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1. We say that a meromorphic function F(z) has a non-trivial factorization
with left factor f(z) and right factor g{z), if

(1) F(z)=f(g(z)),

where f(z) is a non-linear meromorphic function and g(z) is a non-linear entire
function (g(z) may be meromorphic when f(z) is a rational function). F(z) is
said to be prime, if it has no non-trivial factorization, i. e. if (1) implies that either
f(z) or g{z) is linear. F(z) is said to be pseudo-prime, if (1) implies either f(z)
or g(z) is not transcendental. Further, we say that an entire function F{z) is
E-pnme (E-pseudo-pnme), if it is prime (pseudo-prime) for entire functions f(z)
and g(z) in (1).

Recently Urabe-Yang [6] proved the E-primeness of Fin\z) (n=Q, 1, 2, •-),
where

F(z)=[\e*-ΐ)ez2dz
Jo

and the author [4] proved the E-primeness of Finγ(z),

F(z)^[\ez-l)ezkdz, (k^3: an integer).
Jo

Further in their papers they made a study of the factorization of Fin\z), where
F{z) is an entire function of the form

where Hj(z) (Ξ£0), J = 1, 2, are entire functions of order less than one and P(z) is
a polynomial of degree not lower than two.

The purpose of this paper is to improve and to complement their results.
And in § 5 we shall prove the primeness of entire functions Fin\z), n=0, 1, 2, •••,
where
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x f* k
F(z)=\ {P1{z)ez+P2{z)}ez dz (& Ξ> 3 : an integer)

Jo

with two polynomials Pχ{z) and P2{z) which are not identically zero.

2. For our purpose we need several lemmas

LEMMA 1 (cf. [3 pp. 117-118]). Let aό{z) be entire functions of order at
most p, gj{z) also entire functions and gj{z)—gk{z) {jΦk) transcendental entire
functions or polynomials of degree higher than p. Then the identity relation

holds only when ao(z)^a1(z)= ••• = an{z) = 0.

From Proposition 2 in Ozawa [5] and the argument in [5, p. 331] we deduce
the following Lemma 2 and Lemma 3.

LEMMA 2. Let F{z) be a transcendental entire function which admits a fac-
torization f{g{z)) with a meromorphic {not entire) function f{z) and an entire
function g{z). Then we have

f{z)=f1{z)/{z-a)n, Ma)Φ0, g{z)=a+eL^,

where fλ{z) is an entire function, L{z) a non-constant entire function, a a complex
number and n a positive integer.

LEMMA 3. Let F{z) be a transcendental entire function which admits a fac-
torization f{g{z)) with a non-linear rational function {not a polynomial) f{z) and
a transcendental meromorphic function g{z). Then we have

where Q{z) is a polynomial, M{z) a non-constant entire function, β a complex
number and m a positive integer.

LEMMA 4 (Clunie [1]). Let f{z) and g{z) be two transcendental entire func-
tions. Then

r-oo T{r, g)

LEMMA 5 (Goldstein [2]). Let F{z) be an entire function of finite order such
that δ{a, F)=l for some aφoo. Then F{z) is E-pseudo-pnme.

From the reasoning in the proof of Theorem 3 in [4] we deduce that

LEMMA 6. Let {av} be non-vanishing zeros of ez—azμ, where a is a non-zero
constant and μ is an integer. Then there is an integer N such that {av} satisfy
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Re av—rv cosθv—\og\a\ +μ log rv,

Im av=rυ sin θv=a+μθv+(-l)v2πlv/2~]

for all v^N, where av=rve
ίθv, a=\a\eιa(0^θv<2π, 0^a<2π) and [>] is the

greatest integer not exceeding x.

3. Now we shall prove

THEOREM 1. Let P(z) be a polynomial of degree k (k^2) and Hx(z) and H2(z)
two entire functions which are of order less than one and are not identically zero.
The entire function F(z)={H1(z)ez+H2(z)}ePCz^ has a non-trivial factorization if
and only if there are a complex number a and an integer m such that the following
identities

(3.1) P(z+a)-P(-z+a)=-z+mπι

and

(3.2)

hold. Then the non-trivial factorization of F(z) is F(z)=:f(Λ(z—a)2JrB), where
f(z) is an entire function and A (Φθ) and B are constants.

Proof. Assume that F{z) has a non-trivial factorization f{g{z)).
(I) Suppose that f(z) and g(z) are entire. Then from the reasoning in proof

of Theorem 2 in [4] we deduce that g(z) is a polynomial of degree two. Put
g(z)=A(z-a)2+B (AΦO) and w=z-a. Then F(w+a)=f(Aw2+B) and consequently
F(w+a)=F(—w+a). Hence we have

(3.3)

If deg {P(ιu + a) — P(—w+ά)} ^ 2 , then Lemma 1 implies that
H2(wJra)=0, which contradicts our assumptions Hχ(z)^0 and H2(z)^0. Hence
we put P(ιυ+ά)—P{—w-\-a)=awJrβ. If aφ—l, then Lemma 1 yields that Hi = 0
or // c

Ξ 0, which is a contradiction. Hence we have α = — 1. Then (3.3) reduces to

Again using Lemma 1 we have

ea=0 and

Therefore, using H2Ξ£Q, we obtain (3.1) and (3.2).
(II) Suppose that f{z) is meromorphic (not entire) and g{z) is entire. Then

Lemma 2 implies that
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where fλ(z) is an entire function, L(z) a non-constant entire function, a a complex
number and n a positive integer. Since F(z)={H1(z)ez+H2(z)}ePiz) has an infinite
number of zeros the exponent of convergence of which is one, fx(z) has a zero
and L(z) is linear, that is, L(z)=γz+δ(TΦθ). Hence we have

Since άeg{P(z)Jrnγz-\-nδ}^2 and a+eγz+δ is transcendental, the argument in (I)
implies that fλ{z) is linear. Hence it follows from Lemma 1 that Hx{z)ez+H2{z)
=0, that is, Hi^H2=0, which is a contradiction.

(Ill) Suppose that f{z) is non-linear rational and g(z) is meromorphic. Then
Lemma 3 implies that

F(z)=e-mM^Q(β+eM(z'), Q(β)Φθ,

where Q(z) is a polynomial, M(z) a non-constant entire function, β a complex
number and m a positive integer. Hence we can apply the same reasoning as in
(II) and we arrive at a contradiction.

Thus if F(z) has a non-trivial factorization, then (3.1) and (3.2) hold.
Conversely, assume that (3.1) and (3.2) hold. Then we have

= {H1(-w+a)e-w+a+H2(-w+a)}eP(i-w+a\

Putting G(w)={H1(w-\-a)ew+a+H2(wJ

Γa)}ePCw+a\ we have G(w)=G(-w). And so
G(w) is an even function. Hence there is an entire function f(w) such that G(w)
=f(w2). Since F(w+a)~G(w), we obtain F(z)—f((z—a)2), which is a desired non-
trivial factorization of F(z).

Thus the proof of Theorem 1 is complete.

4. Next we shall prove

THEOREM 2. Let P(z) be a polynomial of degree k (&Ξ>3) and Hλ(z) and H2(z)
two entire functions which are of order less than one and are not identically zero.
Suppose that all but a finite number of zeros of H1(z)eZJrH2(z) are simple and
there are two positive numbers K and No satisfying

(4.1) Έιl/\aj(aJ-aι)\^K

for all l^No, where {α;}7=i are non-vanishing zeros of Hx(z)eZJrH2(z). The entire
function

F{z)=\*
JO
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has a non-trivial factorization if and only if there are a complex number a and
an integer m such that the following indenhties

(4.2) P(z+a)-P(-z+a)=-z+mπι

and

(4.3)

hold. Then the non-trivial factorization of F(z) is F(z)=f(Λ(z—a)2+B), where
f(z) is an entire function and ̂ 4(^0) and B are constants.

Proof. Assume that F(z) has a non-trivial factorization f{g{z)).
(I) Suppose that f(z) and g(z) are entire. Then from the reasoning in proof

of Theorem 1 in [4] we deduce that g(z) is a polynomial of degree two. Put
g(z)=A(z-a)2+B(Aφ0) and w=z—a. Then F(wJ

Γa)=f(Aw2+B) and consequently
F/(w+a)=— Fr{—w+a). Hence we have

(4.4)

Hence as in (I) of the proof of our Theorem 1 we deduce from (4.4) that (4.2)
and (4.3) hold.

(II) Suppose that f{z) is meromorphic (not entire) and g{z) is entire. Then
Lemma 2 implies that

where fλ(z) is an entire function, L{z) a non-constant entire function, a a complex
number and n a positive integer. Since F(z) is of finite order, we deduce from
Lemma 4 that α + £ L ( 2 ) is of finite order, that is, L(z) is a polynomial. It follows
that

(4.5) {Hlz)ezΛ-Hlz)}ep^=F/{z)^U(z)e-nL^f2(eL^)}

where f2(z)= — nf1(a+z)-\-zf1

/(aJrz). Since F'(z) has an infinite number of zeros,
f2(z) is a non-constant entire function. (4.5) yields that

(4.6) {(/ίi(^y+/ί2(2r))/L/(2r)}eP(«+nLC ) =/ 2 (e L C «).

If deg{P(z)+nL(z)}^l, then άeg P(z)=άeg L(z)^3. Hence the function in left
hand side of (4.6) is of order not greater than one and the function in right hand
side of (4.6) is of order not less than three, which is untenable. If deg {P(z)+
nL(z)}^2, then the function has a maximal deficiency at zero. Hence Lemma 5
implies that f2(z) is a polynomial. Put f2(z)=amzm+ ha^+ao (amφ0). Then
we have
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However using Lemma 1 we have / / ^ Ξ O , which is a contradiction.
(Ill) Suppose that f{z) is non-linear rational and g{z) is meromorphic. Then

Lemma 3 implies that

F(z)=e-mMiz>Q(β+eM(z>), Q(β)Φθ,

where Q(z) is a polynomial, M(z) a non-constant entire function, β a complex
number and m a positive integer. Hence as in (II) we arrive at a contradiction.

Thus if F(z) has a non-trivial factorization, then (4.2) and (4.3) hold.
Conversely, assume that (4.2) and (4.3) hold. Then we have (4.4). Hence

G(w)=-{H1(w+a)ew+ajrH2(wJra)}ePίw+a^ is an odd function. Therefore there is an
entire function G*(w) such that G(w)=wG*{w2). Put

f(z)=^-[aG*(z)dz.

Then we have 2f(z)=G*(z) and f(α2)=0. Since F'(w+α)=G(w)=wG*(w2), we
obtain F{z)—f((z—α)2), which is a desired non-trivial factorization of F(z).

Thus the proof of Theorem 2 is complete.

5. Finally, as an application of our Theorem 1 and Theorem 2, we shall
give prime entire functions.

THEOREM 3. Let P(z) be α polynomial of degree k(k^3) such that if k is
odd, P{z) is arbitrary and if k is even, P(z)=akz

k (akΦθ). Let Px(z) and P2{z) be
two polynomials which are not identically zero. Then all FCn\z), n=0, 1, 2, •••,
are prime, where

F(z)=\' {Pi
Jo

Proof. Since P{z) is a polynomial of degree k(k^3) and Px(z) and P2(z) are
two polynomials which are not identically zero, we have FCn\z)= {Pm(z)ez+
P2n(z)}ePiz\ where Pln(z) and P2n(z) are polynomials which are not identically
zero. Further it is clear that P{z) does not satisfy (3.1). Hence we deduce from
our Theorem 1 that all FCn\z), n=l, 2, •••, are prime.

It is clear that all but a finite number of zeros of P1(z)ez+P2(z) are simple
and P(z) does not satisfy (4.2). Hence the primeness of F{z) follows from our
Theorem 2 if we show that the zeros {bj} of P1(z)ez+P2(z) satisfy (4.1).

Now we prove that {bj} satisfy (4.1). It follows that there is a positive
number Ro such that

hold for all z^Ω={z; \z\>R0}, where a is a non-zero complex number, μ an
integer and M a positive number. Let {av} be zeros of ez—azμ. Since Lemma 6
valids for {av} and we have
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Re bj=pj cos φj=\og | α | + μ l o g ^ + l o g 11+^4(^^01

for bj=pJe
ι^^Ω, we may assume, without loss of generality, that

(5.1) |ReαJ <τlog rv and |Re bό\ <τ\ogpj, av, bj

with \μ\<τ. Put η(r)=(σ log r)/r with πτ<2σ and

C1={z=rexpf((ττ/2)-37(r)); r>R0},

C2={z=rexpi((π/2)+η(r));

Cs={z=rexvφπ/2)-η(r))',

C4={z=rexpi((3π/2)+η(r)); r>RQ}

and

Ul ^3σ log |αy |}

We claim that for any δ>0, if RQ is sufficiently large, the equation P1(z)eZJrP2(z)
=0, that is, ez—azμ{lJrA{z))—^ has only one solution in ΩvcΩ and has no solu-
tion in Ω—^JΩV, where Ωv is a domain bounded by four curves Cλ, C2, Γΰυ and
Γ.δv when v is even, that is, Imα v>0 and by C3, C4, ^ y and Γ-δv when v is
odd, that is, Imα y<0. We may assume that Imαv>0. On d we have

lim I az^/e2 \ = lim | az^Λ(z)/ez \ = 0,
2-*°° 2->co

and consequently, if Ro is sufficiently large,

(5.2) \ez-az^\ >\az^A{z)\ for all

Since τ+μ>0, we also have on C2

lim I eV(α^)I = lim | az^A{z)l{az^| = 0 ,
2->co 2->oo

and consequently

(5.3) | e 2 - α ^ | > | α z M ( z ) | for all

We choose j ; arbitrarily such that δ^\y\^2π—δ and fix it. For z=av

JrxJriy
^Γyv, we have

I {x+iy)/av | < 13σ log | αy | +2π | /1 av \ - 0 (u->oo)

and |1 —β^+l2/| ^sin^. Further since ^ — α α / = 0 , if i?o is sufficiently large, we
have

2 for

On the other hand we have

v\^x for
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Hence, if Ro is sufficiently large and δ^\y\^2π—δ, we have

(5.4) \ez-azv\ >\az*tA(z)\ for all

Therefore using Rouche's theorem and taking (5.1) into account, we conclude

from (5.2), (5.3) and (5.4) that the equation Λ ( » 2 + P 2 ( » = 0 , that is, e*—aztt(l+

A(z))=0 has only one solution in ΩvdΩ and no solution in Ω — ̂ JΩV. Hence,

since {av} satisfy (4.1), the zeros {bj} of P1(z)eZJrP2(z) satisfy (4.1).

Thus the proof of Theorem 3 is complete.

Remark. An example in Remark 2 of [4] implies that our Theorem 3 is not
true in the case when k=2.
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