to M, there
are neighborhoods O and fO of M containing respectively P and φ(P) and a holo-
morphic homeomorphism φ : O —>'O such that φ is the restriction of φ to Of~\M.

§ 5. Infinitesimal pseudo-conformal transformations.

Let X be a vector field in a manifold M admitting a hyperdistribution D
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with complex structure and assume that any local transformations φt(—ε<t<ε,
ε>0) of M generated by X are always pseudo-conformal transformations. Then
X is called an infinitesimal pseudo-conformal transformation or simply a pseudo-
conformal vector field in M. Let (/, ξ, θ) be an almost contact structure associated
with D in a coordinate neighborhood U. Then we have the following lemma
proved in [3] for a manifold admitting a hyperdistribution with complex structure :

LEMMA 5.1. In a real hypersurface M of a complex manifold, a vector field
X is pseudo-conformal if and only if X satisfies

(5.1) -Cχf=-θ®V, Λxξ=-aξ-fV, Xxθ=aθ,

where a is a function and V a vector field belonging to D, both being defined in U.

It is known that a pseudo-conformal vector field X in M vanishes identically
if X belongs to D, where D is assumed to be torsionless and non-degenerate. On
the other hand, by Theorem 3.1, for any real hypersurface M of a complex
manifold M the induced hyperdistribution D of M is always torsionless. Thus we
have [5]

THEOREM 5.2. Let M be a non-degenerate real hypesurface of a complex
manifold M. A pseudo-conformal vector field X in M vanishes identically if X
belongs to the induced hyperdistribution D with complex structure.

Consider a real hypersurface M of a complex manifold M with complex
structure F. Let a holomorphic vector field X in M be tangent to M. Then,
since X is holomorphic, X satisfies

(5.2) Fk

hVxX*=VkX*FxK

On the other hand, since X is tangent to M, we have along M

(5.3) Xh=XaBa

h.

Transvection of (5.2) with Bb

ι gives

(5.4) Fk\PχXk)Bb

x=(

which is equivalent to

(5.5) [{VbX«)fe

a-{V eX
a)U-h

because of (3.18), (3.19), (3.20) and (5.3), where (/, ξ, θ) is an almost contact
structure induced in each coordinate neighborhood U of M by fixing an affine
normal C to M in U. Next, transvection of (5.2) with C1 gives

(5.6) j
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because of (3.18), (3.19), (3.20) and (5.3). Substituting (5.6) into (5.5), we have

(Fbxηfe

a-(Fex
a)fb

e-
(5.7)

(Fbxηθe-fb

ehedx
d=θb(Fcxηξ%,

which reduce respectively to

(5.8) -Cχfb

a= -θbV
a, Xxθb=

where we have put
Va=-He

aX*
(5.9)

a={VcX*)ζcθe-leX\

Thus, taking account of (3.24), we see easily that ffeV
e=0, i.e. that Va are com-

ponents of a vector field V belonging to the induced hyperdistribution D of M.
Next, the identities θbξ

b=l and fb

aξb=0 imply respectively

Uχθb)ζb+θbUχξb)=0 and Uχfb

a)ξb+fb

aUχξb)=0.

Substituting (5.8) into these equations, we obtain

(5.10) Xxξ
a=-aζa-fβ

aV*.

Consequently, we have (5.1) from (5.8) and (5.10). Thus we have the following
theorem [5] :

THEOREM 5.3. Let M be a real hypersurface immersed in a complex manifold.
If a holomorphic vector field X in M is tangent to M, then the restriction X of X
to M is a pseudo-conformal vector field in M.

Let (/, ξ, θ) be an almost contact structure induced in a coordinate neigh-
borhood U of M and assume that ξ is a pseudo-conformal vector field in U.
Then (/, ξ, θ) is said to be regular [5]. If this is the case, (5.1) implies

Pb

a=-Xζfb

a=0,

because Xξξ=0 and (5.1) gives V=0 and α=0. Therefore (3.27) implies

He

afb

e-fe

aHb

e-lbξ
a=0 (mod θb)

if and only if (/, ξ, θ) is regular. Thus we have, form Theorem 3.3,

THEOREM 5.4. In a real hypersurface M immersed in a complex manifold, an
induced almost contact structure of M is normal if and only if it is regular.

Theorem 5.3 is however a consequence of Theorem 3.1 and a theorem proved
in [3].

Let (zλ) be a system of complex coordinates in a coordinate neighborhood 0
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of the ambient complex manifold M. Then we have

LEMMA 5.5. The condition (5.2) is equivalent to each of the following condi-
tions (5.11) and (5.12):

(5.12) dXλ/\dzιA -" Adzn+1=0.

It is easily verified that condition (5.8) is equivalent to (5.7) which is equi-
valent to (5.5) and hence to (5.4). Thus we have

LEMMA 5.6. Condition (5.8) is equivalent to (5.4) or to

(5.13) d{Xλ°i)/\d{zιoi)/\ ... Λd(zn+Ioi)=0,

where i: M —> M is the immersion of M.

Let there be given a vector field X in M and put Xh=XaBa

h, where Xa are
components of X in U. Then we have

LEMMA 5.7. The condition (5.8) for a vector field X=Xad/dya tangent to M
is equivalent to the condition

(5.14)

where i: M-* M is the immersion of M and Xh=XaBa

h.

We now assume that M i s a real hypersurface analytically immersed in M
and that X is an analytic vector field in M. Then, as is well known, the differen-
tial equation (5.12) with unknown functions X\zμ, zμ) has a local solution Xλ

satisfying the boundary condition

along M, when Xλ satisfy condition (5.13) [5]. Therefore, taking account of
Theorem 5.3 and Lemmas 5.5, 5.6 and 5.7, we can prove the following theorem[5] :

THEOREM 5.8. Let M be a real hypersurface analytically immersed in a com-
plex manifold M. Then an analytic vector field X in M is pseudo-con formal if
and only if, for any point P belonging to M, there are a neighborhood O of M
containing P and a holomorphic vector field X in O such that X is the restriction
of X to Or\M.
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