THE INDEX THEOREM OF GEODESICS ON A RIEMANNIAN MANIFOLD WITH BOUNDARY

BY TAKUICHI HASEGAWA

Let *M* be a Riemannian manifold with boundary (condimension one submanifold), p, q two points in the interior, and Ω_1 the set of piecewise C^{∞} curves from p to q which at some points of them lie on the boundary. Let γ be an element of Ω_1 . By a variation of γ in Ω_1 , we mean such a broken C^{∞} rectangle in M that γ is its base curve and its each longitudinal curve is an element of $\varOmega_{\text{{\tiny 1}}}$. (See [1] for the definition of "rectangle"). Then the tangent space $T_\gamma \varOmega_1$ to \varOmega_1 at γ may be considered as the set of continuously piecewise C^{∞} vector fields along γ which do not point to the outward at their boundary points and having at least one vector tangent to the boundary.

We consider the length functional *L* over *Ω .* From the first variation for mula, the critical paths of *L,* when they are parametrized proportionally to arc length, are just geodesies of *M* (there are no breaks) if they have more than one boundary point, or are geodesies which are reflected at a point of the boundary if they have only one boundary point.

We show here what is called the Index Theorem still holds in these circu mstances.

Now let γ be a critical point of *L* in Ω_1 , which is parametrized by arc length and reflected strictly at $\gamma(a) \in \partial M$. $\gamma: [0, b] \to M$. Let $\tilde{\gamma}$ be any variation of γ in Ω_1 , and *W* its variation vector field. Then $W(a)$ is tangent to the boundary, the second variation $L^{\prime\prime}(0)$ of *L* in the direction *W* becomes

$$
L_{W}^{\prime\prime}(0)=\langle S_{T(a-) - T(a+)W(a), W(a)}\rangle + \int_{0}^{b} \{\langle R(W, T)W, T\rangle + \langle W^{\perp\prime}, W^{\perp\prime}\rangle\} dt
$$

here $T(t)=\bar{r}(t)$, $W^{\perp}=W-\langle W, T\rangle T$. S is the second fundamental form of ∂M with respect to $T(a-) - T(a+)$, which is normal to the boundary from the reflection tion condition. Therefore the index form I at γ is

$$
I(V, W) = \langle S_{T(a-) - T(a+)} V(a), W(a) \rangle + \int_0^b \{ \langle R(T, V)T, W \rangle + \langle V^{\perp'}, W^{\perp'} \rangle \} dt
$$

for $V, W \in T_T Q_1$

If $0 \lt t_1 \lt \cdots \lt t_k \lt a \lt t_{k+1} \lt \cdots \lt t_l \lt b$ is a partition of the interval [0, *b*] so that *V*

Received April 27, 1977

is C^{∞} on each subinterval, then

$$
I(V, W) = \int_0^b \langle R(T, V^{\perp})T - V^{\perp \prime \prime}, W \rangle dt + \sum_{i=1}^l \langle V'(t_i^{-}) - V'(t_i^{+}), W^{\perp}(t_i) \rangle
$$

$$
+ \langle V^{\perp \prime}(a-) - V^{\perp \prime}(a+) + S_{T(a-) - T(a+)} V(a), W(a) \rangle
$$

for V, $W \in T_T Q_1$

Thus the null space of / consists of such vector fields *V* that

V; a Jacobi field on $[0, a]$, $[a, b]$ and

$$
V^{\perp}(a-) - V^{\perp}(a+) + S_{T(a-) - T(a+)}
$$
 $V(a)$; normal to ∂M

We shall say in general a field $V{\in}T_r\!\varOmega_1$ along γ an *admissible Jacobi field* if V is a usual Jacobi field on each interval $[0, a]$, $[a, b]$, and at $\gamma(a)$, $V'(a-)$ $-V'(a+) + S_{T(a-) - T(a+)} V(a)$ is normal to the boundary. Then as in the ordinary case a field is an admissible Jacobi field if and only if it is generated by one parameter family of geodesies which are reflected on the boundary. Note that in such a field *V*, $V'(a+)$ is determined by the values $V(a)$, $V'(a-)$ i.e. $V|_{[a,b]}$ is determined by $V|_{[0,a]}$. ("reflection of Jacobi fields").

Next we say $\gamma(t)$ is conjugate to $\gamma(0)$ along $\gamma|_{[0,t]}$ if there exists a nonzero admissible Jacobi field along $\gamma \mid_{[0,t]}$ which vanishes both at $\gamma(0)$ and $\gamma(t)$. Its multiplicity is defined by the dimension of the space of such Jacobi fields. If $\gamma(t)$ is not conjugate to $\gamma(0)$, $\gamma|_{[0,t]}$ is said to be *nondegenerate*.

Now let \widetilde{T} be $\{V^{\perp} | V{\in}T_r\Omega_{1}\},$ and \widetilde{I} be a symmetric bilinear form on \widetilde{T} defined by $\widetilde{I}(V^\perp, W^\perp) = I(V, W)$ for $V, W\in T_r\varOmega_1$. Then the index of *I* is equal to the index of \tilde{I} . We shall say elements of the null space of \tilde{I} admissible *normal Jacobi fields* along *γ.* Owing to the fact that *y* is reflected strictly at its boundary point, with each admissible normal Jacobi field is associated such a unique admissible Jacobi field that its normal part is equal to the given one.

LEMMA *SO long as ε>0, δ>0 are sufficiently small, there exist neighborhoods* U_1 and U_2 respectively of $\gamma(a-\varepsilon)$ and $\gamma(a+\delta)$ such that

(1) γ |[a - ε, a + δ] is a nondegenerate, minimizing critical path in $\Omega_1(\gamma(a - \varepsilon))$, $\gamma(a+\delta)$

(2) for each $u_i{\in}U_i$ ($i{=}1,$ 2) there exists a critical and minimizing path $c(u_1,\, u_2)$ *in* $\Omega_1(u_1, u_2)$ *, which is unique in the neighborhood of* γ [$[a-\varepsilon, a+\delta]$ and depends *smoothly on u₁ and u₂*.

From this follows immediately

COROLLARY *For any two vectors* $v \in \perp T(a-\varepsilon)$, $w \in \perp T(a+\delta)$, there exists a *unique aamissible normal Jacobi field Y along* γ [[a-ε, a+δ] having the given *values v, w at* $\gamma(a-\varepsilon)$ *and* $\gamma(a+\delta)$ *. Y depends smoothly upon* ε *,* δ *, v and w. Moreover for any normal field V along* $\mathcal{C}[\mathbb{Z} - \varepsilon, a+\delta]$ *having the same values* $V(a-\varepsilon)=v$, $V(a+\delta)=w$,

$\widetilde{I}_{a-\epsilon}^{\tilde{a}+\delta}(V) \geq \widetilde{I}_{a-\epsilon}^{\tilde{a}+\delta}(Y)$

where equality occurs if and only if $V=Y$ *, and* $\tilde{I}_{a-e}^{a+\delta}(V)$ is defined by

$$
\widetilde{I}_{a-\epsilon}^{a+\delta}(V):=\langle S_{T(a)-T(a+)}\widetilde{V}(a), \widetilde{V}(a)\rangle+\int_{a-\epsilon}^{a+\delta}\langle\langle R(T,V)T, V\rangle+\langle V', V'\rangle\rangle dt
$$

V(a) is such a unique vector tangent ίo the boundary at γ(a) that its orthogonal projection to $\perp T(a-)$ *is equal to* $V(a-)$. $\perp T(a-)$ *is the orthogonal conplement of* $T(a-)$

Proof of Lemma We take a small neighborhood centered at $\gamma(a)$. In it exist such a neighborhood V_1 of $\gamma(a-\varepsilon)$ in Int(M), a neighborhood V_2 of $\gamma(a+\delta)$ in Int (M) , and a neighborhood *W* of $\gamma(a)$ in ∂M that three have mutually no intersection, and any two points of V_1 and W are joined by minimizing geodesics which depend smoothly on the end points. The same property is assumed for *V*₂ and *W*. Let *K* be a function on $W \times V_1 \times V_2$ defined by $K(w, v_1, v_2) = d(v_1, w)$ $+d(w, v_2)$, $w \in W$, $v_i \in V_i(v=1, 2)$, here *d* is the distance defined in the usual way by the Riemannian metric of M. K is a smooth function. Let D_1K be the gradient of *K* with respect to the first variable. Then, from the assumption, $D_1K(0, \gamma(a-\varepsilon), \gamma(a+\delta))=0$, hence $D_1(K^2)(0, \gamma(a-\varepsilon), \gamma(a+\delta))=0$. As the hessian of K^2 at (0; 0, 0) with respect to the first variable, $D_1^2(K^2)(0; 0, 0)$, is positive definite, so is $D_1^2(K^2)(0; \gamma(a-\varepsilon), \gamma(a+\delta))$ for small $\varepsilon \geq 0$, $\delta \geq 0$. Accordingly, $D_1^2(K)$ (0; $\gamma(a-\varepsilon)$, $\gamma(a+\delta)$), the hessian of *K* at (0; $\gamma(a-\varepsilon)$, $\gamma(a+\delta)$), is also positive definite. Then, from the inverse function theorem, there exist neighborhoods $U_1[U_2]$ of $\gamma(a-\varepsilon)$ [$\gamma(a+\delta)$], $U_i\subset V_i$, and the unique smooth function *F* satisfying

$$
F: U_1 \times U_2 \longrightarrow W, \qquad F(\gamma(a-\varepsilon), \gamma(a+\delta))=0
$$

$$
D_1K(F(u_1, u_2); u_1, u_2)=0, \qquad u_i \in U_i(i=1, 2)
$$

 $D_1^2 K(F(u_1, u_2); u_1, u_2)$: positive definite matrix $(u_i \in U_i)$

Now it suffices to define $c(u_1, u_2)(u_i \in U_i)$ as the minimizing geodesic from u_1 to *F*(u_1 , u_2) plus the minimizing geodesic from $F(u_1, u_2)$ to u_2 *.* Q. E. D.

THEOREM Let γ be a critical path of L in $\Omega_1(p, q)$, which is parametrized by *arc length and reflected strictly at* $\gamma(a) \in \partial M$ *.* $\gamma: [0, b] \to M$ *,* $0 < a < b$ *. Let I be* the index form on $T_{\gamma}\mathcal{Q}_1$ derived from the second variation of $L.$ Then the index *of I is equal to the number of conjugate points* $\gamma(t)$ *to* $\gamma(0)$ *along* $\gamma(0 \lt t \lt b)$ *, counted with their multiplicities.*

The index, geometrically, is the number of independent directions towards which the geodesic γ becomes shorter curves through the path space Ω_1 .

Proof of Theorem Let γ_{τ} be the restriction of γ to [0, τ], $0 \leq \tau \leq b$, and $i(\tau)$ the index of γ ⁻. Let $0=t_0 < t_1 < \cdots < t_k = \tau$ be such a partition of [0, τ] that each segment $\gamma|_{\lceil t_i, t_{i+1} \rceil}$ is contained in a convex normal neighborhood. In case of $a \lt \tau$,

288 TAKUICHI HASEGAWA

we always take some t_j and t_{j+1} so that $t_j < a < t_{j+1}$ and $\gamma|_{[t_j,t_{j+1}]}$ is a minimizing path in $\Omega_1(\gamma(t_j), \gamma(t_{j+1})$ as in Lemma.

We set $\tilde{T}_{\tau} = \{V \in \tilde{T}_{\tau} | V=0 \text{ on } [\tau, b]\}, I_{\tau}$ be the restriction of *I* to \tilde{T}_{τ} . Then the index of \tilde{I}_τ on \tilde{T}_τ is just $i(\tau)$, its nullity $\nu(\tau)$ is the congugacy multiplicity of $\gamma(\tau)$ to $\gamma(0)$ along γ . We define

 $T_{\tau}(t_0, \dots, t_k) := \{V \in T_{\tau} | V$ is an admissible normal

Jacobi field which breaks only at *t\s)*

 $T_{\tau} := \{ V \in \hat{T}_{\tau} | V(t_i)=0 \ (i=1, \cdots, k) \}$

Then the following facts can be easily verified with the aid of Lemma and its Corollary (see § 15 of [2]). Therefore the proof of Theorem is completed

(1) $T_{\tau} \approx T_{\tau}(t_0, \cdots, t_k) \oplus T'_{\tau}$, orthogonal direct sum with respect to I_{τ} . I_{τ} is positive definite on T_t . Consequently $i(\tau)$ and $\nu(\tau)$ are respectively equal to the index and nullity of $I_{\tau}|_{\widetilde{T}_{\tau}(t_0,\cdots,t_k)}$

(2) *i* is a monotone increasing function of $\tau \in [0, b]$, and $i(0)=0$, $i(\tau - \varepsilon)=i(\tau)$ for each τ and small $\varepsilon > 0$.

(3) $i(\tau + \varepsilon) = i(\tau) + \nu(\tau)$ for each τ and small $\varepsilon > 0$. Q. E. D.

In the same way we can prove the following general theorem.

Let $\gamma : [0, b] \to M$ be a geodesic from p to q, which is parametrized by arc length and reflected strictly at $\gamma(t_i)$'s $\in \partial M(i=1, \cdots, k)$. Let Ω_k be the set of piecewise C^{∞} curves from p to q which have at least k boundary points. Then the tangent space $T_{\gamma}Q_{\kappa}$ to \varOmega_{κ} at γ may be considered as the set of continuously piecewise C^{∞} vector fields along γ which are tangent to the boundary at $\gamma(t_1)$'s. is a critical point of L in Ω_k and the index form I at γ over $T_{\gamma} \Omega_k$ becomes

$$
I(V, W) = \sum_{i=1}^{k} \langle S_{T(t_i^-) - T(t_i^+)} V(t_i), W(t_i) \rangle + \int_0^b \{ \langle R(T, V)T, W \rangle + \langle V^{\perp \prime}, W^{\perp \prime} \rangle \} dt
$$

for *V*, $W \! \in \! T_{\gamma} Q_{\textit{k}}$. Admissible Jacobi fields, conjugate points and so on are defined in the analogous way. Then

THEOREM In the situation described above, the index of I over $T_{\gamma}Q_{k}$ is equal *to the number of conjugate points γ(t) to* f(0) *along γ(Q<t<b), counted with their multiplicities.*

Finally the author expresses his hearty thanks to Professor T. Otsuki.

REFERENCES

[1] R. BISHOP AND R. CRITTENDEN, Geometry of Manifolds, Academic Press, 1964. [2] J. MILOR, Morse Theory, Princeton University Press, 1963.

TOKYO INSTITUTE OF TECHNOLOGY